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This note gives a straightforward way to compute the moments of the distri-
bution of the integrated amount of work over the course of a busy period in an
M/G/1. This quantity is the area under the work function, over a busy period.
This problem was posed by Iglehart [3], with further work by Cohen [1] and
Glynn et al. [2].

Consider an M/G/1 with arrival rate λ and job size distribution with random
variable S. Let the state of the M/G/1 be (a,w), where a is the integrated work
in the busy period so far, and w is the work in the system. During an idle period,
a will remain at its value at the end of the previous busy period, resetting to 0
at the beginning of the next busy period.

Let A and W be the time-average values of a and w, and let Ar be the value
of A at reset points.

The goal of this note is to determine the distribution of Ar. Specifically, we
will calculate all of the moments of Ar.

1 Drift Method

There are four events in the system that can affect the drift: The determin-
istic increase in a, the deterministic decrease in w, arrivals, and resets at the
beginning of busy periods.

w decreases at rate 1, with stochastic jumps of size S at rate λ. a increases
at rate w, resetting to 0 at the beginning of each busy period.

We can thus write down the drift for an arbitrary test function f(a,w). Let
G denote the instantaneous generator of the M/G/1 system:

G ◦ f(a,w) = w
∂f(a,w)

∂a
− ∂f(a,w)

∂w
+ λ(E[f(a,w + S)]− f(a,w))1{w > 0}

− λ(f(a, 0)− E[f(0, S)])1{w = 0}

Then, we can take expectation and apply the fact that E[G ◦ f(A,W )] = 0.
To determine E[Ak

r ] for all k, we will use the drift method with test functions
akwℓ, k, ℓ ≥ 0. There are three cases to split things into: k = 0, ℓ = 0, k, ℓ > 0.
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1.1 Area only (ℓ = 0)

First, we compute the drift:

G ◦ ak = kak−1w − λak1{w = 0}

Next, we take expectations:

0 = kE[Ak−1W ]− λ(1− ρ)E[Ak
r ]

E[Ak
r ] =

kE[Ak−1W ]

λ(1− ρ)

Note that we make use of the fact that arrivals are Poisson, and the PASTA
principle, in this step. This ensures that E[A | W = 0] and E[Ar] are equal.

Thus, to compute moments of Ar, it suffices to compute expectations of
multivariate polynomials of A and W .

1.2 Area and Work (k, ℓ > 0)

First, we compute the drift:

G ◦ akwℓ = kak−1wℓ+1 − ℓakwℓ−1 + λak(E[(w + S)ℓ]− wℓ)

= kak−1wℓ+1 − ℓakwℓ−1 + λak
ℓ∑

i=1

(
ℓ

i

)
E[Si]wℓ−i

= −(1− ρ)ℓ(akwℓ−1) + kak−1wℓ+1 + λak
ℓ∑

i=2

(
ℓ

i

)
E[Si]wℓ−i

Next, we take expectations:

0 = −(1− ρ)ℓE[AkW ℓ−1] + kE[Ak−1W ℓ+1] + λ

ℓ∑
i=2

(
ℓ

i

)
E[Si]E[AkW ℓ−i]

E[AkW ℓ−1] =
kE[Ak−1W ℓ+1] + λ

∑ℓ
i=2

(
ℓ
i

)
E[Si]E[AkW ℓ−i]

ℓ(1− ρ)

Note that the expectation of a multivariate polynomial of A and W can be
expressed in terms of expectations of multivariate polynomials with either the
same total degree and lower degree of A, or lower total degree and the same
degree of A.

Thus, to compute these expectations, it suffices to compute moments of W .
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1.3 Work only (k = 0)

First, we compute the drift:

G ◦ wℓ = −ℓwℓ−1 + λ

ℓ∑
i=1

(
ℓ

i

)
E[Si]wℓ−i

= −ℓ(1− ρ)wℓ−1 + λ

ℓ∑
i=2

(
ℓ

i

)
E[Si]wℓ−i

Next, we take expectations:

0 = −ℓ(1− ρ)E[W ℓ−1] + λ

ℓ∑
i=2

(
ℓ

i

)
E[Si]E[W ℓ−i]

E[W ℓ−1] =
λ
∑ℓ

i=2

(
ℓ
i

)
E[Si]E[W ℓ−i]

ℓ(1− ρ)

Note that the moments ofW are expressed in terms of lower-degree moments
of W and the moments of S. Thus, we can express the moments of Ar in terms
of the moments of the size S.

2 Examples

To demonstrate the method, I will compute the first, second, and third moments
of Ar, given in (1), (2), (3).

2.1 First moment

E[Ar] =
E[W ]

λ(1− ρ)

E[W ] =
λE[S2]

2(1− ρ)

E[Ar] =
E[S2]

2(1− ρ)2
(1)

Note that (1) matches Glynn et al. [2]’s equation (20), for which they cite
Iglehart [3]’s original paper, for which I believe the relevant result is Lemma
2.4(c), though I’m not certain – the paper uses very different notation. This
also matches Cohen [1]’s equation (3.4).
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2.2 Second moment

E[A2
r] =

2E[AW ]

λ(1− ρ)

E[AW ] =
E[W 3] + λE[S2]E[A]

2(1− ρ)

E[A] =
E[W 2]

1− ρ

E[A2
r] =

E[W 3]

λ(1− ρ)2
+

E[S2]E[A]

(1− ρ)2
=

E[W 3]

λ(1− ρ)2
+

E[W 2]E[S2]

(1− ρ)3

E[W 2] =
3λE[S2]E[W ] + λE[S3]

3(1− ρ)
=

λ2E[S2]2

2(1− ρ)2
+

λE[S3]

3(1− ρ)

E[W 3] =
6λE[S2]E[W 2] + 4λE[S3]E[W ] + λE[S4]

4(1− ρ)

=
3λ3E[S2]3

4(1− ρ)3
+

λ2E[S2]E[S3]

(1− ρ)2
+

λE[S4]

4(1− ρ)

E[A2
r] =

5λ2E[S2]3

4(1− ρ)5
+

4λE[S2]E[S3]

3(1− ρ)4
+

E[S4]

4(1− ρ)3
(2)

Note that (2) matches Cohen [1]’s equation (3.9). Note that it does not
match Glynn et al. [2]’s equation (21), despite that paper citing Cohen [1] as
its source for the equation. I believe this is a transcription error – the 4 in the
denominator of the E[S2]3 term and the 3 in the denominator of the E[S2]E[S3]
term are missing in Glynn et al. [2].

2.3 Third moment

E[A3
r] =

3E[A2W ]

λ(1− ρ)

E[A2W ] =
2E[AW 3] + λE[S2]E[A2]

2(1− ρ)

E[A2] =
2E[AW 2]

1− ρ

E[AW 3] =
E[W 5] + 6λE[S2]E[AW 2] + 4λE[S3]E[AW ] + λE[S4]E[A]

4(1− ρ)

E[AW 2] =
E[W 4] + 3λE[S2]E[AW ] + λE[S3]

3(1− ρ)

4



E[A3
r] =

3E[AW 3]

λ(1− ρ)2
+

3E[S2]E[A2]

2(1− ρ)2

=
3E[W 5]

4λ(1− ρ)3
+

15E[S2]E[AW 2]

2(1− ρ)3
+

3E[S3]E[AW ]

(1− ρ)3
+

3E[S4]E[A]

4(1− ρ)3

=
3E[W 5]

4λ(1− ρ)3
+

5E[W 4]E[S2]

2(1− ρ)4
+ E[AW ]

(
15λE[S2]2

2(1− ρ)4
+

3E[S3]

(1− ρ)3

)
+

3E[S4]E[A]

4(1− ρ)3

=
3E[W 5]

4λ(1− ρ)3
+

5E[W 4]E[S2]

2(1− ρ)4
+ E[W 3]

(
15λE[S2]2

4(1− ρ)5
+

3E[S3]

2(1− ρ)4

)
+ E[A]

(
15λ2E[S2]3

4(1− ρ)5
+

3λE[S3]E[S2]

2(1− ρ)4
+

3E[S4]

4(1− ρ)3

)
E[A3

r] =
3E[W 5]

4λ(1− ρ)3
+

5E[W 4]E[S2]

2(1− ρ)4
+ E[W 3]

(
15λE[S2]2

4(1− ρ)5
+

3E[S3]

2(1− ρ)4

)
+ E[W 2]

(
15λ2E[S2]3

4(1− ρ)6
+

3λE[S3]E[S2]

2(1− ρ)5
+

3E[S4]

4(1− ρ)4

)
E[W 5] =

15λE[S2]E[W 4] + 20λE[S3]E[W 3] + 15λE[S4]E[W 2] + 6λE[S5]E[W ] + λE[S6]

6(1− ρ)

E[W 4] =
10λE[S2]E[W 3] + 10λE[S3]E[W 2] + 5λE[S4]E[W ] + λE[S5]

5(1− ρ)

E[A3
r] =

35E[W 4]E[S2]

8(1− ρ)4
+ E[W 3]

(
15λE[S2]2

4(1− ρ)5
+

4E[S3]

(1− ρ)4

)
+ E[W 2]

(
15λ2E[S2]3

4(1− ρ)6
+

3λE[S3]E[S2]

2(1− ρ)5
+

21E[S4]

8(1− ρ)4

)
+

3E[W ]E[S5]

4(1− ρ)4
+

E[S6]

8(1− ρ)4

= E[W 3]

(
25λE[S2]2

2(1− ρ)5
+

4E[S3]

(1− ρ)4

)
+ E[W 2]

(
15λ2E[S2]3

4(1− ρ)6
+

41λE[S3]E[S2]

4(1− ρ)5
+

21E[S4]

8(1− ρ)4

)
+ E[W ]

(
35λE[S4]E[S2]

8(1− ρ)5
+

3E[S5]

4(1− ρ)4

)
+

35λE[S5]E[S2]

8(1− ρ)5
+

E[S6]

8(1− ρ)4

= E[W 2]

(
45λ2E[S2]3

2(1− ρ)6
+

65λE[S3]E[S2]

4(1− ρ)5
+

21E[S4]

8(1− ρ)4

)
+ E[W ]

(
25λ2E[S3]E[S2]2

2(1− ρ)6
+

4λE[S3]2

(1− ρ)5
+

35λE[S4]E[S2]

8(1− ρ)5
+

3E[S5]

4(1− ρ)4

)
+

25λ2E[S4]E[S2]2

8(1− ρ)6
+

λE[S4]E[S3]

(1− ρ)5
+

35λE[S5]E[S2]

8(1− ρ)5
+

E[S6]

8(1− ρ)4
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E[A3
r] = E[W ]

(
45λ3E[S2]4

2(1− ρ)7
+

115λ2E[S3]E[S2]2

4(1− ρ)6
+

4λE[S3]2

(1− ρ)5
+

7λE[S4]E[S2]

(1− ρ)5
+

3E[S5]

4(1− ρ)4

)
+

15λ3E[S3]E[S2]3

2(1− ρ)7
+

65λ2E[S3]2E[S2]

12(1− ρ)6
+

25λ2E[S4]E[S2]2

8(1− ρ)6

+
15λE[S4]E[S3]

8(1− ρ)5
+

35λE[S5]E[S2]

8(1− ρ)5
+

E[S6]

8(1− ρ)4

E[A3
r] =

45λ4E[S2]5

4(1− ρ)8
+

175λ3E[S3]E[S2]3

8(1− ρ)7
+

89λ2E[S3]2E[S2]

12(1− ρ)6
+

53λ2E[S4]E[S2]2

8(1− ρ)6

(3)

+
15λE[S4]E[S3]

8(1− ρ)5
+

19λE[S5]E[S2]

4(1− ρ)5
+

E[S6]

8(1− ρ)4

To the best of my knowledge (and that of Glynn et al. [2]), (3) has not
previously appeared in the literature.

I will stop here, but such formulas for arbitrary moments can be computed
by this method with the aid of a computer algebra system.
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mial functionals in Lévy-driven queues with secondary jumps. arXiv preprint
arXiv:2310.11137, 2023.

[3] Donald L Iglehart. Functional limit theorems for the queue GI/G/1 in light
traffic. Advances in Applied Probability, 3(2):269–281, 1971.

6


	Drift Method
	Area only (= 0)
	Area and Work (k, > 0)
	Work only (k = 0)

	Examples
	First moment
	Second moment
	Third moment


