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Many modern applications of queueing theory focus on multiserver systems with complex service constraints.

Two such systems are compatibility scheduling, where jobs from each class can only be processed by a subset of

the servers, and multiserver job scheduling where each job occupies multiple servers simultaneously. Previous

theoretical work either focuses entirely on maximizing server utilization, with no guarantee on performance

(e.g. mean response time), or establishes optimality results for mean response time, but only under simple

service constraints.

In this paper, we focus on scheduling multiserver systems with general service constraints. In this more

general setting, we develop the Smallest Equalizing Bucket (SEB) policy, which we prove is the first policy to

achieve optimal mean response time in heavy traffic in this general setting, under mild assumptions.

The key difficulty in designing a good scheduling policy is that we must simultaneously prioritize small

jobs and also keep all servers busy, all while fitting within the complex service constraints. In single-server

queues, keeping the single server busy is trivial, so prioritizing small jobs yields optimal mean response time.

However, in more complicated systems, greedily prioritizing the smallest jobs may leave servers idle and

cause instability. Our SEB policy maintains an even mixture of jobs across all classes and sizes, while also

serving jobs among the smallest in the system, thereby achieving both objectives and achieving heavy-traffic

optimality under general service constraints.

1 INTRODUCTION
Traditional multiserver queueing theory focuses on models with homogeneous jobs, where every

job needs the same kind and amount of resources. These homogeneous models represent a tradeoff

between applicability to real-world settings and amenability to theoretical analysis. However,

to model many important modern systems, such as computing systems and service systems,

more general service constraints are required. Important models with general service constraints

include multiserver job (MSJ) models, where different jobs require different numbers of servers,

and compatibility models, where each class of jobs can only be served by a subset of the servers.

MSJ models are ubiquitous in modern datacenters, especially for training large machine learning

models like large language models, which consistently require and hold multiple GPU/CPU cores

simultaneously throughout the training processes [1, 40, 48]. Compatibility models are used in

various settings, such as in ride-sharing platforms, where drivers only take riders traveling to

certain destinations; call-centers, where certain employees handle certain calls; and in computer

systems, where servers handle only jobs for which the relevant data is pre-stored [53, 55].

Designing and analyzing effective scheduling algorithms has always been a central topic of

queueing theory. A well-chosen scheduling policy can dramatically improve performance (e.g. mean

response time
1
) with no additional resources. In homogeneous multiserver models, scheduling

has been the subject of several recent results, including policies with optimal heavy traffic mean

response time [15, 16, 47]. However, such results are scarce under general service constraints, with

1
A job’s response time, also known as delay or sojourn time, is the amount of time between its arrival and its completion.
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most results in the setting focusing instead on throughput optimality [33, 34, 41, 49]. Our goal is

to devise a scheduling policy with optimal heavy traffic mean response time in this more general

setting, covering the MSJ and compatibility scheduling settings as special cases.

There is one recent paper of this type in the MSJ model [18], which shows that the ServerFilling-

SRPT policy achieves optimal heavy traffic mean response time, but the result is highly limited by

its requirement that the server need of every job is a power of two, or at least is a perfect divisor of

the number of servers. We seek to prove a similar caliber of result in a far more general setting. As

explained in our literature review (Section 2 and Table 1), there are no results in the compatibility

scheduling setting which prove optimal heavy-traffic mean response time. We therefore ask:

How do we schedule jobs of different classes under general service constraints to

minimize mean response time?

1.1 Challenges
When minimizing mean response time, the primary goal of a scheduling policy is to serve the

jobs of smallest (remaining) size. In a homogeneous job model like the M/G/k, straightforwardly

prioritizing such jobs with the SRPT-𝑘 policy is sufficient to achieve an asymptotically optimal

mean response time [15]. However, under our general service constraints, greedily serving small

jobs may fail to use the full capacity of the system, or may leave us with gaps that can only be

filled by large jobs. This occurs when there is a dramatic imbalance within the set of small jobs. For

instance, in the compatibility scheduling setting, if all of the small jobs are the same class, which

only half the servers can serve, there is no way to serve the small jobs.

We navigate this challenge by preventing imbalance from arising in the first place. We balance the

set of small jobs in advance, and more generally balance all sets of jobs of similar sizes (Section 4).

1.2 Our Contribution
In this paper, we devise the Smallest Equalizing Bucket (SEB) policy, the first policy which provably

achieves heavy-traffic optimal mean response time in multi-server systems with general service

constraints. SEB’s optimality holds under certain assumptions on the joint duration-class structure.

In order to both prioritize small jobs and balance the set of small jobs, SEB works as follows:

• We first divide job sizes into disjoint intervals (buckets). Each job is placed into a bucket

based on its original size.

• Within each bucket, we find the ideal “equalizing” service option that maintains its balance

• We find the smallest-size bucket for which the ideal service option is available, and serve

that bucket. We only move on to a larger-size bucket if the ideal service option cannot be

fulfilled in the current bucket.

While our model is much more general than past settings in which similar optimality results have

been proven, it is still restricted in certain ways. Key assumptions include (1) job size distributions

are bounded; (2) the complete resource pooling condition is met in heavy traffic; (3) job size and

job class are independent. We discuss these assumptions in more detail in Section 3.5, and leave

lifting these restrictions to future work.

Another limitation of SEB is its empirical performance at lower loads. In Section 8, we compare

SEB to several heuristics in simulation. We find that outside of the heavy-traffic regime SEB was

designed to solve, the heuristics outperform SEB. Nevertheless, our simulations suggest that, with

one exception, the heuristics are not heavy-traffic optimal. The exception is a heuristic called

MaxWeight-Queue SRPT, which we identify as a strong candidate for further study (Appendix B).

The rest of the paper is organized as follows. Section 2 reviews prior work. Section 3 describes

our model of size-based scheduling with service constraints. Section 4 describes the SEB policy
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Policies

Results

Throughput Mean Response Time Job-Server Configuration

FCFS Not optimal Analyzed, not optimal General

MaxWeight Optimal Not analyzed General

Randomized Timers Optimal Not analyzed General

ServerFilling/

DivisorFilling

Optimal Analyzed, not optimal

Restrictive:

server needs divide

number of servers

Idle-Avoid 𝑐𝜇/𝑚 Rule Optimal

Optimal in many-server

limit over a finite horizon

General

ServerFilling-SRPT/

DivisorFilling-SRPT

Optimal

Heavy-traffic

optimal

Restrictive:

server needs divide

number of servers

Smallest Equalizing
Bucket (SEB) Optimal Heavy-traffic

optimal General

Table 1. Comparison of optimality results for our paper and for prior work

and the intuition behind its design. Section 5 states our main result, namely SEB’s heavy-traffic

optimality, which we prove over the course of Sections 6 and 7.

2 PRIORWORK
In this section, we review prior work on the subjects covered in this paper. In Section 2.1, we discuss

prior work on MSJ scheduling, in Section 2.2, we discuss prior work on compatibility scheduling,

and in Section 2.3, we discuss prior work on generalized service constraints.

2.1 Multiserver-job scheduling
Multiserver-job (MSJ) scheduling has become a topic of interest in the queueing theory community

recently. Despite recent advances, theoretical results on MSJ scheduling remain limited [24]. We

now give a brief overview of MSJ scheduling policies with theoretical guarantees. In Table 1, we

compare our results in this paper to prior policies and results.

First-Come-First-Served (FCFS): FCFS with head-of-line-blocking is the most straightforward

policy. However, FCFS is generally not throughput nor mean response time optimal due to blocking

at the front of the queue. The stability region under FCFS is characterized under restrictive as-

sumptions (e.g. [4, 38, 43]). Mean response time under FCFS is known exactly only in very specific

settings [6, 12, 31]. A general bound and heavy-traffic characterization of the mean response time

under FCFS is recently established in [19].

MaxWeight and Randomized Timers: MaxWeight is shown to be throughput optimal in

both the known-size (i.e. the scheduling policy uses size information of jobs in system) [34] and

unknown-size [33] settings. Randomized timers is a non-preemptive scheduling policy that does

not require size information. It is shown that randomized timers is also throughput optimal [14, 41].

There is no theoretical result quantifying the mean response times under either policy, but based

on simulation results, it is unlikely that either policy could be mean response time optimal.

ServerFilling/DivisorFilling: Grosof et al. [17] introduce a queueing framework called Work

Conserving Finite Skip (WCFS) and propose the ServerFilling/DivisorFilling policies, which consider

the minimal set of jobs necessary to fill all of the servers. A critical assumption in [17] is that

the server needs of jobs must divide the number of servers, ensuring that it is possible to fill all
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of the servers whenever enough jobs are present. It is shown that ServerFilling/DivisorFilling is

throughput optimal and the heavy-traffic mean response time is comparable to that in M/G/1/FCFS.

ServerFilling/DivisorFilling-SRPT: Following work in ServerFilling/DivisorFilling, Grosof

et al. [18] propose the ServerFilling/DivisorFilling-SRPT policies, which prioritize jobs of shortest

remaining size. This is the first MSJ scheduling policy that is proved both throughput and heavy-

traffic mean response time optimal. However, the restrictive assumption that the server needs of

jobs must divide the number of servers is still in place.

Other policies: In addition to the policies above, a number of other scheduling policies have

been proposed: variants of Backfilling e.g. [8, 30, 52], Shortest Area First [8], reinforcement learning

based Shortest Job First [20], and the idle-avoid 𝑐𝜇/𝑚 rule [57], among many others. Mean response

time optimality results have been shown in the many-servers limit [26, 57], but heavy-traffic

optimality remains open in general, as we illustrate in Table 1.

A related class of models is called Multi-Resource Jobs (MRJ), where a job requires sufficient

amount of multiple types of resources such as processors, memory, storage space, etc. before it

can enter service. MaxWeight is shown to be throughput optimal and heavy-traffic optimal [35].

Randomized timers is another throughput optimal policy [14, 41]. Recently, a new and easy-to-

implement policy is proposed in [9] and a bound on mean response time is established.

2.2 Queues with Compatibilities
In recent years, queues with compatibility between jobs and servers are extensively studied. In

these queues, a job can only enter service at a subset of servers as specified by a compatibility

graph. There are many variants of the compatibility model. The variant we consider in this paper

has bipartite compatibility graphs, and each job can only receive service from one server at a

time. For this model, it is shown that when job sizes are exponentially distributed, the stationary

distributions are of product-forms (e.g. [3, 13, 51]) under specific position-based or random service

policies. In a few restrictive settings, such product-form results hold for general job size distribution

(e.g. [2, 22, 56]).

On the scheduling side, most existing work in similar settings treats jobs as indistinguishable

(that is, the load-balancer does not have information on sizes of individual jobs) and focuses on

load-balancing algorithms. Optimality results therein are established in mean-field limit or many-

server limit (e.g. [39, 44, 50, 54]). We are aware of no prior study of scheduling known-size jobs in

the compatibility scheduling setting.

2.3 MaxWeight under General Service Constraints (Generalized Switch)
The setting of general service constraints, which is the broad focus of this paper and which we

define in Section 3.1, is also known in the literature as the generalized switch setting [49]. It has this

name because it was originally introduced as a generalization of the 𝑛 × 𝑛 (input-queued) switch,

but as our results focus on the complete-resource-pooling (CRP) setting [25], the 𝑛 × 𝑛 switch’s

most interesting behavior is not explored, so we use a more flexible name.

The most-studied policy in the generalized switch/generalized service constraints setting is

the MaxWeight policy. Under a CRP assumption [25], and in a discrete time setting where jobs

are indistinguishable, MaxWeight experiences state-space collapse, maximizes throughput and

minimizes mean work in heavy traffic [49]. Note that minimizing mean work is not the same as

minimizing mean response time in a setting where jobs are not indistinguishable, such as ours. Note

that we make an equivalent CRP assumption: See Sections 3.2 and 3.5. Low complexity MaxWeight

variants have also been shown to achieve mean-work-optimality in the same heavy traffic regime

[28], as well as lower-information policies [10].
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Outside of the CRP condition, the behavior of MaxWeight has also been studied recently, demon-

strating collapse to a higher-dimensional subspace and characterizing the heavy-traffic stationary

behavior [27]. Further empirical study also exists in the packet-switching setting, showing that

policies can outperform MaxWeight on simple topologies [29].

Note that in all of the above models, jobs are either indistinguishable, or distinguished only by

their classes. We are aware of no prior study of scheduling known-size jobs in the generalized

switch setting, which is our focus.

3 MODEL
In this paper, we study optimal scheduling in the general service constraints (generalized switch)

model. Because this is a highly abstract model, we also specialize our policy and our results to two

motivating models: the compatibility scheduling model and the multiserver-job scheduling model.

We define the general service constraints scheduling model in Section 3.1. We define several notions

around stability which span all of these models in Section 3.2. We define the resource-pooled M/G/1

system in Section 3.4 and list the assumptions used throughout this paper in Section 3.5.

3.1 General service constraints scheduling (generalized switch)
The general service constraints (generalized switch) model we consider is as follows: There are 𝑛𝑠

servers and 𝑛𝑐 classes of jobs, and a set of service options R̃ = {̃r} to choose from. A service option

r̃ specifies a number of jobs of each class which can be served at once.

For instance, in the multiserver-job (MSJ) setting, service options are any number of jobs with

total server need up to 𝑛𝑠 . In the compatibility scheduling setting, a service option is any set of jobs

that can be assigned to all of the servers. For example, consider a MSJ setting with 𝑛𝑠 = 7 servers,

and where jobs can have server needs 1, 2, or 3. One possible service option is r̃ = [2, 1, 1], where
two 1-server jobs are served, one 2-server job, and one 3-server job is served.

At any given time, the scheduling policy 𝜋 selects any service option r̃ ∈ R̃, and selects up to r̃𝑖
class-𝑖 jobs to be served, which can be any of the class-𝑖 jobs in the system.

Jobs of class 𝑖 arrive according to a Poisson process with rate 𝜆𝑖 , for an overall arrival rate of 𝜆.

Each job has a service duration sampled i.i.d. from some general class-specific distribution with

random variable 𝐷𝑖 . The remaining service time and class of each job in the system is known to

the scheduling policy at all times. The scheduler may choose any service option from the list at

any moment in time. Jobs may be preempted and resumed with no overhead or loss of work.

3.2 Stability, facets, and sizes
In Section 3.1, we have associated with each job a duration. This is the total amount of time a

job spends at the server(s) before it is completed. If the current service option is r̃, then the total

remaining duration of jobs in class 𝑖 is decreasing with rate r̃𝑖 . Using the job duration, we define
the system load as 𝝆̃𝑖 = 𝜆𝑖E[𝐷𝑖 ]. Then the stability region S̃ of the system is the open interior of

the convex hull formed from all service options: S̃ = Interior(ConvexHull(R̃)).
So far we have defined all quantities using the duration of jobs. In this paper, however, we will

work with the size of a job, rather than duration. Where a duration is an amount of time, and might

be measured in seconds, size is measured in system-seconds. Intuitively, a job’s size is the product

of the fraction of the system’s capacity that a job uses and the job’s duration. However, subtleties

arise when attempting to rigorously define a job’s “fraction of system capacity”.

Some examples help illustrate the concept. In the compatibility scheduling setting, each job uses

one of the 𝑛𝑠 servers. Thus, a job of duration 𝑑 has a size of 𝑑/𝑛𝑠 . In the MSJ setting, in the part of

the capacity region S̃ where all servers are occupied, a job with duration 𝑑 and server need 𝑘 has a
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size of 𝑘𝑑/𝑛𝑠 . In more general MSJ systems, however, there are service options on the surface of S̃
that can’t fill all servers. In these cases, it is not obvious how we should convert duration to size.

The situation becomes even more subtle in our full setting of general service constraints.

In general, to define size, we define a facet-based mapping to convert duration to size. We

associate to each facet on S̃ a set of conversion coefficients. Specifically, let F̃ be a facet and R̃ F̃

the set of service options on the facet. Then our conversion coefficients k = (𝑘1, . . . , 𝑘𝑚) are the
solution to the system of equations ⟨k, r̃⟩ = 1 for all r̃ ∈ R̃ F̃

. With these conversion coefficients

defined, we define size of a class-𝑖 job with duration 𝑑 to be 𝑘𝑖𝑑 , relative to a given facet F̃ . The

conversion coefficients guarantee that all service options in R̃ F̃
process total remaining size at rate

1 and all other service options process at rate no greater than 1.

For example, consider a MSJ setting with 11 servers, where jobs can have server needs 2 (class

1) or 3 (class 2). There are three facets on S̃: One with vertices [5, 0] and [4, 1], one with vertices

[4, 1] and [1, 3], and one with vertices [1, 3] and [0, 3]. The conversion coefficients associated with

these two facets are [1/5, 1/5], [2/11, 3/11], and [0, 1/3], respectively. Note that in the third case,

one of the size conversion coefficients was 0. This happens when the facet is parallel to an axis.

This represents a pathological edge-case, and our results do not focus on this case.

Given a load vector 𝝆̃ in the capacity region S̃, we define the load vector’s dominating facet to be
the facet that contains a scalar multiple of the load vector. For instance, in the 11-server MSJ setting,

the dominating facet of the load vector [2, 1] is the facet with endpoints [4, 1] and [1, 3]. We avoid

the edge-case where the load vector’s scalar multiple is on the boundary of multiple facets.

For a duration-based load vector 𝝆̃ with dominating facet F̃ , we define its corresponding size-

based load vector: 𝝆𝑖 = 𝜆𝑖E[𝑆𝑖 ], where 𝑆𝑖 = 𝑘𝑖𝐷𝑖 , and the size-based dominating facet F . The

presence of a ∼ indicates a duration-based quantity, while the absence indicates a size-based

quantity. The total system load is 𝜌 = ∥𝝆∥1. The system is stabilizable if and only if 𝜌 < 1, which is

an equivalent condition to 𝝆̃ ∈ S̃. For instance, in the 11-server MSJ setting, the duration-based

load vector [2, 1] has conversion coefficient [2/11, 3/11], from its facet, and size-based load vector

[4/11, 3/11], for a total system load of 7/11.
We now specify the heavy-traffic regime we are interested in. Let F̃ be the dominating facet. Let

𝝂̃ be a point in the interior of F̃ . We consider a sequence of systems, indexed by a stability gap

𝜀, with load vectors 𝝆̃ (𝜀 )
= (1 − 𝜀)𝝂̃ . In this sequence of systems, we hold durations 𝐷𝑖 constant,

and allow the arrival rates 𝜆
(𝜀 )
𝑖

to scale linearly with 𝜀. Let 𝝆 (𝜀 )
and 𝝂 be the corresponding vectors

after size conversion. These systems have linearly related load and arrival rates. We say that we

are in the heavy-traffic regime when examining the limit 𝜀 → 0. Note that we assume that 𝝂̃ is in

the interior of F̃ , not its boundary. This assumption is referred to in literature as the Complete-

Resource-Pooling (CRP) [25] condition. Throughout the paper, we consider an arbitrary such vector

𝝂̃ , and we will write lim𝜌→1 to denote this heavy-traffic regime.

From now on we will work primarily with size unless specified otherwise.

3.3 Idleness
In this section, we defined the idleness and relevant idleness of the system. Idleness at time 𝑡 ,

I(𝑡), measures how much processing capacity is wasted when a given service option is adopted at

time 𝑡 . We assume here that for a duration-based service option r̃ adopted at time 𝑡 , the number

of class-𝑖 jobs in service, r̃𝑖 , is no more than the total number of class-𝑖 jobs in systems. Let r
be its corresponding size-based service vector, then the system idleness at time 𝑡 is defined as

I(𝑡) = 1 − ∥r∥1.
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Similarly, we can define the 𝑥-relevant idleness of the system at time 𝑡 , I⩽𝑥 (𝑡), as the fraction of

capacity wasted on processing jobs with remaining sizes no more than 𝑥 . Let r̃⩽𝑥 be the 𝑥-relevant

service option, where r̃⩽𝑥,𝑖 is the number of class-𝑖 jobs selected by the service option that have

remaining sizes no more than 𝑥 . Let r⩽𝑥 be its corresponding size-based service vector, then the

𝑥-relevant idleness at time 𝑡 is defined as I⩽𝑥 (𝑡) = 1 − ∥r⩽𝑥 ∥1

3.4 Resource pooling
We consider an M/G/1 queue corresponding to the dominating facet, which we call the resource-
pooled M/G/1. This resource-pooled M/G/1 queue is defined so that jobs arrive according to the

same process as in the original system and the duration of a job equals the size of the job in the

original system, defined relative to the given facet. Since we consider a single-server queue, the

service constraints in the original system do not apply and the server can work on any job, or any

combination of jobs. The Complete Resource Pooling condition guarantees that such an M/G/1

queue is unique. The two policies we consider for the resource-pooled queue are Preemptive-

Shortest-Job-First (PSJF-1), which prioritizes the job with the smallest original size, and Shortest-

Remaining-Processing-Time (SRPT-1), which prioritizes the job with the smallest remaining size.

3.5 Model Assumptions
The Markovian descriptor of the system is a triple: (s, s𝑟 , c), namely a vector of the original sizes of

jobs in the system, a vector of their remaining sizes, and a vector of classes of these jobs.

We make the following assumptions about the system.

(1) Over the joint (class, duration) distribution, job class and job size are independent.

(2) The class-𝑖 job size duration distribution 𝑆𝑖 is bounded. That is, the supports of all 𝑆𝑖 ’s are

contained in interval [𝑠min, 𝑠max] where 0 < 𝑠min < 𝑠max < ∞.

(3) Complete resource pooling: The load vector 𝝆̃ (𝜀 )
and its corresponding heavy-traffic limit

𝝂̃ are in the interior of the dominating facet F̃ .

While Assumptions (2) and (3) are relatively standard in the literature, we now discuss Assump-

tion (1) further. Assumption (1) is easiest to understand in the compatibility scheduling and MSJ

scheduling settings. In the compatibility scheduling setting, a job’s size is 𝑑/𝑛𝑠 , where 𝑑 is the job’s

duration, so assumption (1) is equivalent to the assumption that a job’s duration is independent of

the job’s class, or in other words that the duration distribution for each class is the same.

In the MSJ scheduling setting, consider the case in which the dominating facet is the one on

which all service options utilize all servers. Note that if the numbers of servers 𝑛𝑠 is large compared

to the largest server need of a job, this facet will dominate the great majority of the stability region.

In this case, a job’s size is 𝑘𝑑/𝑛𝑠 , where 𝑘 is the job’s server need and 𝑑 is its duration. Note that

𝑘𝑑 is often referred to as a job’s area [8]. In this setting, Assumption (1) states that a job’s area is

independent of the job’s class, or in other words that the area distribution for each class is the same.

Despite these assumptions, our result is still far more general than the prior state of the art: No

previous paper has shown optimal mean response time under any general service option setting.

Moreover, these assumptions do not remove the key challenge of the setting, namely that we must

simultaneously prioritize serving small jobs and keeping sufficient balance among the job classes

that we can keep all servers well-utilized.

4 OUR POLICY: SHORTEST EQUALIZING BUCKET (SEB)
In this section, we discuss the challenges that lie in the path of devising an optimal policy, the

behavior of existing policies and the intuition behind our SEB policy.
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4.1 What are the essential qualities of an optimal policy?
From examining prior optimality results in other settings within queueing and scheduling theory,

one can observe two necessary prerequisites for minimizing mean response time.

(1) Keeping all servers busy. Before we analyze the mean response time of any policy in

steady state, we must make sure that the policy stabilizes the system. Keeping all servers as

busy as possible is key to stabilizing the system when the load approaches the total capacity.

(2) Prioritizing smaller jobs. To minimize mean response time, ideally, we would always

prioritize jobs from smallest to largest (remaining) size, along the lines of SRPT. Prioritizing

smaller jobs over larger jobs if possible is key to achieving optimal mean response time.

MaxWeight falls short because it focuses entirely on keeping all servers busy [49]. SRPT-𝑘 ,

ServerFilling-SRPT, and the idle-avoid 𝑐𝜇/𝑚 rule all focus on settings where keeping all servers

busy is either easy or unnecessary [15, 18, 57]. Note however that there has been no analysis of

policies that manage to keep all servers busy as well as MaxWeight, while simultaneously prioritize

jobs based on size. Our SEB policy prioritizes both goals.

4.2 Intuition of our policy
To simplify the discussion, we assume for now that there are only two sizes of jobs 𝑠1 < 𝑠2, namely

“small” 𝑠1 and “large” 𝑠2. We explain how to generalize the ideas to general bounded size distributions

towards the end of this subsection.

The key idea behind our policy is to balance both the small jobs and the large jobs separately.

Balance refers to keeping the work vector of small jobs,wsmall, and work vector of large jobs,wlarge,

roughly parallel to the load vector 𝝆. We define balance in this manner for two reasons: (1) Since 𝝆
is not axis-parallel, keeping the work vector aligned with it prevents excessive depletion of work

in certain classes. If too much work is drained from a specific class, there may not be enough jobs

from that class to fulfill the preferred service option. (2) if a bucket does not receive any service,

arrivals provide a drift in the direction of 𝝆, so the bucket becomes more balanced.

To keep such a balance among the small or the large jobs, a preferred service option from the

dominating facet is chosen for each, so that wsmall and wlarge would each become more aligned

with 𝝆 if those jobs were served.

To keep such balance separately for small jobs and for large jobs, we either serve only small jobs

or only large jobs if we decide to serve jobs at all. In particular, we prioritize serving small jobs

by only trying to serve the large jobs when the preferred service option for the small jobs is not

available, because not enough small jobs of the correct classes are present. By maintaining our

notion of balance, we will have an efficient service option for the small jobs as long as there are

more than a few small jobs.

Note that our goal is not to squeeze out every drop of performance. Our goal is merely to achieve

heavy traffic optimality. We therefore do not focus too much on the scheduling decisions when a

bucket is near empty, as this is rare in heavy traffic. We take a simple option, skipping over that

bucket, for ease of theoretical analysis.

Our intuition for small and large jobs generalizes to more sizes of jobs. For an arbitrary bounded

job-size distribution, we divide the support of the distribution into disjoint intervals which we call

“buckets”. An arriving job falls into one of the buckets according to its original size and stays in

the same bucket for the entirety of its time in system. Our policy maintains balance for all buckets

separately, and gives smaller buckets (i.e. buckets corresponding to smaller sizes) higher priority if

their preferred service option can be fulfilled.

Finally, we must decide how to choose which jobs go in which buckets. Here, we draw analogy

to the dispatching setting [16], where it has been found that geometric buckets, where the ratio
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of the smallest size and largest size in a bucket is set to be a properly chosen constant 𝑐 , leads to

heavy-traffic optimality. We show that such geometric buckets lead to heavy-traffic optimality in

our setting as well.

4.3 Defining Our Policy
Our Shortest Equalizing Bucket (SEB) policy is defined as follows:

Preprocessing: Find the dominating duration-based facet F̃ that contains 𝝆̃ and solve for the

duration-to-size conversion coefficients by solving for k from the systems of equations ⟨k, r̃⟩ = 1

for all r̃ ∈ R F̃
. After the duration-size conversion, we now define size buckets based on the support

of the size distribution [𝑠min, 𝑠max]. Bucket 𝑖 is defined as an interval [𝑏𝑖−1, 𝑏𝑖 ) so that 𝑏𝑖/𝑏𝑖−1 = 𝑐
(we set 𝑏0 = 𝑠min), where

𝑐 = 1 + 1

1 + log

(
1

1−𝜌

) .
Let𝑛𝑏 denote the total number of buckets. The above constant-ratio definition for𝑏𝑖 is our definition

for 𝑏0 through 𝑏𝑛𝑏−1. We set the last bucket to be [𝑏𝑛𝑏−1, 𝑏𝑛𝑏 ], where we define 𝑏𝑛𝑏 = 𝑠max. When a

job arrives, it is added to the bucket containing its original size and stays in the same bucket until

it is completed. We now define SEB’s online behavior.

The scheduler iterates through the size buckets in increasing order.

(1) For each bucket 𝑖 , the scheduler first computes the bucket work vector w(𝑖 )
, obtained by

summing remaining sizes of jobs in bucket 𝑖 by class. Then it finds the ideal service rate

vector r(𝑖 )∗ among all service rates at the corners of the size-based dominating facet F :

r(𝑖 )∗ = argmaxr∈RF

〈
w(𝑖 )

⊥𝝆, r
〉
. The scheduler then checks if the corresponding service option

r̃(𝑖 )∗ can be fulfilled using jobs in the bucket.

(2) If service option r̃(𝑖 )∗ can be performed using jobs in bucket 𝑖 , the scheduler places those

jobs in service, and the scheduler stops iterating through the buckets. The scheduler pick

jobs among those in a given class within the bucket in FCFS order.

(3) Otherwise, the scheduler moves on to bucket 𝑖 + 1. If no bucket can fulfill its preferred

service options, all servers idle.

The scheduler reruns the algorithm if there is an arrival or departure. It’s worth noting that the

preferred service option r̃(𝑖 )∗ might change even when there are no arrivals or departures. This

happens when, after some service, the work vector arrives at a point where multiple service options

become equally preferable. In this case, the scheduler will rapidly alternate between those service

options, resulting in a weighted-processor-sharing behavior. This emergent processor-sharing

behavior is common in scheduling policies, with the notable example of Least Attained Service

(Foreground-Background) [23].

4.4 Basic property of SEB
Before we analyze how the system behaves under SEB, we establish an important property of the

system: For any workload, there exists a balancing service rate option.

Proposition 4.1. If the service rate vectors on the corner of a facet F which dominates the load
vector 𝝆 are of full-rank, then for any w such that w⊥𝝆 ≠ 0, there exists an 𝜀0 > 0, independent of w,

such that maxr∈RF
⟨w⊥𝝆 ,r⟩
∥w⊥𝝆 ∥ ⩾ 𝜀0.

Proposition 4.1 roughly says that for any bucket work vector w, the preferred service option

always incurs a non-vanishing drift towards balancing the bucket further. We will formalize this

intuition in Section 6.3. Before proving Proposition 4.1, we first establish a lemma.
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Lemma 4.2. If the service rate vectors on the corner of a facet F which dominates the load vector 𝝆
are of full-rank, then for any x ≠ 0 such that

〈
x, 𝝆

〉
= 0, we have maxr∈RF ⟨x, r⟩ > 0.

Proof. Let RF = {r1, . . . , r𝑛} and consider the convex hull of RF
. Since 𝝆 is in the interior of

this convex hull, there exist strictly positive scalars 𝛼1, . . . , 𝛼𝑛 such that 𝝆 =
∑𝑛
𝑖=1 𝛼𝑖r𝑖 (see Exercise

3.1 in [7]). Since

〈
x, 𝝆

〉
= 0, for any nonzero x, either there must exist r ∈ RF

such that ⟨x, r⟩ > 0,

or ⟨x, r𝑖⟩ = 0 for all 𝑖 . The latter implies that x is linearly independent of all r𝑖 , which is impossible

since RF
is of full rank. □

Proof of Proposition 4.1. If the claim is false, there exists a sequence {w[𝑛]}∞𝑛=1 such that

lim

𝑛→∞
max

r∈RF

〈
w[𝑛]

⊥𝝆 , r
〉

∥w[𝑛]
⊥𝝆 ∥

= 0.

Since the set {x : ∥x∥ = 1} ∩ {x :

〈
x, 𝝆

〉
= 0} is compact, there exists a limit point y of the sequence

{ w[𝑛]

∥w[𝑛] ∥ }
∞
1
in the compact set. It follows that maxr∈RF ⟨y, r⟩ = 0, contradicting Lemma 4.2. □

4.5 General Notation
Under SEB, for 𝑖 = 1, . . . , 𝑛𝑏 , we define the idleness of the first 𝑖 buckets as

I⩽𝑖 :=
1

𝑛𝑠

𝑛𝑠∑︁
𝑗=1

1(server 𝑗 is not working on any job in the first 𝑖 buckets)

We define the total work in the first 𝑖 buckets as𝑊⩽𝑖 . We define the total load into the first 𝑖 buckets

as 𝜌⩽𝑖 . We define𝑊
M/G/1
⩽𝑖 as the work in an M/G/1 queue with job size distribution the original

distribution conditioned on size ⩽ 𝑏𝑖 and load 𝜌⩽𝑖 .

When referring to the work vector of a bucket, we will use superscripts for the bucket number

and the subscripts for the class number. For instance,w(𝑖 )
𝑗

denotes the work of class 𝑗 jobs in bucket

𝑖 and S(𝑖 ) denotes the sizes of jobs falling into bucket 𝑖 .

5 MAIN RESULTS AND ROADMAP
Our main result in this paper is to prove the heavy traffic optimality of our Smallest Equalizing

Bucket (SEB) policy, the first heavy traffic optimality result in the general service constraints setting.

We do so by comparing against the resource-pooled M/G/1 system, with durations equal to the

sizes of the jobs, as defined in Section 3.4.

We prove that in the heavy traffic limit, the mean response time of SEB converges to that of the

resource-pooled Shortest Remaining Processing Time (SRPT-1) policy, and that the SRPT-1 policy

is a lower bound on the optimal policy in this setting:

Theorem 5.1. Our policy is heavy-traffic optimal, under the assumptions in Section 3.5: For any 𝝂̃
on the capacity region that is in the interior of a facet, our SEB policy converges to optimal as the load
vector 𝝆̃ converges to 𝝂̃ .

lim

𝜌→1

E[𝑇 SEB]
E[𝑇 SRPT-1] = lim

𝜌→1

E[𝑇 SEB]
E[𝑇OPT] = 1,

where 𝑇 SRPT-1 is the response time under resource-pooled SRPT.

We discuss our proof structure in Section 5.1, and prove the theorem in Section 7.3.

Our optimality proof relies critically on our heavy traffic characterization of the mean response

of the SEB policy:
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Theorem 5.2. Under SEB, in the heavy traffic limit and under the assumptions in Section 3.5, mean
response time has the following asymptotic behavior:

E[𝑇 SEB] ⩽ 𝑐 · E
[
𝑇 PSJF-1

]
+ Θ

(
log

2

(
1

1 − 𝜌

))
as 𝜌 → 1. (1)

where 𝑇 PSJF-1 is the response time under resource-pooled Preemptive-Shortest-Job-First (PSJF-1), and
where 𝑐 is the bucket width multiplier.

Theorem 5.2 is the focus of the majority of the technical section of this paper, and we discuss the

proof structure in detail in Section 5.1. We prove the theorem in Section 7.2.

5.1 Roadmap to Optimality
We begin by proving that the system is throughput optimal under SEB. That is, we prove the system

is stable for all 𝜌 < 1 (Theorem 6.1).

We then establish an upper bound on mean response time under SEB for any load 𝜌 < 1. A job’s

response time under policy 𝜋 can be written as 𝑇 𝜋 = 𝑇 𝜋
wait

+ 𝑇 𝜋
res
, where 𝑇 𝜋

wait
(wait time) is the

time between when a job arrives and when it first receives any service and 𝑇 𝜋
res

(residence time) is

the time between when a job first receives service and when it leaves the system. In our system,

bounding E[𝑇 𝜋
res
] is a straightforward application of Little’s law (Lemma 7.4), whereas bounding

E[𝑇 𝜋
wait

] is much more complicated. Note also that E[𝑇 𝜋
wait

] dominates under heavy traffic.

One of the key tools we use to bound E[𝑇 𝜋
wait

] is the Work Integral Number Equality (WINE)

technique [5, 42, 46, 47], which converts the analysis of mean response time to the analysis of mean

relevant work in system.

Proposition 5.3 (Scully [46] Theorem 15.3). For an arbitrary stable queueing system and an
arbitrary scheduling policy 𝜋 ,

E[𝑇 𝜋 ] = 1

𝜆

∫ ∞

0

E[𝑊 𝜋
remaining size⩽𝑥 ]

𝑥2
𝑑𝑥,

where E[𝑊 𝜋
remaining size⩽𝑥 ] is the total remaining size of all jobs with remaining sizes no more than 𝑥 .

Whenwe apply Proposition 5.3 to bound the waiting time, we apply it to the subsystem consisting

of jobs that have not yet received any service, in Lemma 7.5. Note that the set of jobs which have

not yet received service and which have remaining size ⩽ 𝑥 is a subset of the jobs in the system

with original size ⩽ 𝑥 . Thus, for any given threshold 𝑥 , it suffices to bound E[𝑊 𝜋
original size⩽𝑥 ].

Recall that SEB assigns a job to a bucket based on the original size of the job. As a result, to

bound E[𝑊 𝜋
original size⩽𝑥 ], we focus on total work in buckets ⩽ 𝑖 , where bucket 𝑖 is the bucket that a

job of size 𝑥 is placed in. Our strategy is to apply the Work Decomposition Law [46, 47] to the first

𝑖 buckets. We state the Work Decomposition Law here in a way that is specialized to our setting.

Proposition 5.4 (Scully [46] Theorem 8.2). For any service policy 𝜋 that stabilizes the system,

E[𝑊 𝜋
⩽𝑖 ] − E[𝑊

M/G/1
⩽𝑖 ] =

E[I⩽𝑖𝑊 𝜋
⩽𝑖 ]

1 − 𝜌⩽𝑖
for any 𝑖 = 1, . . . , 𝑛𝑏 .

The key term in Proposition 5.4 is E[I⩽𝑖𝑊 𝜋
⩽𝑖 ], which we subsequently refer to as the waste. Waste

intuitively measures how much work is not being processed by the servers. We will analyze the

waste bucket by bucket. If there’s little work𝑊 𝜋
⩽𝑖 , the waste is small. The challenge is to show that

the waste is small in the presence of substantial work.
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Class 1

Class 2

0

𝝆

𝝆 (𝑖 )

w(𝑖 )
C

S

F

Fig. 1. Drift of bucket-𝑖 work vector in a two-class system, when service is not occurring.

Note that waste happens if we can’t serve jobs in a bucket, so we need to show that when there is

a lot of work in a bucket, it is very rare that the bucket is ineligible to receive service. To formalize

this, we first define a cone around the load vector, then we consider two possible cases:

(1) When the bucket work vector is outside the cone, the vector on average drifts towards the

cone. Thus, we show a state-space collapse result (Theorem 6.3). Using Theorem 6.3 we

show that the probability that the work vector is so far from the cone that the bucket is

ineligible for service is small (Theorem 7.2).

(2) When the bucket work vector is inside the cone, we show that the bucket must be eligible

for service if there is a lot of work (Theorem 7.1).

Combining all bounds together, we obtain a bound on the mean response time relative to mean

response time in the resource-pooled system (Theorem 5.2, proven in Section 7.2). Heavy-traffic

optimality then follows from this bound, and the fact that the resource-pooled system forms a

lower bound on optimal mean response time, as we show in Section 7.3.

6 SEB ANALYSIS: STABILITY AND BALANCING EACH BUCKET
6.1 Defining the Cone-based State-space Collapse
In this section, we give definitions relevant for cone-based state space collapse, which is a key idea

in our optimality proof that we discuss further in Section 5.1.

Recall that in Section 4.2, we explain how SEB keeps all size buckets balanced by keeping the

work vector of each bucket roughly parallel to the load vector 𝝆. To formalize this intuition, we

aim to establish a state-space collapse result for the bucket work vectors w(𝑖 )
. However, we note

that the work vectors do not collapse to the load vector itself. This is because when a bucket

receives no service, drift due to arrivals moves the work vector parallel to 𝝆, not towards it. Note
that the conditional load 𝝆 (𝑖 )

arriving to any bucket 𝑖 is parallel to 𝝆, due to our assumption of

independence between job class and job size (Section 3.5).

The fact that the arriving load vector 𝝆 (𝑖 )
is parallel to 𝝆 is useful: it implies that the drift will

move the work vector towards a cone around 𝝆, as illustrated in Fig. 1. We will show that whether

or not the bucket receives service, the system drifts towards the cone. The cone we consider is

C =

{
w ∈ R𝑛𝑐 :

∥w∥𝝆 ∥2
∥w∥2

⩾ cos𝜑

}
,

where 𝜑 > 0 is chosen so that the following conditions are satisfied:

• 𝜑 is small enough that C is contained in the interior of the convex cone generated by service

rate vectors in RF
.
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• 𝜑 is small compared to the constant 𝜀0 in Proposition 4.1:

(
maxr∈RF

⟨𝝆,r⟩
∥𝝆 ∥2

)
tan𝜑 < 𝜀0.

• 𝜑 is small compared to the lowest-load class in the system: tan𝜑 <
𝝆
min

∥𝝆 ∥2 , where we define
𝝆
min

= min𝑖 𝝆𝑖 .
Note that we use the same cone C for all buckets 𝑖 . That is, we show in Section 6.3 that each bucket

work vector w(𝑖 )
converges to the same cone C.

6.2 Stability
Theorem 6.1. The system is stable under SEB for any 𝜌 < 1.

Full proof deferred to Appendix A.1.

Proof outline. Our main tool is the continuous-time Foster-Lyapunov Theorem in [36]. The

key idea is to find a nonnegative Lyapunov function𝑉 that has bounded drift on a compact set and

negative drift outside that set. Our choices of 𝑉 rely on the following observations:

• When bucket 𝑖 does not receive any service, the average drift of w(𝑖 )
is parallel to 𝝆, due to

arrivals. As a result, job arrivals push w(𝑖 )
towards the cone C whenever w(𝑖 ) ∉ C.

• Since job size in bucket 𝑖 is upper bounded by 𝑏𝑖 , if there is more than 𝑛𝑠𝑏𝑖 amount of work

of each job class in bucket 𝑖 , then there are enough jobs to fulfill any service option. We

show that if, for some bucket 𝑖 , w(𝑖 ) ∈ C and if ∥w(𝑖 ) ∥1 is sufficiently large, then bucket

𝑖 is eligible for service. Our policy then ensures that some bucket receives service at full

capacity and the total work in the system decreases at rate 1 − 𝜌 in this scenario.

As a result of these observations, our Lyapunov function is a weighted sum of two terms: a term

characterizing the distance to cone C, based on the 𝐻𝑖 function defined in Section 6.3, and the total

work in the system. □

6.3 Bucket State-space Collapse
Our goal in this section is to prove that the workload w(𝑖 )

of each bucket 𝑖 collapses to the cone C
described in Section 6.1. We first prove a generic continuous-time state-space collapse theorem,

Theorem 6.2, which may be of independent interest. We them apply this theorem to proving our

bucket-based state space collapse, in Theorem 6.3.

We now prove a state-space collapse theorem that can be viewed as a continuous-time equivalent

of the classic drift-based discrete-time state-space collapse theorem first introduced in Eryilmaz

and Srikant [11]. The challenge here is to do drift analysis in continuous-time. To this end, we

employ the Rate Conservation Law [37] to a properly chosen test function.

Theorem 6.2. Let W(𝑡) ∈ R𝑛+ be the workload process of a queueing system with Poisson arrivals
with rate 𝜆 > 0 with a stationary distributionW. Suppose𝑉 : R𝑛+ → R+ is a differentiable nonnegative-
valued function and the following conditions are satisfied:

(i) There exist 𝛼 > 0, 𝛽 > 0, and 𝐾 < ∞ such that for anyW(𝑡) = w,

G𝑉 (w) := 𝐷𝑡𝑉 (w) + 𝜆E[Δ𝑉 (w)] ⩽ −𝛼 + 𝛽 · 1(𝑉 (w) ⩽ 𝐾)
where G is the infinitesimal generator of the workload process, 𝐷𝑡𝑉 (w) is the change in 𝑉 (w)
due to service, and Δ𝑉 (w) = 𝑉 (w+) −𝑉 (w) is the change in 𝑉 immediately after an arrival
at stateW(𝑡) = w.

(ii) There exist 𝜃 > 0 and 𝐷 < ∞ such that for all W(𝑡) = w, E
[
𝑒𝜃 |Δ𝑉 (w) | ] < 𝐷 ,

then for any 0 < 𝜂 < min

{
𝛼𝜃 2

𝜆𝐷
, 𝜃

}
, we have

E
[
𝑒𝜂𝑉 (W)

]
⩽

𝜃 2𝛽𝑒𝜂𝐾

𝜃 2𝛼 − 𝜆𝜂𝐷 < ∞
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Full proof deferred to Appendix A.2.

Proof outline. We apply the Rate Conservation Law [37] to 𝑒𝜂 (𝑉 (W)∧𝑛)
for some 0 < 𝜂 <

min

{
𝛼𝜃 2

𝜆𝐷
, 𝜃

}
and for a fixed positive integer 𝑛 such that E

[
𝑒𝜂 (𝑉 (W)∧𝑛) ] < ∞.

Thenwe bound the resulting terms using conditions (i) and (ii) to obtain a bound onE
[
𝑒𝜂 (𝑉 (W)∧𝑛) ]

,

using straightforward algebraic manipulations. Finally, we send 𝑛 → ∞ to obtain the desired re-

sult. □

To demonstrate state-space collapse in the sense of Theorem 6.2, we consider the Lyapunov

function 𝐻𝑖 (w) = (∥w(𝑖 )
⊥𝝆 ∥2 − ∥w(𝑖 )

∥𝝆 ∥2 tan𝜑)
+
. Note that 𝐻𝑖 (w) = 0 whenever the workload vector

w(𝑖 )
is in the cone C. Intuitively, 𝐻𝑖 measures the distance from the workload vector to C.

Theorem 6.3. For any bucket 𝑖 , under our SEB policy, if the assumptions in Section 3.5 are met,
then we have the following state-space collapse:

If 𝐻𝑖 (w) = (∥w(𝑖 )
⊥𝝆 ∥2 − ∥w(𝑖 )

∥𝝆 ∥2 tan𝜑)
+ and 𝜂𝑖 = 𝑒−2

𝑏𝑖−1
𝑏2
𝑖

tan𝜑, then E
[
𝑒𝜂𝑖𝐻𝑖 (W)

]
⩽

8

tan𝜑

𝑏𝑖

𝑏𝑖−1
,

bounding the distance from w𝑖 to the cone C.

Proof deferred to Appendix A.3. The proof is a straightforward application of Theorem 6.2,

verifying conditions (i) and (ii) in this setting.

7 SEB ANALYSIS: MEAN RESPONSE TIME
7.1 Bounding Waste
In this section, we bound the expected waste E[I⩽𝑖𝑊 SEB

⩽𝑖 ] for an arbitrary bucket 𝑖 . Our bound is

based on our cone-state-space-collapse (SSC) result, Theorem 6.3. We show in this section that

whenever the workload vector is in the cone or near cone, waste must be small. From our cone-SSC

result, this allows us to bound expected waste. This bound on expected waste directly translates

into a bound on expected work in each bucket, giving a bound on waiting time and response time.

Theorem 7.1. If w(𝑖 ) ∈ C and if ∥w(𝑖 ) ∥1 satisfies

∥w(𝑖 ) ∥1 ⩾
𝑛𝑠
√
𝑛𝑐𝑏𝑖

𝝆
min

∥𝝆 ∥2 cos𝜑 − sin𝜑

then any service option in RF can be fulfilled using jobs in bucket 𝑖 .

Proof deferred to Appendix A.4.

We now proceed to bound expected waste E[I⩽𝑖𝑊⩽𝑖 ], which is the key technical result of the

paper. To ease the notation, we define two constants that do not scale with load.

𝛾 =
𝑛𝑠
√
𝑛𝑐𝑏𝑛𝑏

𝝆
min

∥𝝆 ∥2 cos𝜑 − sin𝜑
and 𝜏 =

tan𝜑
√
𝑛𝑐

(
𝝆
min

∥𝝆∥2
cos𝜑 − sin𝜑

)
.

Theorem 7.2. Under SEB,

E[I⩽𝑖𝑊 SEB

⩽𝑖 ] ⩽
(
𝐴1 +𝐴2 +𝐴2 log

(
1

1 − 𝜌⩽𝑖

))
(1 − 𝜌⩽𝑖 )

𝑐𝑖 − 1

𝑐 − 1

+𝐴2 (1 − 𝜌⩽𝑖 )𝑖

where 𝐴1 :=
8𝑒2

𝜏 tan2 𝜑
𝑐3𝑏0 and 𝐴2 := 2

(
8

𝜏 tan𝜑
𝑐 + 1

)
𝑐 max

{
𝑒2

𝜏 tan𝜑
𝑏0𝑐, 𝑛𝑠

𝑏0

𝜏
,𝛾

}
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Proof. Let 𝐵𝑖 𝑗 > 𝛾 be numbers that we will later specify, then

E[I⩽𝑖𝑊 SEB

⩽𝑖 ] =
𝑖∑︁
𝑗=1

E[I⩽𝑖 ∥W( 𝑗 ) ∥1]

=

𝑖∑︁
𝑗=1

(
E[I⩽𝑖 ∥W( 𝑗 ) ∥11(∥W( 𝑗 ) ∥1 > 𝐵𝑖 𝑗 )] + E[I⩽𝑖 ∥W( 𝑗 ) ∥11(∥W( 𝑗 ) ∥1 ⩽ 𝐵𝑖 𝑗 )]

)
(𝑎)
⩽

𝑖∑︁
𝑗=1

(
E[I⩽ 𝑗 ∥W( 𝑗 ) ∥11(∥W( 𝑗 ) ∥1 > 𝐵𝑖 𝑗 )] + E[I⩽𝑖 ∥W( 𝑗 ) ∥11(∥W( 𝑗 ) ∥1 ⩽ 𝐵𝑖 𝑗 )]

)
(𝑏 )
⩽

𝑖∑︁
𝑗=1

E[I⩽ 𝑗 ∥W( 𝑗 ) ∥11(∥W( 𝑗 ) ∥1 > 𝐵𝑖 𝑗 )]︸                                       ︷︷                                       ︸
T

+
𝑖∑︁
𝑗=1

𝐵𝑖 𝑗 (1 − 𝜌⩽𝑖 )

where (a) follows from the fact that for any 𝑗 ⩽ 𝑖 , I⩽𝑖 ⩽ I⩽ 𝑗 and (b) follows from the stability of

the system. It remains to bound T . First note that according to Theorem 7.1 and the definition of

𝐵𝑖 𝑗 , if the workload vector is in the cone C and the total work is large, there is no waste,

E[I⩽ 𝑗 ∥W( 𝑗 ) ∥11(∥W( 𝑗 ) ∥1 ⩾ 𝐵𝑖 𝑗 )1(W( 𝑗 ) ∈ C)] = 0

because bucket 𝑗 is eligible for service. This implies that

T = E[I⩽ 𝑗 ∥W( 𝑗 ) ∥11(∥W( 𝑗 ) ∥1 ⩾ 𝐵𝑖 𝑗 )1(W( 𝑗 ) ∉ C)] .

Define E 𝑗 = {w( 𝑗 ) ∈ R𝑛𝑐 : w( 𝑗 )
𝑘
⩾ 𝑛𝑠𝑏𝑖 for all 𝑘} to be the region of workload-space such that if

w( 𝑗 )
is in the region, the system can fully serve all service options using only jobs from bucket 𝑗 .

We now bound T .

T
(𝑎)
⩽ E[1(bucket 𝑗 ineligible)∥W( 𝑗 ) ∥11(∥W( 𝑗 ) ∥1 ⩾ 𝐵𝑖 𝑗 )1(W( 𝑗 ) ∉ C)]
(𝑏 )
⩽ E[1(W( 𝑗 ) ∉ E 𝑗 )∥W( 𝑗 ) ∥11(∥W( 𝑗 ) ∥1 ⩾ 𝐵𝑖 𝑗 )1(W( 𝑗 ) ∉ C)]
(𝑐 )
⩽ 𝐵𝑖 𝑗 · P({W( 𝑗 ) ∉ E 𝑗 } ∩ {∥W( 𝑗 ) ∥1 ⩾ 𝐵𝑖 𝑗 )}) +

∫ ∞

𝑢=𝐵𝑖 𝑗

P({W( 𝑗 ) ∉ E 𝑗 } ∩ {∥W( 𝑗 ) ∥1 ⩾ 𝑢)}) 𝑑𝑢

(𝑑 )
⩽ 𝐵𝑖 𝑗 · P(𝐻 𝑗 (W) ⩾ 𝜏𝐵𝑖 𝑗 − 𝑛𝑠𝑏 𝑗 ) +

∫ ∞

𝑢=𝐵𝑖 𝑗

P(𝐻 𝑗 (W) ⩾ 𝜏𝑢 − 𝑛𝑠𝑏 𝑗 ) 𝑑𝑢

(𝑒 )
⩽ 𝐵𝑖 𝑗

8

tan𝜑

𝑏 𝑗

𝑏 𝑗−1
𝑒𝜂 𝑗 (𝑛𝑠𝑏 𝑗−𝜏𝐵𝑖 𝑗 ) +

∫ ∞

𝑢=𝐵𝑖 𝑗

8

tan𝜑

𝑏 𝑗

𝑏 𝑗−1
𝑒−𝜂 𝑗 (𝜏𝑢−𝑛𝑠𝑏 𝑗 ) 𝑑𝑢

=

(
𝐵𝑖 𝑗 +

1

𝜏𝜂 𝑗

)
8

tan𝜑

𝑏 𝑗

𝑏 𝑗−1
𝑒𝜂 𝑗 (𝑛𝑠𝑏 𝑗−𝜏𝐵𝑖 𝑗 )

Step (a) follows from I⩽ 𝑗 ⩽ 1(bucket 𝑗 ineligible) as a result of the following observations:

• If bucket 𝑗 is ineligible for service, then the inequality holds because I⩽ 𝑗 ⩽ 1.

• If bucket 𝑗 is eligible for service, then the inequality holds because I⩽ 𝑗 = 0.

Step (b) follows from the observation that the set on which bucket 𝑗 is ineligible is a subset of E𝑐𝑗 .
Step (c) follows from tail-sum formula and the observation that, following from Theorem 7.1 and

𝐵𝑖 𝑗 > 𝛾 , if ∥w( 𝑗 ) ∥1 ⩾ 𝐵𝑖 𝑗 and w( 𝑗 ) ∉ E 𝑗 , then w( 𝑗 ) ∉ C. Step (d) follows from the following lemma,

the proof of which is deferred to Appendix A.5.

Lemma 7.3. For any w( 𝑗 ) ∉ C ∪ E𝑖 , 𝐻 𝑗 (w) = ∥w( 𝑗 )
⊥𝝆 ∥2 − ∥w( 𝑗 )

∥𝝆 ∥2 tan𝜑 ⩾ 𝜏 ∥w
( 𝑗 ) ∥1 − 𝑛𝑠𝑏 𝑗 .
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Step (e) follows from the state-space collapse result in Theorem 6.3.

We note that 𝐵𝑖 𝑗 > 𝛾 can be arbitrary. We set 𝐵𝑖 𝑗 as follows for any 𝑗 such that 𝑗 ⩽ 𝑖 , giving the

following bound on T :

𝐵𝑖 𝑗 =
1

𝜏𝜂 𝑗
log

(
1

1 − 𝜌⩽𝑖

)
+
𝑛𝑠𝑏 𝑗

𝜏
+ 𝛾 =⇒ T ⩽

(
𝐵𝑖 𝑗 +

1

𝜏𝜂 𝑗

)
8

tan𝜑

𝑏 𝑗

𝑏 𝑗−1
(1 − 𝜌⩽𝑖 )

Since 𝑏 𝑗/𝑏 𝑗−1 = 𝑐 , 𝑏 𝑗 = 𝑏0𝑐 𝑗 and 𝜂 𝑗 = 𝑒−2 tan𝜑 1

𝑐
1

𝑏0𝑐
𝑗 . We combine all bounds above to obtain

E[I⩽𝑖𝑊 SEB

⩽𝑖 ] ⩽
𝑖∑︁
𝑗=1

(
𝐵𝑖 𝑗 +

1

𝜏𝜂 𝑗

)
8

tan𝜑

𝑏 𝑗

𝑏 𝑗−1
(1 − 𝜌⩽𝑖 ) + (1 − 𝜌⩽𝑖 )

𝑖∑︁
𝑗=1

𝐵𝑖 𝑗

⩽
8𝑒2

𝜏 tan2 𝜑
𝑐2𝑏0 (1 − 𝜌⩽𝑖 )

𝑖∑︁
𝑗=1

𝑐 𝑗+

2

(
8

𝜏 tan𝜑
𝑐 + 1

)
(1 − 𝜌⩽𝑖 )

[
𝑒2

𝜏 tan𝜑
𝑏0𝑐 log

(
1

1 − 𝜌⩽𝑖

) 𝑖∑︁
𝑗=1

𝑐 𝑗 + 𝑛𝑠
𝑏0

𝜏

𝑖∑︁
𝑗=1

𝑐 𝑗 + 𝑖𝛾
]

Using 𝐴1 and 𝐴2 defined in the theorem statement, we obtain

E[I⩽𝑖𝑊 SEB

⩽𝑖 ] ⩽
(
𝐴1 +𝐴2 log

(
1

1 − 𝜌⩽𝑖

)
+𝐴2

)
(1 − 𝜌⩽𝑖 )

𝑐𝑖 − 1

𝑐 − 1

+𝐴2 (1 − 𝜌⩽𝑖 )𝑖 . □

7.2 Bounding Mean Response Time
In this section, we bound the mean response time under SEB. We begin by bounding the mean

residence time, which is a straightforward application of Little’s law.

Lemma 7.4. Under SEB,

E[𝑇 SEB

res ] ⩽ 1

𝜆
𝑛𝑏𝑛𝑠𝑛𝑐

Proof. By Little’s law [23], it suffices for us to bound the mean number of jobs in residence.

Since we assumed FCFS for jobs in each class in each bucket, 𝑛𝑠 jobs per class per bucket have

received service, and thus at most 𝑛𝑏𝑛𝑠𝑛𝑐 jobs in total have received service. As a result, E[𝑇 SEB

res
] =

1

𝜆
E[𝑁 SEB

res
] ⩽ 1

𝜆
𝑛𝑏𝑛𝑠𝑛𝑐 . □

We now bound mean waiting time E[𝑇 SEB

wait
], which is the dominant component of mean response

time in heavy traffic. We first use WINE (Proposition 5.3) to relate mean waiting time to the mean

amount of work in each bucket.

Lemma 7.5. For any policy 𝜋 that stabilizes the system,

E[𝑇 𝜋wait] ⩽
1

𝜆

𝑛𝑏∑︁
𝑖=1

𝑐 − 1

𝑏0𝑐
𝑖
E[𝑊 𝜋

⩽𝑖 ] +
1

𝜆

E[𝑊 𝜋 ]
𝑏𝑛𝑏

where𝑊 𝜋
⩽𝑖 is work in the first 𝑖 buckets and𝑊 𝜋 is the total work in the system.

Proof deferred to Appendix A.6. Now, we use Lemmas 7.4 and 7.5, as well as the work decompo-

sition law Proposition 5.4 and our bound on waste Theorem 7.2, to bound response time relative to

the expected work in the resource pooled M/G/1 at or below each bucket cutoff. To simplify our

bound, we apply Lemma 7.5 to the resource pooled PSJF-1 policy, and incorporate a bound on its

response time into our bound on 𝑆𝐸𝐵.
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Proposition 7.6. Under SEB,

E[𝑇 SEB] ⩽ 𝑐E[𝑇 PSJF-1] + 𝐴
𝜆
log

(
1

1 − 𝜌

) (
2𝑛𝑏 +

1

𝑐 − 1

)
+ 1

𝜆
𝑛𝑏𝑛𝑠𝑛𝑐

where

𝐴 =
𝐴1 + 3𝐴2

𝑏0

𝑏𝑛𝑏 − 𝑏0
𝑏0

,

and where 𝐴1 and 𝐴2 are defined in Theorem 7.2.

Proof deferred to Appendix A.7. Now, we examine Proposition 7.6 in the heavy traffic:

Theorem 5.2. Under SEB, in the heavy traffic limit and under the assumptions in Section 3.5, mean
response time has the following asymptotic behavior:

E[𝑇 SEB] ⩽ 𝑐 · E
[
𝑇 PSJF-1

]
+ Θ

(
log

2

(
1

1 − 𝜌

))
as 𝜌 → 1. (1)

where 𝑇 PSJF-1 is the response time under resource-pooled Preemptive-Shortest-Job-First (PSJF-1), and
where 𝑐 is the bucket width multiplier.

Proof. Recall from Section 4.3 that we set

𝑐 = 1 + 1

1 + log

(
1

1−𝜌

) .
Since 𝑏𝑛𝑏 = 𝑏0𝑐

𝑛𝑏
, and 𝑏0 = 𝑠min and 𝑏𝑛𝑏 = 𝑠max are constants not depending on load, we have

𝑛𝑏 =
log

𝑠max

𝑠min

log 𝑐
= Θ

(
log

(
1

1 − 𝜌

))
as 𝜌 → 1.

The theorem follows from Proposition 7.6 by noting that as 𝜌 → 1, 𝑐 converges 1, and𝐴 converges

to a fixed constant that does not scale with 𝜌 . □

7.3 Heavy-traffic Optimality
Theorem 7.7. Under any system load 𝜌 < 1, and for any scheduling policy 𝜋 , E[𝑇 𝜋 ] ⩾ E[𝑇 SRPT-1].

Proof. We consider the resource-pooled M/G/1 queue defined in Section 3.4. Since service rate

in the original system after the size conversion is no more than 1, any scheduling policy in our

original multi-server system with service constraints can be realized in the resource-pooled M/G/1

queue. The result then follows from the optimality of single-server SRPT [45]. □

Theorem 5.1. Our policy is heavy-traffic optimal, under the assumptions in Section 3.5: For any 𝝂̃
on the capacity region that is in the interior of a facet, our SEB policy converges to optimal as the load
vector 𝝆̃ converges to 𝝂̃ .

lim

𝜌→1

E[𝑇 SEB]
E[𝑇 SRPT-1] = lim

𝜌→1

E[𝑇 SEB]
E[𝑇OPT] = 1,

where 𝑇 SRPT-1 is the response time under resource-pooled SRPT.

Proof. Because the job size distribution is bounded, by Theorem 1 in Lin et al. [32],

E[𝑇 PSJF-1] ⩾ E[𝑇 SRPT-1] = Θ

(
1

1 − 𝜌

)
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Thus, it follows from Theorem 5.2

lim

𝜌→1

E[𝑇 SEB]
E[𝑇 PSJF-1] = lim

𝜌→1

©­­«𝑐 +
Θ

(
log

2

(
1

1−𝜌

))
E[𝑇 PSJF-1]

ª®®¬ = 1

The last step in our optimality proof relies on the heavy-traffic optimality of PSJF-1 for bounded

job size distributions: lim𝜌→1

E[𝑇 PSJF-1 ]
E[𝑇 SRPT-1 ] = 1. This is a standard result that follows from the following

waiting time inequality: E[𝑊 PSJF-1] ⩽ E[𝑊 SRPT-1] [23]. For a detailed proof, see Theorem 5 in

Grosof et al. [15]. By Theorem 7.7, our policy is thus heavy traffic optimal. □

8 NUMERICAL EVALUATION
We have proven in Theorem 5.1 that SEB achieves heavy-traffic optimal mean response time in the

compatibility scheduling setting, the multiserver-job (MSJ) scheduling setting, and more generally

in the general service constraints setting.

In this section, we simulate our SEB policy in a variety of compatibility and multiserver-job

settings to empirically validate our heavy-traffic results. We compare SEB against several policies:

MaxWeight-Queue: When a job arrives or departs, the inner products

〈̃
r(𝑖 ) , q

〉
between available

service options {̃r(𝑖 ) } and queue lengths q (number of jobs in each class) are computed. The

scheduler chooses the service option that maximizes this inner product. If there are more

jobs in a class than required by the scheduler, jobs are picked in FCFS order.

MaxWeight-Queue SRPT: This is the same as MaxWeight-Queue except that jobs in a class are

chosen in SRPT order, where SRPT is defined based on job size, using the bounding facet.

MaxWeight-Work SRPT: When a job arrives or departs, the inner products

〈̃
r(𝑖 ) ,w

〉
between

available service options {̃r(𝑖 ) } and work vector w (remaining work in each class) are

computed. The scheduler chooses the service option that maximizes this inner product. Jobs

in the same class are picked in SRPT order.

ServerFillingSRPT: This is an MSJ-specific policy [18]. Jobs are sorted in least remaining size

order. The candidate set is defined to consist of the minimal initial sequence of jobs with

total server need at least 𝑛𝑠 , and jobs are served in most-server-need-first order among the

candidate set, tie-broken by lower remaining size.

In our simulations, for simplicity, we only update a policy’s service option at moments when

arrivals and completions occur. This affects the SEB and MaxWeight-Work SRPT policies. Our

initial exploration indicated that this did not have an appreciable impact on response times.

The MaxWeight-based policies are known to achieve optimal stability region, but their heavy-

traffic optimality is open. ServerFilling-SRPT achieves heavy-traffic when all server needs are

powers of two, but it has not been analyzed in the more general MSJ settings that we consider here.

8.1 Evaluation of compatibility scheduling
We start with a simple compatibility scheduling setting, the 2-server N setting, depicted in Fig. 2a.

There are two servers and two classes of jobs. Jobs of class 1 can be served only by server 1 and

jobs of class 2 can be served by either servers 1 or 2. The service options are [2, 0] and [1, 1].
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(a) Two-class compatibility model. Jobs are class 1
with probability 1/4 or class 2 with probability 3/4.
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(b) Three-class compatibility model. Jobs are class
1 with probability 1/3, class 2 with probability 1/3,
and class 3 with probability 1/3.
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(c) Two-class MSJ model. Jobs are class 1 with prob-
ability 5/11 or class 2 with probability 6/11.
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(d) Three-class MSJ model. Jobs are class 1 with prob-
ability 1/6, class 2 with probability 1/6, or class 3
with probability 4/6.

Fig. 2. We simulate our SEB policy, as well as our comparison policies, for a Bounded Pareto job size
distribution with 𝐶2 = 99, a relatively high-variance bounded job size distribution. 30 trials for each data
point, with at least 2 × 10

6 jobs served for each load. 95% confidence intervals shown.
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(a) The two-class compatibility model
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(b) The three-class compatibility model

Our simulation results for this setting are shown in Fig. 2a. For each simulated policy 𝜋 , we

evaluated the ratio E[𝑇 𝜋 ]/E[𝑇 SRPT-1]. Recall that our heavy traffic result shows that this ratio

converges to 1 as load 𝜌 goes to 1.

Our results indicate that the SEB policy’s ratio is descending throughout the range of loads sim-

ulated, in concert with our theoretical results. In contrast, the MaxWeight-Queue and MaxWeight-

Work SRPT policies have growing ratios throughout the range of loads simulated, indicating an

absence of heavy traffic optimality. The MaxWeight-Queue SRPT policy has a strong ratio through-

out the range of loads simulated, and we discuss why we believe this occurs in Appendix B. Note
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Fig. 3. Comparisons of mean residence and waiting times under SEB with the mean response time of SRPT-1

that we used a fixed bucket width multiplier 𝑐 = 10 for all loads, to simplify the simulations, and

because load was not high enough for varying the multiplier to improve the response time.

These results suggest a confirmation of SEB’s heavy traffic optimality in this setting, though

much higher loads would be needed for a full confirmation, which would require more simulation

than we were able to conduct. To further investigate SEB’s response time behavior, we separate its

mean response time into mean residence time, and mean waiting time.

In Fig. 3a, we see that at all loads simulated, E[𝑇 𝑆𝐸𝐵] is dominated by residence time, rather

than waiting time. This corresponds to the fact that SEB is an idling policy, so jobs may remain in

residence longer than they would in non-idling policies. However, as can be seen in this figure,

residence time is not increasing with load, and hence becomes negligible in heavy traffic. Waiting

time dominates in heavy traffic, and our mean waiting time is closely comparable to the mean

response time of SRPT-1, further validating our convergence to heavy traffic optimality.

We also evaluate our SEB policy and the comparison policies in a more complex compatibility

scheduling setting, shown in Fig. 2b, with 3 servers, 3 job classes, and each server capable of serving

two classes of jobs. Again, we evaluated the ratio E[𝑇 𝜋 ]/E[𝑇 SRPT-1] for each policy 𝜋 .

In this setting, we likewise see that SEB’s ratio falls across the entire range of loads considered,

while MaxWeight-Queue and MaxWeight-SRPT Work have increasing ratios, and MaxWeight-SRPT

Queue performs well across a variety of loads. Again, SEB’s pre-heavy-traffic behavior is suggestive

of its heavy traffic optimality.

8.2 Evaluation of multiserver-job scheduling
In the multiserver-job (MSJ) setting, we consider a setting with 11 servers, and two server need

possibilities: One where jobs have server need either 2 or 3, and the dominating facet is bounded

by the points [4, 1] and [1, 3], where both service options use all 11 servers. The other server

need possibility has needs 2, 3, and 5, and we select a job size distribution with dominating facet

bounded by the points [3, 0, 1] [0, 2, 1], and [0, 0, 2]. Note that not all of these service options use all
11 servers: [0, 0, 2] uses only 10. This leads to different size-duration conversion coefficients, and

our goal is to validate our results in this distinct setting.

Note that neither of these MSJ settings fall in the ServerFilling/DivisorFilling setting, as neither

server need perfectly divides 11 [17, 18].

Our simulation results are shown in Figs. 2c and 2d. For each simulated policy 𝜋 , we evaluated

the ratio E[𝑇 𝜋 ]/E[𝑇 SRPT-1]. Our empirical results indicate that in the MSJ setting, as in the prior

compatibility scheduling setting, SEB’s response time ratio falls consistently throughout the load
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range simulated, adding validity to our results, Theorem 5.1, which states that our mean response

time ratio converges to 1 as load 𝜌 → 1.

MaxWeight continues to perform poorly, and MaxWeight-SRPT Queue continues to perform

well. MaxWeight-SRPT Work shows a roughly flat response time ratio across the range of loads

simulated, increasing somewhat in Fig. 2d.

The ServerFilling-SRPT policy performs well for low load, but reaches the boundary of its stability

region at load 𝜌 significantly below 1, as it is not a throughput-optimal policy in this setting, and it

experiences a rapid rise in response time ratio as a result.

Again, in Fig. 3b, we break SEB’s mean response time down into its components, mean waiting

time and mean residence time. Again, residence time does not increase asymptotically as we

approach heavy traffic (𝜌 → 1). Only waiting time increases in that limit. SEB’s waiting time again

parallels that of SRPT-1, lending credibility to our theoretical result of heavy traffic optimality.

9 CONCLUSION
In this paper, we design a new scheduling policy, called SEB (Smallest Equalizing Bucket) and show

that it is heavy-traffic optimal, thus making SEB the first proven heavy-traffic optimal scheduling

policy in multi-server systems with general service constraints. SEB strikes the right balance

between prioritizing small jobs and keeping all servers busy, a critical component to optimality

that no previous policies are able to achieve.

Despite the success of SEB, we have left in place a few assumptions. Most importantly, we have

assumed bounded job size distribution and independence of job size and job class. Designing and

analyzing a good policy without these assumptions is important both in theory and in practice.

Our explorations suggest that substantial new ideas must be introduced to achieve optimality in

the most general setting. We leave this to future work.
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A DEFERRED PROOFS
A.1 Proof of Theorem 6.1

Theorem 6.1. The system is stable under SEB for any 𝜌 < 1.

Proof. Our main tool is the continuous-time Foster Lyapunov Theorem in [36]. The key idea is

to find a nonnegative Lyapunov function𝑉 that has bounded drift on a compact setK and negative

drift outside K .

Since SEB balances all buckets separately and induces a cone-based state-space collapse in each

bucket, we show stability in the space R𝑛𝑏×𝑛𝑐+ which contains all possible values of bucket work

vectors {w(1) , . . . ,w(𝑛𝑏 ) }. For simplicity, we will use {w(𝑖 ) } to denote this collection of bucket

work vectors and ∥w∥1 to denote the total work in the system.

Consider the following Lyapunov function:

𝑉 ({w(𝑖 ) }) =
𝑛𝑏∑︁
𝑖=1

𝐻 (w(𝑖 ) )2 +𝑀 ∥w∥1
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where the function 𝐻 and the constant𝑀 are defined as follows:

𝐻 (w(𝑖 ) ) :=
(
∥w(𝑖 )

⊥𝝆 ∥2 − ∥w(𝑖 )
∥𝝆 ∥2 tan𝜑

)+
, 𝑀 :=

2𝜆𝑛𝑏
√
𝑛𝑠𝑠

2

max

1 − 𝜌
We define the following compact set:

K =

𝑛𝑏⋂
𝑖=1

{w(𝑖 )
: 𝐻 (w(𝑖 ) ) ⩽ 𝐶𝑖 } ∩ {w : ∥w∥1 ⩽ 𝐷}

where

𝐶𝑖 :=
3𝜆𝑛

√
𝑛max{𝑠3

max
, 1}𝑛𝑏 +𝑀 + 1

∥𝝆 (𝑖 ) ∥2 tan𝜑

𝐷 := max

{
√
𝑛𝑐

(
𝑛𝑠𝑏𝑛𝑏 +max𝑗 𝐶 𝑗

𝝆
min

∥𝝆 ∥2 − tan𝜑
+max

𝑗
𝐶 𝑗

)
,

𝑛𝑠
√
𝑛𝑐𝑏𝑛𝑏

𝝆
min

∥𝝆 ∥2 cos𝜑 − sin𝜑

}
Our goal is to show that the drift of the Lyapunov function 𝑉 outside K is negative. We consider

the following cases:

(1) Bucket 𝑖 is in service for some 𝑖 ∈ {1, . . . , 𝑛𝑏}.
(2) 𝐻 (w(𝑖 ) ) > 𝐶𝑖 for some 𝑖 ∈ {1, . . . , 𝑛𝑏} and no bucket is in service.

(3) ∥w∥1 > 𝐷 and w ∈ ⋂𝑛𝑏
𝑖=1

{w(𝑖 )
: 𝐻 (w(𝑖 ) ) ⩽ 𝐶}. In this case, we will show that some bucket

must be eligible for service and we are thus back to case 1.

We now analyze each of the three cases separately.

Case 1(a): w(𝑖 ) ∉ C. Let r∗ be the service vector chosen by the scheduler.

G𝑉 ({w(𝑖 ) })
(𝑎)
⩽ −

〈
∇𝐻 (w(𝑖 ) )2, r∗

〉
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∥𝝆 ∥2 +

〈
𝝆, r∗

〉
∥𝝆∥2
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where (a) follows from
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(b) follows from the fact that r∗ processes total work at rate 1. (c) follows from the following

calculations:

∇w(𝑖 ) ∥w(𝑖 )
⊥𝝆 ∥22 = 2w(𝑖 )
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Case 1(b): w(𝑖 ) ∈ C. Let r∗ be the service vector chosen by the scheduler.

G𝑉 ({w(𝑖 ) }) ⩽ −𝑀 (∥r∗∥1 − ∥𝝆∥1) + 𝜆𝑛𝑏𝑛𝑐𝑠2max
< 𝜆𝑛𝑏𝑛𝑐𝑠

2

max
−𝑀 (1 − 𝜌)

Case 2:

G𝑉 ({w(𝑖 ) }) = 𝜆E[Δ𝑉 ({w(𝑖 ) })]

= 𝜆
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We now bound T1.
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where (a) follows from the proof of Theorem 6.3. Therefore, for
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we have G𝑉 {w(𝑖 ) }) < 0

Case 3: In this case, there exists 𝑗 ∈ {1, . . . , 𝑛𝑏} such that ∥w( 𝑗 ) ∥1 ⩾ 𝐷/𝑛𝑏 . We now show that it

must be the case that bucket 𝑗 is eligible for service, hence this case is reduced to case 1. Ifw( 𝑗 ) ∉ C,
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By norm inequality,
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∥𝝆 ∥2 tan𝜑

The following bound follows:

∥w( 𝑗 )
∥𝝆 ∥2 ⩾

1

1 + tan𝜑

(
1

√
𝑛𝑐

∥w( 𝑗 ) ∥1 −𝐶 𝑗
)

Therefore, for

∥w( 𝑗 ) ∥1 ⩾
√
𝑛𝑐

(
𝑛𝑠𝑏 𝑗 +𝐶 𝑗

𝝆
min

∥𝝆 ∥2 − tan𝜑
+𝐶 𝑗

)
we have w( 𝑗 )

𝑖
⩾ 𝑛𝑠𝑏 𝑗 , which implies that the 𝑗-th bucket is eligible for service because there are at

least 𝑛𝑠 jobs in the bucket.

If w( 𝑗 ) ∈ C, then by Theorem 7.1, bucket 𝑗 is eligible for service if

∥w( 𝑗 ) ∥1 ⩾
𝑛𝑠
√
𝑛𝑐𝑏 𝑗

𝝆
min

∥𝝆 ∥2 cos𝜑 − sin𝜑

□

A.2 Proof of Theorem 6.2
The following lemma, which is proved in Hajek [21], is foundational to discrete-time state-space

collapse and will play a critical role in our proof for continuous-time state-space collapse.

Lemma A.1 (Hajek [21] Lemma 2.2). Suppose that 𝑋 and 𝑍 are random variables such that
|𝑋 | ⩽𝑠𝑡 𝑍 and E[𝑒𝜆𝑍 ] < ∞ for some 𝜆 > 0. Then for 0 ⩽ 𝜀 ⩽ 𝜆,

E[𝑒𝜀𝑋 ] ⩽ 1 + 𝜀E[𝑋 ] + 𝜀2𝑐 (2)

where 𝑐 is given by

𝑐 =

∞∑︁
𝑘=2

𝜆𝑘−2

𝑘!
E[𝑍𝑘 ]

Theorem 6.2. Let W(𝑡) ∈ R𝑛+ be the workload process of a queueing system with Poisson arrivals
with rate 𝜆 > 0 with a stationary distributionW. Suppose𝑉 : R𝑛+ → R+ is a differentiable nonnegative-
valued function and the following conditions are satisfied:

(i) There exist 𝛼 > 0, 𝛽 > 0, and 𝐾 < ∞ such that for anyW(𝑡) = w,

G𝑉 (w) := 𝐷𝑡𝑉 (w) + 𝜆E[Δ𝑉 (w)] ⩽ −𝛼 + 𝛽 · 1(𝑉 (w) ⩽ 𝐾)

where G is the infinitesimal generator of the workload process, 𝐷𝑡𝑉 (w) is the change in 𝑉 (w)
due to service, and Δ𝑉 (w) = 𝑉 (w+) −𝑉 (w) is the change in 𝑉 immediately after an arrival
at stateW(𝑡) = w.

(ii) There exist 𝜃 > 0 and 𝐷 < ∞ such that for all W(𝑡) = w, E
[
𝑒𝜃 |Δ𝑉 (w) | ] < 𝐷 ,

then for any 0 < 𝜂 < min

{
𝛼𝜃 2

𝜆𝐷
, 𝜃

}
, we have

E
[
𝑒𝜂𝑉 (W)

]
⩽

𝜃 2𝛽𝑒𝜂𝐾

𝜃 2𝛼 − 𝜆𝜂𝐷 < ∞
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Proof. Fix some positive integer 𝑛. Applying Rate Conservation Law [37] to 𝑒𝜂 (𝑉 (W)∧𝑛)
gives

us

E
[
𝜂𝐷𝑡 (𝑉 (W) ∧ 𝑛)𝑒𝜂 (𝑉 (W)∧𝑛)

]
+ 𝜆E

[
𝑒𝜂 (𝑉 (W+ )∧𝑛) − 𝑒𝜂 (𝑉 (W)∧𝑛)

]
= 0 (3)

We first look into the second term on the LHS of (3) conditioned on W.

E
[
𝑒𝜂 (𝑉 (W+ )∧𝑛) − 𝑒𝜂 (𝑉 (W)∧𝑛) | W

]
=E

[(
𝑒𝜂 (𝑉 (W+ )∧𝑛−𝑉 (W)∧𝑛) − 1

)
𝑒𝜂 (𝑉 (W)∧𝑛) | W

]
(𝑎)
⩽ E

[(
𝑒𝜂Δ𝑉 (W) ·1(𝑉 (W)⩽𝑛) − 1

)
𝑒𝜂 (𝑉 (W)∧𝑛) | W

]
=E

[(
𝑒𝜂Δ𝑉 (W) − 1

)
𝑒𝜂𝑉 (W)1(𝑉 (W) ⩽ 𝑛) | W

]
=E

[
𝜂Δ𝑉 (W)𝑒𝜂𝑉 (W)1(𝑉 (W) ⩽ 𝑛) | W

]
+

E
[(
𝑒𝜂Δ𝑉 (W) − 𝜂Δ𝑉 (W) − 1

)
𝑒𝜂𝑉 (W)1(𝑉 (W) ⩽ 𝑛) | W

]
⩽ E [𝜂Δ𝑉 (W) | W] 𝑒𝜂𝑉 (W)1(𝑉 (W) ⩽ 𝑛)+

E
[(
𝑒𝜂Δ𝑉 (W) − 𝜂Δ𝑉 (W) − 1

)
| W

]
𝑒𝜂𝑉 (W)1(𝑉 (W) ⩽ 𝑛)

(𝑏 )
⩽ E [𝜂Δ𝑉 (W) | W] 𝑒𝜂𝑉 (W)1(𝑉 (W) ⩽ 𝑛) + 𝜂2𝑐 (w) 𝑒𝜂𝑉 (W)1(𝑉 (W) ⩽ 𝑛)

where

(a) follows because we have

𝑉 (W+) ∧ 𝑛 −𝑉 (W) ∧ 𝑛 ⩽ Δ𝑉 (w)1(𝑉 (w) ⩽ 𝑛) ∀w

(b) follows from assumption (ii) and (2) in Lemma A.1 in that for any 0 < 𝜂 ⩽ 𝜃 we have

E
[
𝑒𝜂Δ𝑉 (W) − 𝜂Δ𝑉 (W) − 1 | W

]
⩽ 𝜂2𝑐 (W)

where

𝑐 (W) =
∞∑︁
𝑘=2

𝜃𝑘−2

𝑘!
E

[
|Δ𝑉 (W) |𝑘

]
Here, 𝑐 (W) depends onW. To obtain a bound independent ofW, we note that assumption (ii) gives

𝑐 (W) =
E

[
𝑒𝜃 |Δ𝑉 (W) | ] − (1 + 𝜃E[|Δ𝑉 (W) |])

𝜃 2
⩽
E

[
𝑒𝜃 |Δ𝑉 (W) | ]
𝜃 2

⩽
𝐷

𝜃 2

Taking expectation on both sides with respect to the stationary distribution of W(𝑡) gives us

E
[
𝑒𝜂 (𝑉 (W+ )∧𝑛) − 𝑒𝜂 (𝑉 (W)∧𝑛)

]
⩽ E

[
E [𝜂Δ𝑉 (W) | W] 𝑒𝜂𝑉 (W)1(𝑉 (W) ⩽ 𝑛)

]
+

𝜂2𝐷

𝜃 2
E

[
𝑒𝜂𝑉 (W)1(𝑉 (W) ⩽ 𝑛)

]
Now we turn to analyze the first term on the LHS of 3. First observe that for any w,

𝜂𝐷𝑡 (𝑉 (w) ∧ 𝑛)𝑒𝜂 (𝑉 (w)∧𝑛) ⩽ 𝜂𝐷𝑡 (𝑉 (w))𝑒𝜂𝑉 (w)1(𝑉 (w) ⩽ 𝑛)

By assumption (i),

−G𝑉 (w) = −𝐷𝑡𝑉 (w) − 𝜆E[Δ𝑉 (w)] ⩾ 𝛼 − 𝛽 · 1(𝑉 (w) ⩽ 𝐾)
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Therefore, for any w,

− 𝜂𝐷𝑡 (𝑉 (w))𝑒𝜂𝑉 (w)1(𝑉 (w) ⩽ 𝑛)
⩾ 𝜂 (𝛼 − 𝛽1(𝑉 (w) ⩽ 𝐾) + 𝜆E[Δ𝑉 (w)])𝑒𝜂𝑉 (w)1(𝑉 (w) ⩽ 𝑛)
= (𝛼 + 𝜆E[Δ𝑉 (w)])𝜂𝑒𝜂𝑉 (w)1(𝑉 (w) ⩽ 𝑛) − 𝛽𝜂𝑒𝜂𝑉 (w)1(𝑉 (w) ⩽ 𝑛)1(𝑉 (w) ⩽ 𝐾)
⩾ (𝛼 + 𝜆E[Δ𝑉 (w)])𝜂𝑒𝜂𝑉 (w)1(𝑉 (w) ⩽ 𝑛) − 𝛽𝜂𝑒𝜂𝐾

Taking expectation on both sides with respect to 𝜋 gives us

−𝜂E
[
𝐷𝑡 (𝑉 (W))𝑒𝜂𝑉 (W)1(𝑉 (W) ⩽ 𝑛)

]
⩾ 𝛼𝜂E

[
𝑒𝜂𝑉 (W)1(𝑉 (W) ⩽ 𝑛)

]
+

𝜆E
[
E [𝜂Δ𝑉 (W) | W] 𝑒𝜂𝑉 (W)1(𝑉 (W) ⩽ 𝑛)

]
− 𝛽𝜂𝑒𝜂𝐾

Rearranging (3) and applying all inequalities obtained above give us

𝛼𝜂E
[
𝑒𝜂𝑉 (W)1(𝑉 (W) ⩽ 𝑛)

]
+ 𝜆E

[
E [𝜂Δ𝑉 (W) | W] 𝑒𝜂𝑉 (W)1(𝑉 (W) ⩽ 𝑛)

]
− 𝛽𝜂𝑒𝜂𝐾

⩽ − 𝜂E
[
𝐷𝑡 (𝑉 (W))𝑒𝜂𝑉 (W)1(𝑉 (W) ⩽ 𝑛)

]
= 𝜆E

[
𝑒𝜂 (𝑉 (W+ )∧𝑛) − 𝑒𝜂 (𝑉 (W)∧𝑛)

]
⩽ 𝜆E

[
E [𝜂Δ𝑉 (W) | W] 𝑒𝜂𝑉 (W)1(𝑉 (W) ⩽ 𝑛)

]
+ 𝜆𝜂

2𝐷

𝜃 2
E

[
𝑒𝜂𝑉 (W)1(𝑉 (W) ⩽ 𝑛)

]
Rearranging, (

𝛼 − 𝜆𝜂𝐷
𝜃 2

)
E

[
𝑒𝜂𝑉 (W)1(𝑉 (W) ⩽ 𝑛)

]
⩽ 𝛽𝑒𝜂𝐾

Take 𝜂 > 0 so small that 𝛼 − 𝜆 𝜂𝐷
𝜃 2

> 0. We have

E
[
𝑒𝜂𝑉 (W)1(𝑉 (W) ⩽ 𝑛)

]
⩽

𝜃 2𝛽𝑒𝜂𝐾

𝜃 2𝛼 − 𝜆𝜂𝐷
Letting 𝑛 → ∞ and invoking monotone convergence theorem complete the proof.

□

A.3 Proof of Theorem 6.3
We would like to prove the bucket state-space collapse to the cone C result as discussed in Sec-

tions 6.1 and 6.3.

We first note that condition (ii) of Theorem 6.2 is satisfied because |Δ𝐻𝑖 (w) | is upper bounded
by the largest job size allowed by the bucket. Before we verify condition (i), we would like to show

the following lemma. The lemma is first presented in Eryilmaz and Srikant [11] under a slightly

different setting. We show that this holds here as well.

Lemma A.2. For vectors w and s, we have

∥(w + s)⊥𝝆 ∥2 − ∥w⊥𝝆 ∥2 ⩽
1

2∥w⊥𝝆 ∥2
[
(∥w + s∥2

2
− ∥w∥2

2
) − (∥(w + s)∥𝝆 ∥22 − ∥w∥𝝆 ∥22)

]
Proof. Note that we have ∥x∥2 =

√︃
∥x∥2

2
and the square root function 𝑥 ↦→

√
𝑥 is concave. Thus,

∥(w + s)⊥𝝆 ∥2 − ∥w⊥𝝆 ∥2 =
√︃
∥(w + s)⊥𝝆 ∥2

2
−

√︃
∥w⊥𝝆 ∥2

2
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⩽
1

2∥w⊥𝝆 ∥2
(
∥(w + s)⊥𝝆 ∥22 − ∥w⊥𝝆 ∥22

)
The lemma now follows from the Pythagorean theorem

∥(w + s)⊥𝝆 ∥22 − ∥w⊥𝝆 ∥22 = ∥w + s∥2
2
− ∥(w + s)∥𝝆 ∥22 − ∥w∥2

2
+ ∥w∥𝝆 ∥22

□

Theorem 6.3. For any bucket 𝑖 , under our SEB policy, if the assumptions in Section 3.5 are met,
then we have the following state-space collapse:

If 𝐻𝑖 (w) = (∥w(𝑖 )
⊥𝝆 ∥2 − ∥w(𝑖 )

∥𝝆 ∥2 tan𝜑)
+ and 𝜂𝑖 = 𝑒−2

𝑏𝑖−1
𝑏2
𝑖

tan𝜑, then E
[
𝑒𝜂𝑖𝐻𝑖 (W)

]
⩽

8

tan𝜑

𝑏𝑖

𝑏𝑖−1
,

bounding the distance from w𝑖 to the cone C.

Proof. Under SEB, a bucket alternates between two modes: pure work accumulation mode,

where no service is given to the bucket, and service mode, where all servers work on the bucket.

We will analyze the drifts under both modes separately.

In the work accumulation mode, the generator for the work vector w is

G𝐻𝑖 (w) = 𝜆E[Δ𝐻𝑖 (w)]
We have

Δ𝐻𝑖 (w) = (∥(w(𝑖 ) + s(𝑖 ) )⊥𝝆 ∥2 − ∥w(𝑖 )
⊥𝝆 ∥2) − (∥(w(𝑖 ) + s(𝑖 ) )∥𝝆 ∥2 − ∥w(𝑖 )

∥𝝆 ∥2) tan𝜑

In light of Lemma A.2, it suffices to look at ∥w(𝑖 ) + s(𝑖 ) ∥2
2
− ∥w(𝑖 ) ∥2

2
and ∥(w(𝑖 ) + s(𝑖 ) )∥𝝆 ∥22 − ∥w(𝑖 )

∥𝝆 ∥
2

2

∥w(𝑖 ) + s(𝑖 ) ∥2
2
− ∥w(𝑖 ) ∥2

2
= 2

〈
w(𝑖 ) , s(𝑖 )

〉
+ ∥s(𝑖 ) ∥2

2

∥(w(𝑖 ) + s(𝑖 ) )∥𝝆 ∥22 − ∥w(𝑖 )
∥𝝆 ∥

2

2
= 2

〈
w(𝑖 )

∥𝝆 , s
(𝑖 )
∥𝝆

〉
+ ∥s(𝑖 )∥𝝆 ∥

2

2
= 2

〈
w(𝑖 ) , 𝝆 (𝑖 ) 〉 〈

s(𝑖 ) , 𝝆 (𝑖 ) 〉
∥𝝆 (𝑖 ) ∥2

2

+ ∥s(𝑖 )∥𝝆 ∥
2

2

By Lemma A.2,

∥(w(𝑖 ) + s(𝑖 ) )⊥𝝆 ∥2 − ∥w(𝑖 )
⊥𝝆 ∥2 ⩽

1

∥w(𝑖 )
⊥𝝆 ∥2

(〈
w(𝑖 ) , s(𝑖 )

〉
−

〈
w(𝑖 ) , 𝝆 (𝑖 ) 〉 〈

s(𝑖 ) , 𝝆 (𝑖 ) 〉
∥𝝆 (𝑖 ) ∥2

2

+ 1

2

∥s(𝑖 )⊥𝝆 ∥22

)
and

∥(w(𝑖 ) + s)∥𝝆 ∥2 − ∥w(𝑖 )
∥𝝆 ∥2 =

〈
w(𝑖 ) + s(𝑖 ) , 𝝆 (𝑖 ) 〉

∥𝝆 (𝑖 ) ∥2
2

∥𝝆 (𝑖 ) ∥2 −
〈
w(𝑖 ) , 𝝆 (𝑖 ) 〉
∥𝝆 (𝑖 ) ∥2

2

∥𝝆 (𝑖 ) ∥2 =
〈
s(𝑖 ) , 𝝆 (𝑖 ) 〉
∥𝝆 (𝑖 ) ∥2

Thus,

Δ𝐻𝑖 (w) ⩽ 1

∥w(𝑖 )
⊥𝝆 ∥2

(〈
w(𝑖 ) , s(𝑖 )

〉
−

〈
w(𝑖 ) , 𝝆

〉 〈
s(𝑖 ) , 𝝆 (𝑖 ) 〉

∥𝝆 (𝑖 ) ∥2
2

+ 1

2

∥s⊥𝝆 ∥22

)
−

〈
s(𝑖 ) , 𝝆 (𝑖 ) 〉
∥𝝆 (𝑖 ) ∥2

tan𝜑

Since 𝜆𝑖E[S(𝑖 ) ] = 𝝆 (𝑖 )
, we have

𝜆E[Δ𝐻𝑖 (w)] ⩽
𝜆E[∥S⊥𝝆 ∥22]
2∥w(𝑖 )

⊥𝝆 ∥2
− ∥𝝆 (𝑖 ) ∥2 tan𝜑

Now we show that, in the service mode, w(𝑖 )
also collapses to cone C. The generator for the

bucket, when the bucket is in service mode, is

G𝐻𝑖 (w) = − ⟨∇𝐻𝑖 (w), r∗⟩ + 𝜆E[Δ𝐻𝑖 (w)]



30 Runhan Xie, Ziv Scully, and Isaac Grosof

In light of the drift analysis of 𝜆E[Δ𝐻𝑖 (w)], it suffices to show that ⟨∇𝐻𝑖 (w), r∗⟩ > 0. We first

compute ∇𝐻𝑖 (w).

∇𝐻𝑖 (w) = ∇
(
∥w(𝑖 )

⊥𝝆 ∥2 − ∥w(𝑖 )
∥𝝆 ∥2 tan𝜑

)
We have

∇∥w(𝑖 )
∥𝝆 ∥2 =

𝝆

∥𝝆∥2
2

〈
w(𝑖 ) , 𝝆

〉
∥w(𝑖 )

∥𝝆 ∥2
=

𝝆

∥𝝆∥2

∇∥w(𝑖 )
⊥𝝆 ∥2 =

w(𝑖 )
⊥𝝆

∥w(𝑖 )
⊥𝝆 ∥2

Thus, by assumptions on 𝜑 in Section 6.1,

⟨∇𝐻𝑖 (w), r∗⟩ =

〈
w(𝑖 )

⊥𝝆, r
∗
〉

∥w(𝑖 )
⊥𝝆 ∥2

−
〈
𝝆, r∗

〉
∥𝝆∥2

tan𝜑 > 0

Set

𝐾𝑖 =

𝜆𝑖E
[
∥S(𝑖 )⊥𝝆 ∥22

]
∥𝝆 (𝑖 ) ∥2

cot𝜑

as in Theorem 6.2. Since 𝜆E[Δ𝐻𝑖 (w)] ⩽ 𝜆𝑖𝑏𝑖 in Theorem 6.2, we have

G𝐻𝑖 (w) ⩽ − ∥𝝆 (𝑖 ) ∥2
2

tan𝜑 +
(
𝜆𝑖𝑏𝑖 + ∥𝝆 (𝑖 ) ∥2

)
1(𝐻 (w) ⩽ 𝐾𝑖 )

We set 𝛼𝑖 = − ∥𝝆 (𝑖 ) ∥2
2

tan𝜑 , 𝛽𝑖 = 𝜆𝑖𝑏𝑖 + ∥𝝆 (𝑖 ) ∥2, and 𝜃𝑖 = 2

𝑏𝑖
as in Theorem 6.2. Note that 𝐷 = 𝑒2 as a

result of |Δ𝐻𝑖 (w) | ⩽ 𝑏𝑖 for all w.

With these parameters in hand, we are ready to bound E[𝑒𝜂𝐻 (w) ] in terms of 𝑏𝑖−1 and 𝑏𝑖 . First
note that we have √

𝑛𝑐𝜆𝑖𝑏𝑖−1 ⩽ ∥𝝆 (𝑖 ) ∥2 ⩽
√
𝑛𝑐𝜆𝑖𝑏𝑖

which immediately yields the following bounds

√
𝑛𝑐𝜆𝑖𝑏𝑖−1

2

tan𝜑 ⩽ 𝛼𝑖 ⩽

√
𝑛𝑐𝜆𝑖𝑏𝑖

2

tan𝜑, 𝛽𝑖 ⩽ (√𝑛𝑐 + 1)𝜆𝑖𝑏𝑖 and 𝐾𝑖 ⩽
1

√
𝑛𝑐

𝑏2𝑖

𝑏𝑖−1
cot𝜑.

Recall that 𝜂𝑖 in Theorem 6.2 needs to be taken so that 0 < 𝜂𝑖 < min

{
𝛼𝑖𝜃

2

𝑖

𝜆𝑖𝐷
, 𝜃

}
. Since we have

𝛼𝑖𝜃
2

𝑖

𝜆𝑖𝐷
⩾

1

𝜆𝑖𝑒
2

√
𝑛𝑐𝜆𝑖𝑏𝑖−1

2

tan𝜑
4

𝑏2
𝑖

= 2

√
𝑛𝑐𝑒

−2𝑏𝑖−1
𝑏2
𝑖

tan𝜑,

𝜂𝑖 = 𝑒
−2 𝑏𝑖−1

𝑏2
𝑖

tan𝜑 is a fine choice. Then we have

𝜃 2𝑖 𝛽𝑖𝑒
𝜂𝑖𝐾𝑖 ⩽

4

𝑏2
𝑖

(√𝑛𝑐 + 1)𝜆𝑖𝑏𝑖𝑒𝑒
−2/√𝑛𝑐

𝜃 2𝑖 𝛼𝑖 − 𝜆𝑖𝜂𝑖𝐷 ⩾ 2

√
𝑛𝑐
𝑏𝑖−1
𝑏2
𝑖

tan𝜑 − 𝜆𝑖
𝑏𝑖−1
𝑏2
𝑖

tan𝜑 ⩾ 𝜆𝑖
√
𝑛𝑐
𝑏𝑖−1
𝑏2
𝑖

tan𝜑

Finally, we invoke Theorem 6.2 to obtain

E
[
𝑒𝜂𝑖𝐻 (W)

]
⩽

4

tan𝜑

√
𝑛𝑐 + 1

2

√
𝑛𝑐 − 1

𝑒𝑒
−2/√𝑛𝑐 𝑏𝑖

𝑏𝑖−1
⩽

8

tan𝜑

𝑏𝑖

𝑏𝑖−1
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The last inequality follows from

√
𝑛𝑐+1

2

√
𝑛𝑐−1𝑒

𝑒−2/√𝑛𝑐 ⩽ 2 for 𝑛𝑐 ⩾ 2. □

A.4 Proof of Theorem 7.1
Theorem 7.1. If w(𝑖 ) ∈ C and if ∥w(𝑖 ) ∥1 satisfies

∥w(𝑖 ) ∥1 ⩾
𝑛𝑠
√
𝑛𝑐𝑏𝑖

𝝆
min

∥𝝆 ∥2 cos𝜑 − sin𝜑

then any service option in RF can be fulfilled using jobs in bucket 𝑖 .

The theorem is a corollary of the following lemma, which relates the ℓ1 and ℓ∞ norms for workload

vectors in the cone C.

Lemma A.3. If w(𝑖 ) ∈ C, then

min

1⩽ 𝑗⩽𝑛𝑐
w(𝑖 )
𝑗
⩾ ∥w(𝑖 ) ∥1 ·

1

√
𝑛𝑐

(
𝝆
min

∥𝝆∥2
cos𝜑 − sin𝜑

)
Proof. Let e𝑗 be the 𝑗-th standard basis in R𝑛 , we have〈

w(𝑖 ) , e𝑗
〉
=

〈
w(𝑖 )

∥𝝆 , e𝑗
〉
+

〈
w(𝑖 )

⊥𝝆, e𝑗
〉

⩾

〈
w(𝑖 ) , 𝝆

〉
∥𝝆∥2

2

𝝆 𝑗 − ∥w(𝑖 )
⊥𝝆 ∥2

(𝑎)
⩾

〈
w(𝑖 ) , 𝝆

〉
∥𝝆∥2

2

𝝆𝑖 − ∥w(𝑖 ) ∥2 sin𝜑

(𝑏 )
⩾

𝝆 𝑗
∥𝝆∥2

∥w(𝑖 ) ∥2 cos𝜑 − ∥w(𝑖 ) ∥2 sin𝜑

(𝑐 )
⩾

1

√
𝑛𝑐

∥w(𝑖 ) ∥1
(
𝝆
min

∥𝝆∥2
cos𝜑 − sin𝜑

)
where (a) and (b) follow from the assumption thatw(𝑖 ) ∈ C and (c) follows from the norm inequality.

Note further that

𝝆
min

∥𝝆∥2
cos𝜑 − sin𝜑 > 0

because of assumption in Section 6.1 on 𝜑 . □

A.5 Proof of Lemma 7.3
Lemma A.4. For any w( 𝑗 ) ∉ C ∪ E𝑖 , 𝐻 𝑗 (w) = ∥w( 𝑗 )

⊥𝝆 ∥2 − ∥w( 𝑗 )
∥𝝆 ∥2 tan𝜑 ⩾ 𝜏 ∥w

( 𝑗 ) ∥1 − 𝑛𝑠𝑏 𝑗 .

Proof. We begin by showing that, for any w( 𝑗 ) ∉ C, there exists w( 𝑗 ) ∈ C such that 𝐻 (w(𝑖 ) ) =
∥w( 𝑗 ) −w( 𝑗 ) ∥2. One can verify that

w( 𝑗 )
= w( 𝑗 )

∥𝝆 +
w( 𝑗 )

⊥𝝆

∥w( 𝑗 )
⊥𝝆 ∥2

∥w( 𝑗 )
∥𝝆 ∥2 tan𝜑

is such a vector.

Since w( 𝑗 ) ∉ E𝑖 , there exists 𝑘 = 1, . . . , 𝑛𝑐 such that w( 𝑗 )
𝑘

< 𝑛𝑠𝑏 𝑗 . Thus,

𝐻 (w(𝑖 ) ) = ∥w( 𝑗 ) −w( 𝑗 ) ∥2 ⩾ w( 𝑗 )
𝑘

−w( 𝑗 )
𝑘
⩾

𝜏

tan𝜑
∥w( 𝑗 ) ∥1
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where the last inequality comes from Lemma A.3, which relates the ℓ1 and ℓ∞ norms for workload

vectors in the cone C. It remains to lower bound ∥w( 𝑗 ) ∥1. Notice that we have

∥w( 𝑗 ) ∥1 =







w( 𝑗 )
∥𝝆 +w( 𝑗 )

⊥𝝆
∥w( 𝑗 )

∥𝝆 ∥2

∥w( 𝑗 )
⊥𝝆 ∥2

tan𝜑








1

(𝑎)
⩾ min{∥w( 𝑗 )

∥𝝆 ∥1, ∥w
( 𝑗 ) ∥1}

where (a) follows from the following observations

• Note that

∥w( 𝑗 )
∥𝝆 ∥2

∥w( 𝑗 )
⊥𝝆 ∥2

can be viewed as cotangent of the angle between w( 𝑗 )
and 𝝆. Since

w( 𝑗 ) ∉ C, this angle is larger than 𝜑 . This implies that

∥w( 𝑗 )
∥𝝆 ∥2

∥w( 𝑗 )
⊥𝝆 ∥2

tan𝜑 ∈ (0, 1).
• The ℓ1 norm is a linear function, so the minimum is achieved whenever the constant

∥w( 𝑗 )
∥𝝆 ∥2

∥w( 𝑗 )
⊥𝝆 ∥2

tan𝜑 is 0 or 1.

Analyzing ∥w( 𝑗 )
∥𝝆 ∥1 further gives us

∥w( 𝑗 )
∥𝝆 ∥1 =

〈
w( 𝑗 ) , 𝝆

〉
∥𝝆∥2

2

∥𝝆∥1 ⩾ ∥w( 𝑗 ) ∥1
𝝆
min

∥𝝆∥2
∥𝝆∥1
∥𝝆∥2

(𝑏 )
⩾ ∥w( 𝑗 ) ∥1

𝝆
min

∥𝝆∥2
(𝑐 )
⩾ ∥w( 𝑗 ) ∥1 tan𝜑

where (b) follows from the norm inequality and (c) follows from the assumption on 𝜑 in Section 3.5.

This completes the proof of the lemma. □

A.6 Proof of Lemma 7.5
Lemma A.5. For any policy 𝜋 that stabilizes the system,

E[𝑇 𝜋wait] ⩽
1

𝜆

𝑛𝑏∑︁
𝑖=1

𝑐 − 1

𝑏0𝑐
𝑖
E[𝑊 𝜋

⩽𝑖 ] +
1

𝜆

E[𝑊 𝜋 ]
𝑏𝑛𝑏

where𝑊 𝜋
⩽𝑖 is work in the first 𝑖 buckets and𝑊 𝜋 is the total work in the system.

Proof. To bound E[𝑇 𝜋
wait

], we apply WINE (Proposition 5.3) to the queueing system consists

only of jobs waiting to enter service. In this system, the remaining sizes of jobs as in Proposition 5.3

is their original sizes, as jobs leave the system as soon as they receive any service.

By Proposition 5.3,

E[𝑇 𝜋
wait

] ⩽ 1

𝜆

∫ ∞

0

E[𝑊 𝜋
original size⩽𝑥 ]
𝑥2

𝑑𝑥

=
1

𝜆

∫ 𝑏𝑛𝑏

0

E[𝑊 𝜋
original size⩽𝑥 ]
𝑥2

𝑑𝑥 + 1

𝜆

∫ ∞

𝑏𝑛𝑏

E[𝑊 𝜋
original size⩽𝑥 ]
𝑥2

𝑑𝑥

=
1

𝜆

𝑛𝑏∑︁
𝑖=1

∫ 𝑏𝑖

𝑏𝑖−1

E[𝑊 𝜋
original size⩽𝑥 ]
𝑥2

𝑑𝑥 + 1

𝜆

E[𝑊 𝜋
original size⩽𝑏𝑛𝑏

]

𝑏𝑛𝑏

⩽
1

𝜆

𝑛𝑏∑︁
𝑖=1

∫ 𝑏𝑖

𝑏𝑖−1

E[𝑊 𝜋
original size⩽𝑏𝑖

]
𝑥2

𝑑𝑥 + 1

𝜆

E[𝑊 𝜋
original size⩽𝑏𝑛𝑏

]

𝑏𝑛𝑏

=
1

𝜆

𝑛𝑏∑︁
𝑖=1

E[𝑊 𝜋
original size⩽𝑏𝑖

]
(

1

𝑏𝑖−1
− 1

𝑏𝑖

)
+ 1

𝜆

E[𝑊 𝜋
original size⩽𝑏𝑛𝑏

]

𝑏𝑛𝑏
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=
1

𝜆

𝑛𝑏∑︁
𝑖=1

𝑐 − 1

𝑏0𝑐
𝑖
E[𝑊 𝜋

⩽𝑖 ] +
1

𝜆

E[𝑊 𝜋 ]
𝑏𝑛𝑏

.

□

A.7 Proof of Proposition 7.6
Proposition A.6. Under SEB,

E[𝑇 SEB] ⩽ 𝑐E[𝑇 PSJF-1] + 𝐴
𝜆
log

(
1

1 − 𝜌

) (
2𝑛𝑏 +

1

𝑐 − 1

)
+ 1

𝜆
𝑛𝑏𝑛𝑠𝑛𝑐

where

𝐴 =
𝐴1 + 3𝐴2

𝑏0

𝑏𝑛𝑏 − 𝑏0
𝑏0

,

and where 𝐴1 and 𝐴2 are defined in Theorem 7.2.

Proof. By Lemma 7.5,

E[𝑇 SEB

wait
] ⩽ 1

𝜆

𝑛𝑏∑︁
𝑖=1

𝑐 − 1

𝑏0𝑐
𝑖
E[𝑊 SEB

⩽𝑖 ]︸                    ︷︷                    ︸
T1

+ 1

𝜆

E[𝑊 SEB]
𝑏𝑛𝑏︸        ︷︷        ︸
T2

Recall from Proposition 5.4 that for any 𝑖 = 1, . . . , 𝑛𝑏 ,

E[𝑊 SEB

⩽𝑖 ] − E[𝑊M/G/1
⩽𝑖 ] =

E[ISEB

⩽𝑖 𝑊
SEB

⩽𝑖 ]
1 − 𝜌⩽𝑖

Using Proposition 5.4 and the waste bound in Theorem 7.2, we obtain

T1 ⩽
1

𝜆

𝑛𝑏∑︁
𝑖=1

𝑐 − 1

𝑏0𝑐
𝑖
E[𝑊M/G/1

⩽𝑖 ] + 𝐴1 +𝐴2

𝜆

𝑛𝑏∑︁
𝑖=1

𝑐𝑖 − 1

𝑏0𝑐
𝑖

+ 𝐴2

𝜆

𝑛𝑏∑︁
𝑖=1

log

(
1

1 − 𝜌⩽𝑖

)
𝑐𝑖 − 1

𝑏0𝑐
𝑖

+ 𝐴2

𝜆

𝑛𝑏∑︁
𝑖=1

𝑖
𝑐 − 1

𝑏0𝑐
𝑖

⩽
1

𝜆

𝑛𝑏∑︁
𝑖=1

𝑐 − 1

𝑏0𝑐
𝑖
E[𝑊M/G/1

⩽𝑖 ] + 1

𝜆

(
𝐴1 +𝐴2

𝑏0
+ 𝐴2

𝑏0
log

(
1

1 − 𝜌

)) 𝑛𝑏∑︁
𝑖=1

𝑐𝑖 − 1

𝑐𝑖
+ 1

𝜆

𝐴2

𝑏0
𝑛𝑏

𝑛𝑏∑︁
𝑖=1

𝑐 − 1

𝑐𝑖

⩽
1

𝜆

𝑛𝑏∑︁
𝑖=1

𝑐 − 1

𝑏0𝑐
𝑖
E[𝑊M/G/1

⩽𝑖 ] + 1

𝜆

(
𝐴1 + 2𝐴2

𝑏0
+ 𝐴2

𝑏0
log

(
1

1 − 𝜌

))
𝑛𝑏

T2 ⩽
1

𝜆

E[𝑊M/G/1]
𝑏𝑛𝑏

+ 1

𝜆

[(
𝐴1 +𝐴2

𝑏𝑛𝑏
+ 𝐴2

𝑏𝑛𝑏
log

(
1

1 − 𝜌

))
𝑐𝑛𝑏 − 1

𝑐 − 1

+ 𝐴2

𝑏𝑛𝑏
𝑛𝑏

]
Combining bounds for T1 and T2 and noting that 𝑏𝑛𝑏 − 𝑏0 = 𝑏0 (𝑐𝑛𝑏 − 1) give us

E[𝑇 SEB

wait
] ⩽ 1

𝜆

𝑛𝑏∑︁
𝑖=1

𝑐 − 1

𝑏0𝑐
𝑖
E[𝑊M/G/1

⩽𝑖 ] + 1

𝜆

E[𝑊M/G/1]
𝑏𝑛𝑏

+ 1

𝜆

(
𝐴1 +𝐴2

𝑏0
+ 𝐴2

𝑏0
log

(
1

1 − 𝜌

)
+ 𝐴2

𝑏0

)
𝑛𝑏+

1

𝜆

(
𝐴1 +𝐴2

𝑏𝑛𝑏
+ 𝐴2

𝑏𝑛𝑏
log

(
1

1 − 𝜌

))
𝑏𝑛𝑏 − 𝑏0
𝑏0

1

𝑐 − 1

+ 1

𝜆

𝐴2

𝑏𝑛𝑏
𝑛𝑏

⩽
1

𝜆

𝑛𝑏∑︁
𝑖=1

𝑐 − 1

𝑏0𝑐
𝑖
E[𝑊M/G/1

⩽𝑖 ] + 1

𝜆

E[𝑊M/G/1]
𝑏𝑛𝑏

+ 𝐴
𝜆
log

(
1

1 − 𝜌

) (
2𝑛𝑏 +

1

𝑐 − 1

)
(4)

Next, we show that the first two terms involving E[𝑊𝑀/𝐺/1] are upper bounded by 𝑐E𝑇 PSJF-1
.
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We now consider a single-server Preemptive-Shortest-Job-First (PSJF) policy. Let 𝑇 PSJF-1
be its

response time, then we have

E[𝑇 PSJF-1] (𝑎)
=

1

𝜆

∫ ∞

0

E[𝑊 PSJF-1

remaining size⩽𝑥 ]
𝑥2

𝑑𝑥

(𝑏 )
⩾

1

𝜆

∫ ∞

0

E[𝑊 PSJF-1

original size⩽𝑥 ]
𝑥2

𝑑𝑥

(𝑐 )
=

1

𝜆

1

𝑐

∫ ∞

0

E[𝑊 PSJF-1

original size⩽𝑐𝑥 ]
𝑥2

𝑑𝑥

(𝑑 )
=

1

𝜆

1

𝑐

𝑛𝑏∑︁
𝑖=1

∫ 𝑏𝑖

𝑏𝑖−1

E[𝑊 PSJF-1

original size⩽𝑐𝑥 ]
𝑥2

𝑑𝑥 + 1

𝜆

1

𝑐

∫ ∞

𝑏𝑛𝑏

E[𝑊 PSJF-1

original size⩽𝑐𝑥 ]
𝑥2

𝑑𝑥

(𝑒 )
⩾

1

𝜆

1

𝑐

𝑛𝑏∑︁
𝑖=1

∫ 𝑏𝑖

𝑏𝑖−1

E[𝑊 PSJF-1

original size⩽𝑏𝑖
]

𝑥2
𝑑𝑥 + 1

𝜆

1

𝑐

∫ ∞

𝑏𝑛𝑏

E[𝑊 PSJF-1

original size⩽𝑐𝑥 ]
𝑥2

𝑑𝑥

(𝑓 )
=

1

𝜆

1

𝑐

𝑛𝑏∑︁
𝑖=1

∫ 𝑏𝑖

𝑏𝑖−1

E[𝑊M/G/1
⩽𝑖 ]
𝑥2

𝑑𝑥 + 1

𝜆

1

𝑐

∫ ∞

𝑏𝑛𝑏

E[𝑊M/G/1]
𝑥2

𝑑𝑥

=
1

𝜆

1

𝑐

𝑛𝑏∑︁
𝑖=1

𝑐 − 1

𝑏0𝑐
𝑖
E[𝑊M/G/1

⩽𝑖 ] + 1

𝜆

1

𝑐

1

𝑏𝑛𝑏
E[𝑊M/G/1] (5)

where (a) follows from the WINE identity. (b) follows from the fact that𝑊
PSJF-1

remaining size⩽𝑥 includes

work from jobs with original sizes less than 𝑥 (i.e.𝑊
PSJF-1

original size⩽𝑥 ) and jobs with original sizes larger

than 𝑥 but have remaining sizes less than 𝑥 because they have received some service. (c) follows

from a change of variable 𝑥 ↦→ 𝑐𝑥 . To better compare E[𝑇 PSJF-1] and E[𝑇 SEB], we divide the integral
into 𝑏0, 𝑏1, . . . , 𝑏𝑛𝑏 ,∞ in (d) the same way we define the buckets in MSJ scheduling. (e) follows from

𝑏𝑖−1 ⩽ 𝑥 ⩽ 𝑏𝑖 ⩽ 𝑐𝑥 . (f) follows from the fact that PSJF is a work-conserving policy.

Comparing (5) with (4) completes the proof.

□

B MAXWEIGHT-QUEUE SRPT
We now discuss the strong empirical performance of the MaxWeight-Queue SRPT (MWQS) policy

across the variety of settings we investigated in Sections 8.1 and 8.2.

Recall our intuition that optimal mean response time requires prioritizing two goals: Serving the

jobs of smallest remaining size, and balancing the amount of small jobs of each class to maintain

full server utilization.

MWQS accomplishes the first goal very well, because it is an SRPT-based policy, and does a good

job for the second goal by balances the total number of jobs of each class. At relatively low loads,

the total number of jobs of each class is a good proxy for the number of small jobs in each class.

However, we do not expect MWQS to be heavy-traffic optimal, because at very high load, most

jobs in the system are much larger than a typical arriving job, because smaller jobs have been

prioritized. As a result, the total number of jobs in a given class is no longer a good proxy for the

number of small jobs of that class, which should hurt MWQS.

The strong empirical performance of MWQS is reminiscent of the strong empirical performance

of JSQ dispatching to SRPT queues [16]. Further work is needed to understand the impressive

performance of these policies.
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