
The RESET and MARC Techniques, with Application to Multiserver-Job
Analysis

Isaac Grosofa, Yige Honga, Mor Harchol-Baltera, Alan Scheller-Wolfa

aCarnegie Mellon University, 5000 Forbes Ave, Pittsburgh, 15213, PA, USA
{igrosof, yigeh, harchol, awolf}@andrew.cmu.edu

Abstract

Multiserver-job (MSJ) systems, where jobs need to run concurrently across many servers, are increasingly
common in practice. The default service ordering in many settings is First-Come First-Served (FCFS)
service. Virtually all theoretical work on MSJ FCFS models focuses on characterizing the stability region,
with almost nothing known about mean response time.

We derive the first explicit characterization of mean response time in the MSJ FCFS system. Our
formula characterizes mean response time up to an additive constant, which becomes negligible as arrival
rate approaches throughput, and allows for general phase-type job durations.

We derive our result by utilizing two key techniques: REduction to Saturated for Expected Time (RE-
SET) and MArkovian Relative Completions (MARC).

Using our novel RESET technique, we reduce the problem of characterizing mean response time in the
MSJ FCFS system to an M/M/1 with Markovian service rate (MMSR). The Markov chain controlling the
service rate is based on the saturated system, a simpler closed system which is far more analytically tractable.

Unfortunately, the MMSR has no explicit characterization of mean response time. We therefore use our
novel MARC technique to give the first explicit characterization of mean response time in the MMSR, again
up to constant additive error. We specifically introduce the concept of “relative completions,” which is the
cornerstone of our MARC technique.

Keywords: queueing, response time, RESET, MARC, multiserver, MSJ, markovian service rate, heavy
traffic

1. Introduction

Multiserver queueing theory predominantly emphasizes models in which each job utilizes only one server
(one-server-per-job models), such as the M/G/k. For decades, such models were popular in the study of
computing systems, where they provided a faithful reflection of the behavior of such systems while remaining
conducive to theoretical analysis. However, one-server-per-job models no longer reflect the behavior of many
modern computing systems.

Multiserver jobs: In modern datacenters, such as those of Google, Amazon, and Microsoft, each job
now requests many servers (cores, processors, etc.), which the job holds simultaneously. A job’s “server
need” refers to the number of servers requested by the job. In Google’s recently published trace of its
“Borg” computation cluster [17, 46], the server needs vary by a factor of 100,000 across jobs. Throughout
this paper, we will focus on this “multiserver-job model” (MSJ), in which each job requests some number
of servers, and concurrently occupies that many servers throughout its time in service (its “duration”).

FCFS service: We specifically study the first-come first-served (FCFS) service ordering for the MSJ
model, a natural and practical policy that is the default in both cloud computing [9, 26, 43] and supercom-
puting [10, 23]. Currently, little is known about FCFS service in MSJ models.

Stability under FCFS: Even the stability region under FCFS scheduling is not generally understood.
Some papers characterize the stability region under restrictive assumptions on the job duration distributions
[1, 18, 32, 41, 42]. A key technique in these papers is the saturated system approach [2, 12]. The saturated

Preprint submitted to IFIP Performance October 2, 2023

Figure 1: The structure of our main results: RESET (Theorem 4.2) and MARC (Theorem 4.1).

system is a closed system in which completions trigger new arrivals, so that the number of jobs in the
system is always constant. We are the first to use the saturated system for analysis beyond characterizing
the stability region.

Response time for FCFS: Even less is known about mean response time E[T] in MSJ FCFS systems:
The only MSJ FCFS system in which mean response time has been analytically characterized is the simpler
case of 2 servers and exponentially distributed durations [3, 11]. Mean response time is much better under-
stood under more complex scheduling policies such as ServerFilling and ServerFilling-SRPT [17, 19], but
these policies require assumptions on both preemption and the server need distribution, and do not capture
current practices, which emphasize nonpreemptive policies. Mean response time is also better understood
in MSJ FCFS scaling regimes, where the number of servers and the arrival rate both grow asymptotically
[22, 49]. We are the first to analyze MSJ FCFS mean response time under a fixed number of servers.

Why FCFS is hard to analyze: One source of difficulty in studying the FCFS policy is the lack
of work conservation. In simpler one-server-per-job models, a work-conservation property holds: If enough
jobs are present, no servers will be idle. The same is true under the ServerFilling and ServerFilling-SRPT
policies [17], which focus on the power-of-two server-need setting. Each policy selects a subset of the jobs
available, and places jobs from that subset into service in largest-server-need-first order. By doing so, and
using the power-of-two assumption, these policies always fill all of the servers, whenever sufficiently many
jobs are present, thereby achieving work conservation.

Work conservation is key to the mean response time analysis of those systems, as one can often reduce
the analysis of response time to the analysis of work. In contrast, the multiserver-job model under FCFS
service is not work conserving: a job must wait if it demands more servers than are currently available,
leaving those servers idle.

First response time analysis: We derive the first characterization of mean response time in the MSJ
FCFS system. We allow any phase-type duration distribution, and any correlated distribution of server need
and duration. Our result holds at all loads up to an additive error, which becomes negligible as the arrival
rate λ approaches λ∗, the threshold of stability.

Proof structure: We illustrate the structure of our proof in Fig. 1. We first use our RESET technique
(REduction to Saturated for Expected Time) to reduce from the MSJ FCFS system to the At-least-k system
(see Section 3.3). The At-least-k system is equivalent to a M/M/1 with Markovian service rate (MMSR)
(see Section 3.2), where the service rate is based on the saturated system. By “Markovian service rate”,
we refer to a system in which the completion rate fluctuates over time, driven by an external finite-state
Markov chain. We next use our MARC technique (MArkovian Relative Completions) to prove Theorem 4.1,
the first characterization of mean response time in the MMSR.

Both steps are novel, hard, and of independent interest. We prove our MARC result first because it is
a standalone result, characterizing mean response time for any MMSR system up to an additive constant.
We then prove Theorem 4.2, our characterization of mean response time in the MSJ FCFS system, by
layering our RESET technique on top of MARC. Theorem 4.2 characterizes mean response time in terms
of several quantities that can be characterized explicitly and in closed form via a straightforward analysis
of the saturated system. We walk through a specific example of using our result to explicitly characterize
mean response time in Appendix C.

Breadth of the RESET technique: Our RESET technique is very broad, and applies to a variety
of generalizations of the MSJ model and beyond (See Section 7). For instance, RESET can handle cases

2

where a job’s server need varies throughout its time in service, and where the service rates at the servers
can depend on the job. Finally, we can analyze scheduling policies that are close to FCFS but allow limited
reordering, such as some backfilling policies.

Breadth of the MARC technique: Our MARC technique is also very broad, and applies to any
MMSR system. For example, we can handle systems in which machine breakdowns lead to reduced service
rate, or where servers are taken away by higher-priority customers.

This paper is organized as follows:
• Section 2: We discuss prior work on the MSJ model.
• Section 3: We define the MSJ model, the MMSR, the saturated system, relative completions, and
related concepts.

• Section 4: We state our main results, and walk through an example of applying our results to a specific
MSJ FCFS system.

• Section 5: We characterize mean response time in the MMSR using our MARC technique.
• Section 6: We build upon Section 5 to characterize MSJ FCFS mean response time using our RESET
technique.

• Section 7: Our results apply to a very broad class of models which we call “finite skip” models, and
which we define in this section.

• Section 8: We empirically validate our theoretical results.

2. Prior work

The bulk of the prior work we discuss is in Section 2.1, which focuses on specific results in the multiserver-
job model. In Section 2.2, we briefly discuss prior work on the saturated system, an important tool in our
analysis. Finally, in Section 2.3, we discuss prior work on the M/M/1 with Markovian service rate.

2.1. Multiserver-job model

Theoretical results in the multiserver-job model are limited. We first discuss the primary setting of this
paper: a fixed number of servers and FCFS service.

2.1.1. Fixed number of servers, FCFS service

In this setting, most results focus on characterizing the stability region. Rumyantsev and Morozov
characterize stability for an MSJ system with an arbitrary distribution of server needs, where the duration
distribution is exponential and independent of server need [42]. This result can implicitly be seen as solving
the saturated system, which has a product-form stationary distribution in this setting. A setting with two
job classes, each with distinct server needs and exponential duration distributions has also been considered
[16, 40]. In this setting, the saturated system was also proven to have a product-form stationary distribution,
which was also used to characterize the stability region.

The only setting in which mean response time E[T] is known is in the case of k = 2 servers and exponential
duration independent of server need [3, 11]. In this setting, the exact stationary distribution is known. Mean
response time is open in all other settings, including whenever k > 2.

2.1.2. Advanced scheduling policies

More advanced scheduling policies for the MSJ system have been investigated, in order to analyze and
optimize the stability region and mean response time.

The MaxWeight policy was proven to achieve optimal stability region in the MSJ setting [27]. However,
its implementation requires solving an NP-hard optimization problem upon every transition, and it performs
frequent preemption. It is also too complex for response time analysis to be tractable. The Randomized
Timers policy achieves optimal throughput with no preemption [13, 39], but has very poor empirical mean
response time, and no response time analysis.

In some settings, it is possible for a scheduling policy to ensure that all servers are busy whenever there
is enough work in the system, which we call “work conservation.” Work conservation enables the optimal

3

stability region to be achieved and mean response time to be characterized. Two examples are ServerFilling
and ServerFilling-SRPT scheduling policies [17, 19]. However, the work-conservation-based techniques used
in these papers cannot be used to analyze non-work-conserving policies such as FCFS.

2.1.3. Scaling number of servers

The MSJ FCFS model has also been studied in settings where the number of servers, the arrival rate,
and the server need distribution all grow in unison to infinity. Analogues of the Halfin-Whitt and non-
diminishing-slowdown regimes have been established, proving bounds on the probability of queueing and
mean waiting time [22, 49]. These results focus on settings where an approximate work conservation property
holds, and there is enough excess capacity that this approximate work conservation is sufficient to determine
the first-order behavior of the system. These results do not apply to the λ → λ∗ limit.

2.2. Prior work on the saturated system

The saturated system is a queueing system which is used as analysis tool to understand the behavior of
an underlying non-saturated queueing system [2, 12]. Baccelli and Foss state that it is a “folk theorem” that
the threshold of the stability region of the original open queueing system is equivalent to the completion
rate of the saturated system: If the completion rate of the saturated system is µ, then the original system
is stable for arrival rate λ if and only if λ < λ∗ = µ [2]. Baccelli and Foss give sufficient conditions for this
folk theorem, known as the “saturation rule,” to hold rigorously. These conditions are mild, and are easily
shown to hold for the MSJ FCFS system. The strongest stability results in the MSJ FCFS system have
either been proven by characterizing the steady state of the saturated system, or are equivalent to such a
characterization [16, 18, 42].

Our novel contribution is characterizing the mean response time behavior of an original system by
reducing its analysis to the analysis of a saturated system. All previous uses of the saturated system focused
on characterizing stability. Specifically, our main theorem, Theorem 4.2, characterizes mean response time
in terms of ∆Sat(y), λ

∗, and Y Sat
d . These functions and random variables are specific to the saturated system.

They are defined in Section 3, and can be calculated in closed-form by analyzing the saturated system, as
we walk through in Appendix C.

2.3. M/M/1 with Markovian Service Rate

The M/M/1 with Markovian service rate (MMSR) has been extensively studied since the 50’s, often
alongside Markovian arrival rates [5, 6, 20, 24, 29, 33]. A variety of mathematical tools have been applied
to the MMSR, including generating function methods, matrix-analytic and matrix-geometric methods, and
spectral expansion methods [5, 6, 25, 33]. However, these methods primarily result in numerical results,
rather than theoretical insights [6, 31].

More is known for special cases of the MMSR system [7, 38]. For instance, the case where arrival rates
alternate between a high and low completion rate at some frequency has received specific study. In this
case, the generating function can be explicitly solved as the root of a cubic equation [50], but the resulting
expression is too complex for analytical insights. In this simplified setting, scaling results [34–36, 47] and
monotonicity results [20] have been derived, but those results do not extend to more complex MMSR systems.

By contrast, our MARC technique provides the first explicit characterization of mean response time for
the general MMSR system, up to an additive constant.

2.4. Drift method and MARC

The drift method is a popular method for steady-state analysis of queueing models (see, e.g., [8, 22, 28,
49]). In the drift method, one takes a suitable test function (also known as a Lyapunov function) of the
system state and computes its instantaneous rate of change starting from each state under the transition
dynamics, which is called the drift. The drift can be formally calculated using the instantaneous generator,
defined in Section 3.9. One then utilizes the fact that the drift of any test function has zero steady-state
expectation (Lemma 3.2) to characterize system behavior in steady state, through metrics such as mean

4

Abbreviation Meaning Definition
MSJ Multiserver-job Section 3.1
FCFS First-come first-served Section 3.1
MMSR M/M/1 with Markovian service rate Section 3.2
Ak At-least-k system Section 3.3
Sat Saturated system Section 3.5
SSS Simplified saturated system Section 3.11, Appendix B

MARC Markovian relative completions Section 5
RESET Reduction to saturated for expected time Section 6

Table 1: Table of abbreviations

queue length. Through more specialized choices of test function, stronger results such as State Space Collapse
can also be proven.

In prior work which analyzes the mean queue length, the test function is usually a quadratic function of
the queue length. For instance, when analyzing the MaxWeight policy in the switch setting, an appropriate
test function is

∑
i q

2
i , where qi is the number of jobs present of each class i [44]. For such a test function

to provide useful information about the expected queue length, the system must achieve a constant work
completion rate whenever there are enough jobs in the system. This constant work completion rate ensures
that the test function’s drift depends linearly on the queue length, allowing the mean queue length to be
characterized. However, in our MSJ system, the work completion rate is variable regardless of the number of
jobs in the system, because servers may always be left empty if a job in the queue requires more servers than
are available. As a result, the standard test functions for the drift method do not provide useful information
about the MSJ system.

Our innovation is to construct a novel test function that combines the queue length q and a new quantity
called relative completions, defined in Section 3.8. Our use of relative completions allows us to ensure that
the test functions f∆ and fMSJ

∆ , defined in Definitions 5.1 and 6.1, have drift which depend linearly on the
queue length. As a result, we can apply the drift method with our novel test functions to characterize mean
queue length in the MSJ system, and hence characterize mean response time.

We call this technique the MArkovian Relative Completions (MARC) technique: using relative com-
pletions to define a test function for the drift method, to apply the drift method to systems with variable
work-completion rate.

3. Model

In this section, we introduce five queueing models: the multiserver-job (MSJ) model, the M/M/1 with
Markovian service rate (MMSR), the At-least-k (Ak) model, the saturated system, and the simplified sat-
urated system (SSS). The MSJ is the main focus of this paper. Our RESET technique reduces its analysis
to analyzing the Ak system. The Ak system is equivalent to a MMSR system whose completion process is
controlled by the saturated system. Our MARC technique allows us to analyze this MMSR system. The
SSS is a simpler equivalent of the saturated system. We also introduce the concepts of relative completions
and the generator approach, which are key to our analysis.

Table 1 describes each of the abbreviations used in this paper.

3.1. Multiserver-job Model

The MSJ model is a queueing model in which each job requests an integer number of servers, the server
need, for some duration of time, the service duration. Each job requires concurrent service on all of its
servers throughout its duration. Let k denote the total number of servers in the system.

We assume that each job’s server need and service duration are drawn i.i.d. from some joint distribution.
The duration distribution is phase type, and it may depend on the job’s server need. This assumption can
likely be generalized, which we leave to future work. We assume a Poisson(λ) arrival process.

5

We focus on the first-come first-served (FCFS) service discipline. Our RESET technique also applies to
many other scheduling policies, as we discuss in Section 7. Under FCFS, jobs are placed into service, one by
one, in arrival order, as long as the total server need of the jobs in service is at most k. If a job is reached
whose server need would push the total over k, that job does not receive service until sufficient completions
occur. We consider head-of-the-line blocking, so no subsequent jobs in arrival order receive service. It has
been shown that in the MSJ FCFS setting, there exists a threshold λ∗, such that the system is stable if and
only if λ < λ∗ [2, 12]. We assume that λ < λ∗.

Note that the only jobs eligible for service are the k oldest jobs in arrival order. We conceptually divide
the system into two parts: the front and the back. When the total number of jobs in the system is at least
k, the front consists of the k-oldest jobs in the arrival order; otherwise, the front consists of all jobs in the
system. The back consists of all jobs that are not in the front. Note that all of the jobs which are in service
must be in the front, because at most k jobs can be in service at a time, and service proceeds in strict
FCFS order. The front may also contain some jobs which are not in service, whenever less than k jobs are
in service. All of the jobs in the back are not in service.

3.2. M/M/1 with Markovian Service Rate
The MMSR-π system is a queueing system where jobs arrive to the system according to a Poisson process,

and complete at a variable rate, where the completions are determined by the transitions of a finite-state
Markov chain π. We refer to π as the “service process”. When a job arrives, it stays in the queue until it
reaches the head of the line, entering service. The job then completes when π next undergoes a transition
associated with a completion. Jobs are identical until they reach service. The service process π is unaffected
by the number of jobs in the queue.

3.3. At-least-k System
To connect the MSJ FCFS and MMSR systems, we define two systems: the “At-least-k” (Ak) system,

and the “saturated system” in Section 3.5. The Ak model mimics the MSJ model, except that the Ak
system always has at least k jobs present. Specifically, in addition to the primary Poisson(λ) arrival process,
whenever there are exactly k jobs in the system, and a job completes, a new job immediately arrives. The
server need and service duration of this job are sampled i.i.d. from the same distribution as the primary
arrivals. Due to these extra arrivals, the front of the Ak system always has exactly k jobs present.

Intuitively, the Ak system should have about k more jobs present in steady state than the MSJ system.
We thus expect the Ak and MSJ systems to have the same asymptotic mean response time, up to an Oλ(1)
term. We make this intuition rigorous by using our RESET technique to prove Theorem 4.2.

3.4. Running Example
Throughout this section, we will use a running example to clarify notation and concepts. Consider a

MSJ setting with k = 2 servers, and two classes of jobs: 2/3 of jobs have server need 1 and duration Exp(1),
and the other 1/3 of jobs have server need 2 and duration Exp(1/2).

3.5. Saturated System
The saturated system is a closed multiserver-job system, where completions trigger new arrivals.1 Jobs

are served according to the same FCFS service discipline. There are always exactly k jobs in the system.
Whenever a job completes, a new job with i.i.d. server need and service duration is sampled. The state
descriptor is just an ordered list of exactly k jobs.

In our running example with k = 2 servers, the state space of the saturated system consists of all
orderings of 2 jobs:

YSat = {[1, 1], [1, 2], [2, 1], [2, 2]}.

The leftmost entry in each of the lists is the oldest job in FCFS order. In state [1, 2], a 1-server job is in
service and a 2-server job is not in service, while in state [2, 1], a 2-server job is in service and a 1-server job
is not in service.

1Baccelli and Foss [2] consider a system with infinitely many jobs not in service, which is equivalent to our closed system.

6

3.6. Equivalence between MMSR-Sat and At-least-k

Now we are ready to connect the MMSR and At-least-k (Ak) systems. Consider the subsystem consisting
only of the front of the Ak system, i.e., the k oldest jobs in the Ak system. This subsystem is stochastically
identical to the saturated system. Whenever a job completes at the front of the Ak system, a new job enters
the front, either from the back (i.e. the jobs not in the front) or from the auxiliary arrival process, if the
back is empty. This matches the saturated system’s completion-triggered arrival process.

As a result, the Ak system is stochastically equal to an MMSR-π system whose service process π is
identical to the saturated system. We refer to this system as the “MMSR-Sat” system. To clarify this
equivalency, assume the Ak system starts in a certain front state y with an empty back. Then equivalently
the MMSR-Sat system starts empty, with its service process in state y. If a job in the Ak system completes
its service, a new job is generated, and the same transition occurs in the service process in the MMSR-Sat
system. Similarly, assume a job arrives to the Ak system and enters the back. At the same time, a job arrives
in the MMSR-Sat system and enters the queue. Through this mapping, the two systems are sample-path
equivalent.

The above arguments are summarized in Lemma 3.1 below.

Lemma 3.1. There exists a coupling under which the front of the Ak system is identical to the Sat system,
and the back of the Ak system is identical to the queue of the MMSR-Sat system.

3.7. Notation

MSJ system state: A state of the MSJ system consists of a front state, yMSJ, and a number of jobs in the
back qMSJ. A job state consists of a server need and a phase of its phase-type duration. The front state yMSJ

is a list of up to k job states. If qMSJ > 0, then yMSJ must consist of exactly k job states, while if qMSJ = 0,
yMSJ may consist of anywhere from 0 to k job states. Let YMSJ denote the set of all possible front states
yMSJ of the MSJ system. For instance, in our running example, YMSJ = {[], [1], [2], [1, 1], [1, 2], [2, 1], [2, 2]}.
Note that in the first three states, the back must be empty, so qMSJ must equal 0.

MMSR system state: In the MMSR system, let π denote the Markov chain that modulates the service
rate. As a superscript, it signifies “the MMSR system controlled by the Markov chain π.” A state of the
MMSR-π system consists of a pair (qπ, yπ). The queue length qπ is a nonnegative integer. The state yπ is
a state of the service process π, and Yπ is the state space of π.

Because the MMSR-Sat system is stochastically equal to the Ak system, with the MMSR-Sat system’s
queue length equal to the Ak system’s back length, we use the superscripts Sat and Ak interchangeably. A
state of the Ak system is a pair (qAk, yAk). In contrast to the MSJ system, yAk always consists of exactly k
job states. In particular, YAk ⊂ YMSJ.

MMSR service process: When the service process π transitions from state y to y′, there are two
possibilities: Either a completion occurs, which we write as a = 1, or no completion occurs, which we write
as a = 0. We therefore define µπ

y,y′,a to denote the system’s transition rate from front state y to front state

y′, accompanied by a completions, where a ∈ {0, 1}. For instance, in our running example µSat
[1,1],[1,2],1 = 2/3.

Let the total completion rate from state y be denoted by µπ
y,·,1 =

∑
y′ µπ

y,y′,1. For instance, in our running

example µSat
[1,1],·,1 = 2.

MSJ service transitions: Let µMSJ
y,y′,a,b denote a transition rate in the Multiserver-job system, where

y, y′, and a have the same meaning as in µAk
y,y′,a. Let b = 1q>0 denote whether this transition is associated

with an empty back (b = 0), or an occupied back (b = 1). Note that if y ̸∈ YAk, then b = 0 for all nonzero
µMSJ
y,y′,a,b, while if y ∈ YAk, then both values of b are possible. Note that ∀y ∈ YAk, µMSJ

y,y′,a,1 = µAk
y,y′,a.

If a job arrives to the MSJ system and finds that the front state y has fewer than k jobs (y ̸∈ YAk), a
fresh job state is sampled and appended to y. Let S be a random variable denoting a fresh job state, let i
be a particular fresh job state, let pi be the probability P(S = i), and let y · i be the new front state with a
job in state i appended. For instance, in the running example, p1 = 2/3, p2 = 1/3.

Steady-state notation: We will study the time-average steady states of each of these systems, which
we write (QMSJ, Y MSJ), (Qπ, Y π), etc. Let Y π

d denote the departure-average steady state of the MMSR

7

service process π: the steady-state distribution of the embedded DTMC which samples states after each
departure from π.

Let Xπ denote the long-term throughput of the service process π. Let λ∗
π denote the threshold of the

stability region of the MMSR-π system. The MMSR-π system is stable if and only if λ < λ∗. Note that
Xπ = λ∗

π by prior results relating the saturated system to the stability region of the original system [2, 12].
In particular, XSat = λ∗

Sat = λ∗, where λ∗ denotes the threshold of the stability region of the MSJ FCFS
system. We will typically write λ∗ to avoid confusion between XSat and a random variable.

A concrete example of this notation is provided in Section 4.1.

3.8. Relative completions

Key to our MARC technique is the novel idea of relative completions, which we define for a general
MMSR-π system. Let y1 and y2 be two states of the service process π. The difference in relative completions
between two states y1 and y2 is the long-term difference in expected completions between an instance of the
service process starting in state y1 and one starting in y2. Specifically, let Cπ(y, t) denote the number of
completions up to time t of the service process of π initialized in state y at time t = 0. Then let ∆π(y1, y2)
denote the relative completions between states y1 and y2:

∆π(y1, y2) = lim
t→∞

E[Cπ(y1, t)− Cπ(y2, t)].

We prove that ∆π(y1, y2) always exists and is always finite in Lemma A.1. We also allow y1 and/or y2
to be distributions over states, rather than single states. Specifically, we will often focus on the case
where y2, rather than being a single state, is the steady state distribution Y π. In this case, note that
E[Cπ(Y

π, t)] = Xπt = λ∗
πt. When it is clear from context, we write ∆π(y) to denote ∆π(y, Y

π). The
relative completions formula for this case simplifies:

∆π(y) = ∆π(y, Y
π) = lim

t→∞
E[Cπ(y, t)]− λ∗

πt. (1)

The relative completions function ∆π(y) can be seen as the relative value of a given state y under a
Markov reward process whose state is a state of the service process π and whose reward is the instantaneous
completion rate in a given state y.

3.9. Generator

We also make use of the instantaneous generator of each of our queueing systems, which is the stochastic
equivalent of the derivative operator. The instantaneous generator is an operator which takes a function
from system states to real values, and returns a function from system states to real values. The latter
function is known as the drift of the original function.

The generator operator is specific to a given Markov chain. Let η be a Markov chain, and let Gη denote
the generator operator for η, which is defined as follows:

For any real-valued function of the state of η, f(q, y),

Gη ◦ f(q, y) := lim
t→0

1

t
E[f(Qη(t), Y η(t))− f(q, y)|Qη(0) = q, Y η(0) = y].

Importantly, the expected value of the generator in steady state is zero:

Lemma 3.2. Let f be a real-valued function of the state of a Markov chain η. Assume that the transition
rates of the Markov chain η are uniformly bounded, and E[f(Qη, Y η)] < ∞. Then

E(q,y)∼(Qη,Y η)[G
η ◦ f(q, y)] = 0. (2)

Proof. Follows from [14, Proposition 3]. Discussion deferred to Appendix A.

We show in Appendix A that (2) holds for the MSJ, MMSR, At-least-k, and Saturated systems, for any
f(q, y) with polynomial dependence on q.

8

3.10. Asymptotic notation

We use the notation Oλ(f(λ)) to represent a function g(λ) such that

∃ a constant M such that |g(λ)| ≤ M |f(λ)| ∀λ, 0 < λ < λ∗.

3.11. Simplified saturated system

While the saturated system is a finite-state system, it can have a very large number of possible states.
However, many of the states have identical behavior, and can be combined to reduce the state space. For
instance, in our running example, the states [2, 1] and [2, 2] are nearly identical: in both states just a 2-
server job is in service. We therefore simplify the system by combining the two states into the state [2], and
delaying sampling the next job until needed.

We refer to the resulting system as the “simplified saturated system” (SSS), in contrast to the original
saturated system, which is the focus of the bulk of this paper. SSS is equivalent to the original saturated
system, in the sense of 3.3 stated below.

Lemma 3.3. There exists a coupling under which the main saturated system and simplified saturated system
have identical completions.

The full definition of the SSS, and the proof of the equivalence of SSS to the original saturated system,
are in Appendix B.

The reduction in state space from the SSS can be dramatic. For instance, consider a system where
k = 30, jobs have server needs 3 or 10, and jobs have exponential duration. The original saturated system
has 230 states, while the SSS has just 13 states. We discuss this reduction further in Appendix B.

4. Results

In this paper, we give the first analysis of mean response time in the MSJ FCFS system. To do so,
we reduce the problem to the analysis of mean response time in an M/M/1 with Markovian service rate
(MMSR) in which the saturated system controls the service process (i.e. the At-least-k system). We call
this reduction the RESET technique. Before applying the RESET technique, we start by analyzing the
general MMSR-π system.

We prove the first explicit characterization of mean response time in the MMSR. To do so, we use our
MARC technique, which is based on the novel concept of relative completions (See Section 3.8).

Theorem 4.1 (Mean response time asymptotics of MMSR systems). In the MMSR-π system, the expected
response time in steady state satisfies

E[Tπ] =
1

λ∗
π

1 + ∆π(Y
π
d , Y π)

1− λ/λ∗
π

+Oλ(1), (3)

where ∆π is the relative completions function defined in Section 3.8:

∆π(Y
π
d , Y π) := lim

t→∞
E[Cπ(Y

π
d , t)]− λ∗

πt.

To understand (3), first note that the dominant term has order Θ(1
1−λ/λ∗

π
). This is the equivalent of the

Θ(1
1−ρ) behavior seen in simpler systems such as the M/G/1/FCFS. Next, to understand the numerator,

examine the ∆π(Y
π
d , Y π) term. ∆π, the relative completions function, smooths out the irregularities in

completion times, so that the function q − ∆π(y) has a constant negative drift. ∆π is the analog of the
remaining size of the job in service in the M/G/1. When a generic job arrives, it sees a time-average state of
the service process, namely Y π. When it departs, it leaves behind a departure-average state of the service
process, namely Y π

d . The difference in relative completions between these states captures the asymptotic
behavior of mean response time. The overall numerator, 1 +∆π(Y

π
d , Y π), is analogous to the E[Se] term in

9

the M/G/1/FCFS mean response time formula. We walk through calculating ∆π(y), λ
∗
π, and Y π

d explicitly
and in closed-form in Appendix C.

Now that we have characterized the mean response time of the MMSR system, we can use this result to
characterize the MSJ FCFS system. With our RESET technique, we show that the MSJ FCFS system has
the same mean response time, up to an Oλ(1) term, as the MMSR system whose service rate is controlled
by the saturated system, or equivalently the At-least-k system.

Theorem 4.2 (Mean response time asymptotics of MSJ systems). In the multiserver-job system, the ex-
pected response time in steady state satisfies

E[TMSJ] =
1

λ∗
1 + ∆Sat(Y

Sat
d , Y Sat)

1− λ/λ∗ +Oλ(1). (4)

Empirically, the Oλ(1) term is very small, as seen in Fig. 2a in Section 8. To clarify the meaning of the
Oλ(1) term in Theorem 4.2, let us restate the theorem explicitly:

Theorem 4.3 (Restatment of Theorem 4.2). In the multiserver-job system, for any joint duration and
server need distribution and for any number of servers k, there exist constants cℓ and ch such that for all
arrival rates λ < λ∗,

1

λ∗
1 + ∆Sat(Y

Sat
d , Y Sat)

1− λ/λ∗ + cℓ ≤ E[TMSJ] ≤ 1

λ∗
1 + ∆Sat(Y

Sat
d , Y Sat)

1− λ/λ∗ + ch.

Rather than calculating ∆Sat(Y
Sat
d , Y Sat) in Theorem 4.2, we can calculate the equivalent value in the

simplified saturated system (SSS) (due to Lemma 3.3). Define ∆SSS, Y
SSS
d , and Y SSS analogously to the

primary saturated system.

Corollary 4.1. In the MSJ FCFS model,

E[TMSJ] =
1

λ∗
1 + ∆SSS(Y

SSS
d , Y SSS)

1− λ/λ∗ +Oλ(1).

Corollary 4.1 follows from Theorem 4.2 because ∆Sat(y1, y2) is defined based on the completion times
in the primary saturated system, and by Lemma 3.3, the SSS can be coupled to have the same completion
times as the primary saturated system.

The quantities ∆SSS(y), λ
∗, and Y SSS

d can be calculated explicitly and in closed-form for any given
parameterized distribution of server need and job duration, and any number of servers k, giving an explicit
closed-form bound on mean response time. We walk through this calculation in Appendix C, and give the
explicit closed-form expressions for a 2-server setting in Appendix C.2, to demonstrate the technique.

4.1. Example for demonstration

We now demonstrate applying Theorem 4.2 and Corollary 4.1 to characterize the asymptotic mean
response time of our running example from Section 3.4. See Appendix C for a more extensive example,
handling a setting with parameterized completion rates and arrival probabilities.

We start with the MSJ system. First, we convert to the Ak system, whose front has state space YAk =
{[1, 1], [1, 2], [2, 1], [2, 2]}. By the RESET technique, this only increases mean response time by Oλ(1). By
Lemma 3.1, the Ak system is identical to a MMSR-Sat system. By Lemma 3.3, the Sat system is equivalent
to Simplified Saturated System (SSS), which has state space YSSS = {[1, 1], [1, 2], [2]}.

For the rest of this section, we focus on the SSS, leaving the superscript implicit. Transitions between
these states only happen as a result of completions, leading to the following transition rates:

µ[1,1],[1,1],1 = 2 · 2
3
=

4

3
, µ[1,1],[1,2],1 = 2 · 1

3
=

2

3
, µ[1,2],[2],1 = 1,

µ[2],[1,1],1 =
1

2

2

3

2

3
=

2

9
, µ[2],[1,2],1 =

1

2

2

3

1

3
=

1

9
, µ[2],[2],1 =

1

2

1

3
=

1

6
.

10

Now, we can calculate the steady states Y SSS and Y SSS
d of the SSS’s CTMC and DTMC respectively,

and calculate the throughput XSSS = XSat = λ∗. The vectors are in the order {[1, 1], [1, 2], [2]}:

Y =
[1
5
,
1

5
,
3

5

]
, Y d =

[4
9
,
2

9
,
1

3

]
, XSSS = XSat = λ∗ =

9

10
.

Now, we can solve for ∆(y), defined in (1). To do so, we split up the completions E[C(y, t)] into the time
until the first completion, and the time after the first completion. For example, starting in state y = [1, 1],
the first completion takes an expected 1

2 second, during which 1 completion occurs, compared to the long-
term average rate 1

2λ
∗ = 9

20 completions. The system then transitions to a new state, with corresponding
∆(y). This gives rise to the following equation:

∆([1, 1]) = 1− 9

20
+

2

3
∆([1, 1]) +

1

3
∆([1, 2]).

We use the same process to derive a system of equations that uniquely determines ∆(y), given in Corol-
lary D.1. We solve for ∆(y) for each state y:

∆([1, 1]) = 1.38, ∆([1, 2]) = −0.27, ∆([2]) = −0.37. (5)

All decimals are exact. We can then average over the distribution Y d to find that ∆(Y d) = 0.43. Recall
that ∆(Y d) is just shorthand for ∆(Y d, Y).

We can therefore apply Theorem 4.2 and Corollary 4.1 to characterize the asymptotic mean response
time of the original system:

E[TMSJ] =
10

9

1.43

1− λ
9/10

+Oλ(1).

5. MARC Proofs

We start by analyzing the M/M/1 with Markovian service rate π (MMSR-π). Our main result in this
section is the proof of Theorem 4.1, a characterization of the asymptotic mean response time of the MMSR-π
system.

The main challenge is choosing an appropriate test function f(q, y), to leverage (2), the fact that E[Gπ ◦
f(Qπ, Y π)] = 0, to give an expression for E[Qπ]. To gain information about E[Qπ] via this approach, it is
natural to choose a function f which is quadratic in q, because Gπ is effectively a derivative. However, if
we choose f1(q, y) =

1
2q

2, the expression Gπ ◦ f1(q, y) will have cross-terms in which both q and y appear,
preventing further progress.

Instead, our key idea is to use relative completions ∆π in our test function:

Definition 5.1. Let fπ
∆(q, y) =

1
2 (q −∆π(y))

2.

The ∆π(y) term smooths out the fluctuations in the system’s service rate, so that the quantity q−∆π(y)
has a constant drift of −λ∗

π whenever q > 0.
This choice of test function ensures that Gπ ◦ fπ

∆(q, y) separates into a linear term dependent only on
q and a term dependent only on y. The separation allows us to characterize E[Qπ], and hence E[Tπ], in
Theorem 4.1.

Let u = 1{q = 0 ∧ a = 1} denote the unused service caused by a given transition. Only completion
transitions (a = 1) can cause unused service.

We start by decomposing Gπ ◦ fπ
∆(q, y), into a term linearly dependent on q, and terms dependent only

on y, a, and u:

Lemma 5.1. For any state (q, y) of the MMSR-π system,

Gπ ◦ fπ
∆(q, y) = (λ− λ∗

π)q − λ∆π(y) +
1

2
λ+

∑
y′,a

µπ
y,y′,a

(
1

2
(−a+ u−∆π(y

′))2 − 1

2
∆π(y)

2

)
. (6)

11

Proof deferred to Appendix D.
We can now characterize the mean response time of the MMSR-π system. We will use the fact that by

Lemma 5.1, Gπ ◦ fπ
∆(q, y) decomposes into a term linearly dependent on the queue length q, and terms that

are not dependent on q except through the unused service u. We define c0(y, q) to comprise the later group
of terms. We also define c1(y) and c2(y), which are simpler functions that are closely related to c0(y, q).

Definition 5.2. Define c0(y, q), c1(y), and c2(y) as follows:

c0(y, q) = Gπ ◦ fπ
∆(q, y)− (λ− λ∗

π)q

= −λ∆π(y) +
1

2
λ+

∑
y′,a

µπ
y,y′,a

(
1

2
(−a+ u−∆π(y

′))2 − 1

2
∆π(y)

2

)
,

c1(y) = −λ∆π(y) +
1

2
λ+

∑
y′,a

µπ
y,y′,a

(
1

2
(−a−∆π(y

′))2 − 1

2
∆π(y)

2

)
,

c2(y) = c1(y)−Gπ ◦ h(y), where h(y) =
1

2
∆π(y)

2

= −λ∆π(y) +
1

2
λ+

∑
y′,a

µπ
y,y′,a

(
1

2
a2 + a∆π(y

′)

)
.

We will show that these functions’ expected values, E[c0(Y π, Qπ)],E[c1(Y π)], and E[c2(Y π)]), are all
equal up to a Oλ(1− λ

λ∗
π
) error. This fact is crucial to our proof of Theorem 4.1.

Theorem 4.1 (Mean response time asymptotics of MMSR systems). In the MMSR-π system, the expected
response time in steady state satisfies

E[Tπ] =
1

λ∗
π

1 + ∆π(Y
π
d , Y π)

1− λ/λ∗
π

+Oλ(1). (7)

Proof. In this proof we omit π in the subscript of ∆π(y) and in the superscript of µπ
y,y′,a. We start from

Lemma 5.1, which states that

Gπ ◦ f(q, y) = (λ− λ∗
π)q + c0(y, q).

Applying Lemma 3.2, we find that

0 = E[Gπ ◦ f(Qπ, Y π)] = (λ− λ∗
π)E[Qπ] + E[c0(Y π, Qπ)],

E[Qπ] =
E[c0(Y π, Qπ)]

λ∗
π − λ

.

We therefore focus on c0(q, y): By characterizing E[c0(Y π, Qπ)], we will characterize E[Qπ].
Let us separate out the terms where u appears in c0(y, q) from the terms without u:

c0(y, q)− c1(y) =
∑
y′,a

µy,y′,au

(
1

2
u− a−∆(y′)

)
. (8)

Note that in the time-average steady state Y π, the fraction of service-process completions that occur while
the queue is empty (i.e. where u = 1) is 1 − λ

λ∗
π
, because λ jobs arrive per second, and λ∗ service-process

completions occur per second. As a result,

Ey∼Y π

[∑
y′,a

µy,y′,au
]
= 1− λ

λ∗
π

.

12

Note that a ≤ 1 and u ≤ 1, because at most 1 job completes at a time. Note that ∆(y′) is bounded by a
constant over all y′, because y′ ∈ Yπ, which is a finite state space. Thus, the u/2− a−∆(y′) term in (8) is
bounded by a constant. As a result, (8) contributes Oλ(1− λ

λ∗
π
) to E[c0(Y π, Qπ)]:

E[c1(Y π)− c0(Y
π, Qπ)] = Oλ(1− λ/λ∗

π).

Next, recall that c2(y) := c1(y)−Gπ ◦h(y). By Lemma 3.2, E[Gπ ◦h(Y π)] = 0, so E[c2(Y π)] = E[c1(Y π)].
Let us now simplify c2(y), using the fact that a = 0 or 1:

c2(y) = −λ∆(y) +
1

2
λ+

∑
y′,a

µπ
y,y′,a

(
1

2
a2 + a∆π(y

′)

)
= −λ∆(y) +

1

2
λ+

1

2
µy,·,1 +

∑
y′

µy,y′,1∆(y′).

We now apply Lemma D.3 to simplify the summation term of c2(y). Lemma D.3 states that

1

λ∗
π

Ey∼Y π [µπ
y,y′,1] = P(Y π

d = y′).

Thus, taking the expectation of the summation term of c2(y) over y ∼ Y π, we find that

Ey∼Y π [
∑
y′

µy,y′,1∆(y′)] = λ∗
π

∑
y′

P(Y π
d = y′)∆(y′) = λ∗

π∆(Y π
d),

E[c2(Y π)] = E[−λ∆(Y π) +
1

2
(µY π,·,1 + λ) + λ∗

π∆(Y π
d)].

Now note that E[∆(Y π)] = 0, E[µY π,·,1] = λ∗
π, and λ = λ∗

π +Oλ(1− λ
λ∗
π
):

E[c1(Y π)] = E[c2(Y π)] = λ∗
π + λ∗

π∆(Y π
d) +Oλ(1−

λ

λ∗
π

). (9)

E[c0(Y π, Qπ)] = E[c1(Y π)] +Oλ(1−
λ

λ∗
π

) = E[c2(Y π)] +Oλ(1−
λ

λ∗
π

).

E[Qπ] =
E[c0(Y π, Qπ)]

λ∗
π − λ∗ =

λ∗
π + λ∗

π∆(Y π
d)

λ∗
π − λ

+Oλ(1) =
∆(Y π

d) + 1

1− λ/λ∗
π

+Oλ(1).

Now, we apply Little’s Law, which states that E[Tπ] = 1
λE[Q

π]:

E[Tπ] =
1

λ

1 + ∆(Y π
d)

1− λ/λ∗
π

+Oλ

(
1

λ

)
.

Note that for any x, 1
λ

x
1−λ/λ∗ = 1

λ∗
x

1−λ/λ∗ + x
λ , so

E[Tπ] =
1

λ∗
π

1 + ∆(Y Sat
d)

1− λ/λ∗
π

+Oλ

(
1

λ

)
. (10)

Note that in the λ → λ∗
π limit, Oλ(

1
λ) = Oλ(1). Consider the λ → 0 limit: E[Tπ] is bounded for small

λ. Likewise, 1
λ∗
π

1+∆(Y π
d)

1−λ/λ∗
π

is bounded for small λ. As a result, the two differ by Oλ(1):

E[TMSJ] =
1

λ∗
π

1 + ∆(Y π
d)

1− λ/λ∗
π

+Oλ(1).

13

6. RESET Proofs

To characterize the asymptotic behavior of mean response time of the MSJ system, we use the At-least-k
(Ak) system, which is stochastically equal to the MMSR-Sat system. The MARC results from Section 5
allow us to characterize the MMSR-Sat system. To prove that the MSJ FCFS and Ak systems have the
same asymptotic mean response time behavior, our key idea is to show that Y MSJ and Y Ak, the steady
states of their fronts, are “almost identical.”

To formalize and prove the relationship between Y MSJ and Y Ak, we design a coupling in Section 6.1
between the MSJ system and the Ak system. We use a renewal-reward argument based on busy periods to
prove Lemma 6.2, which states that under the coupling, P(Y MSJ ̸= Y Ak) = Oλ(1− λ

λ∗).
Then, in Section 6.2, we combine Theorem 4.1 and Lemma 6.2 to prove Theorem 4.2, our main result,

in which we give the first analysis of the asymptotic mean response time in the MSJ system, by reduction
to the saturated system. Theorem 4.2 parallels the proof steps that Theorem 4.1 uses to characterize the
MMSR system, using Lemma 6.2 to prove that the equivalent proof steps hold for the MSJ system.

We will make use of a test function fMSJ
∆ (q, y) for the multiserver-job system which is similar to fπ

∆(q, y),
which was defined in Definition 5.1.

Definition 6.1. For states y ∈ YAk,

fMSJ
∆ (q, y) := fAk

∆ (q, y) = fSat
∆ (q, y).

Otherwise,
fMSJ
∆ (q, y) := 0.

Importantly, GMSJ ◦ fMSJ
∆ (q, y) is similar to GAk ◦ fAk

∆ (q, y):

Lemma 6.1.
GMSJ ◦ fMSJ

∆ (q, y) = 1q>0G
Ak ◦ fAk

∆ (q, y) + 1q=0Oλ(1).

Proof deferred to Appendix E.

6.1. Coupling between At-least-k and MSJ

To show that the Ak system and the MSJ system have identical asymptotic mean response time, we
define the following coupling of the two systems. We let the arrivals of the two systems happen at the same
time. We couple the transitions of their front states based on their joint state (qMSJ, yMSJ, qAk, yAk). If
yMSJ = yAk, qMSJ > 0, and qAk > 0, the completions happen at the same time in both systems, the same
jobs complete, the same job phase transitions occur, and the jobs entering the front are the same. We call
the two systems “merged” during such a time period. Note that under this coupling, if the two systems
become merged, they will stay merged until qMSJ = 0 or qAk = 0. If the systems are not merged, the two
systems have independent completions and phase transitions, and independently sampled jobs.

The two systems transition according to synchronized Poisson timers whenever they are merged, and
independent Poisson timers otherwise. Because all transitions are exponentially distributed, this poses no
obstacle to the coupling.

We want to show that under this coupling, the two systems spend almost all of their time merged, in
the limit as λ → λ∗. Specifically, we will show that the fraction of time in which the two systems are
unmerged is Oλ(1 − λ

λ∗). This implies Lemma 6.2, which is the key lemma we need for our main RESET
result, Theorem 4.2.

Lemma 6.2 (Tight coupling). In the MSJ system, for any λ < λ∗, we have the following two properties:
1. Property 1: P (QMSJ = 0) = Oλ(1− λ

λ∗).

2. Property 2: P (Y MSJ ̸= Y Ak) = Oλ(1− λ
λ∗).

where property 2 holds under the coupling in Section 6.1.

To prove Lemma 6.2, we prove two key lemmas:

14

• Lemma 6.3: Whenever the two systems are unmerged, the expected time until the systems become
merged is Oλ(1).

• Lemma 6.4: Whenever the two systems are merged, the expected time for which they stay merged is
Ωλ(

1
1−λ/λ∗).

We then use a renewal-reward approach to prove Lemma 6.2.

Lemma 6.3 (Quick merge). From any joint MSJ, Ak state, for any ϵ > 0, under the coupling above, the
expected time until yMSJ = yAk, qMSJ ≥ k+1, and qAk ≥ k+1 is at most m1(ϵ) for some m1(ϵ) independent
of the arrival rate λ and initial joint states, given that λ ∈ [ϵ, λ∗).

Lemma 6.4 (Long merged period). From any joint MSJ, Ak state such that yMSJ = yAk, qMSJ ≥ k + 1,
and qAk ≥ k+ 1, the expected time until qMSJ = 0, qAk = 0, or yMSJ ̸= yAk, is at least m2

1−λ/λ∗ for some m2

independent of the arrival rate λ and initial joint states, given that λ < λ∗.

Proofs deferred to Appendix G.
Using Lemmas 6.3 and 6.4, we can prove Lemma 6.2:

Proof. Let ϵ = λ∗

2 . Note that if λ < ϵ, the properties are trivial: Oλ(1− λ
λ∗) ≡ Oλ(1), and probabilities are

bounded. Therefore, we will focus on the case where λ ≥ ϵ, where we can apply Lemmas 6.3 and 6.4.
Let us define a good period to begin when Y MSJ(t) = Y Ak(t), QMSJ(t) ≥ k + 1 and QAk(t) ≥ k + 1, and

end when QMSJ(t) = 0 or QAk(t) = 0. Let a bad period be the time between two good periods. Note that
throughout a good period, the front states are merged (Y MSJ(t) = Y Ak(t)) and both queues are nonempty.

To bound the fraction of time that the joint system is in a good period, we introduce the concept of
a “y∗-cycle.” Let y∗ be an arbitrary state in YAk. Let a y∗-cycle be a renewal cycle whose renewal points
are moments when a bad period begins, and Y MSJ(t) = Y Ak(t) = y∗, and QMSJ(t) = QAk(t) = 0, for some
designated state y∗. We will show that a y∗-cycle has finite mean time. Given that fact, we can apply
renewal reward to derive the equations below:

P (QMSJ = 0) =
E[QMSJ(t) = 0 time per y∗-cycle]

E[total time per y∗-cycle]
, (11)

P (Y MSJ ̸= Y Ak) =
E[Y MSJ(t) ̸= Y Ak(t) time per y∗-cycle]

E[total time per y∗-cycle]
. (12)

Note that QMSJ(t) = 0 or Y MSJ(t) ̸= Y Ak(t) only during a bad period, so the two probabilities in (11) and
(12) are both bounded by the fraction of time spent in bad periods. By Lemma 6.3 and Lemma 6.4, the
expected length of a bad period is at most m1 and the expected length of a good period is at least m2

1−λ/λ∗ ,

conditioned on any initial joint state. Let Z be a random variable denoting the number of good periods in
a y∗ cycle. Note that good and bad periods alternate.

E[total time per y∗-cycle] ≥ m2

1− λ/λ∗E[Z],

E[bad period time per y∗-cycle] ≤ m1E[Z].

If a y∗-cycle has finite mean time, then we also have E[Z] < ∞ because each good period and bad period
take a positive time. Plugging the above inequalities into (11) and (12), we derive Properties 1 and 2:

P (QMSJ = 0) ≤ m1

m2

(
1− λ

λ∗

)
, P (Y MSJ ̸= Y Ak) ≤ m1

m2

(
1− λ

λ∗

)
.

It remains to show that a y∗-cycle has finite mean time. We first use a Lyapunov argument to show that
the joint states of the two systems return to a bounded set in a finite mean time. Consider the Lyapunov
function fMSJ

∆ (qMSJ, yMSJ) + fAk
∆ (qAk, yAk). Its drift is:

GMSJ,Ak ◦
(
fMSJ
∆ (qMSJ, yMSJ) + fAk

∆ (qAk, yAk)
)
= GMSJ ◦ fMSJ

∆ (qMSJ, yMSJ) +GAk ◦ fAk
∆ (qAk, yAk).

15

Applying Lemma 5.1 to the Ak system,

GAk ◦ fAk
∆ (qAk, yAk) = (λ− λ∗)qAk + c0(y

Ak, qAk),

where c0(y, q) is defined in Definition 5.2. Note that c0(y, q) is a bounded function because ∆(y) is bounded,
by Lemma A.1. Let cAk

max be the maximum of c0(y, q). For all y
Ak, qAk,

GAk ◦ fAk
∆ (qAk, yAk) ≤ (λ− λ∗)qAk + cAk

max.

By similar reasoning, applying Lemma 6.1, there exists a cMSJ
max such that

GMSJ ◦ fMSJ
∆ (qMSJ, yMSJ) ≤ (λ− λ∗)qAk + cMSJ

max

Let cmax = max(cAk
max, c

MSJ
max). Consider any qAk ≥ 2cmax+1

λ∗−λ . Then for any yAk,

GAk ◦ fAk
∆ (qAk, yAk) ≤ −cmax − 1.

Similarly, for any qMSJ ≥ 2cmax+1
λ∗−λ and any yMSJ,

GMSJ ◦ fMSJ
∆ (qMSJ, yMSJ) ≤ −cmax − 1.

Let ccap = max{ 2cmax+1
λ∗−λ , k + 1}. We define the bounded set S as

S =
{
(qMSJ, qAk, yMSJ, yAk) : qMSJ ≤ ccap, q

Ak ≤ ccap
}
.

By the calculation above, outside S,

GMSJfMSJ
∆ (qMSJ, yMSJ) +GAkfAk

∆ (qAk, yAk) ≤ −1.

In particular, outside of S, either qMSJ > cmax or qAk > cmax, yielding a drift term ≤ −cmax−1, outweighing
the term where q is small. Thus, by the Foster-Lyapunov theorem [30, Theorem A.4.1], the system returns
to S in finite mean time.

We call a period of time inside the bounded set S an S-visit. Each S-visit has a finite mean time because
there is a positive probability of having a lot of arrivals in the next second and leaving S. Moreover, as
proved above using the Lyapunov argument, the time between two S-visits has finite mean.

Each S-visit has a positive probability of ending the y∗-cycle. To prove this, we construct a positive
probability sample path of beginning a good period with qMSJ = qAk and ending the good period in
(0, 0, y∗, y∗), while remaining in S.

• First, we have a lot of completions in the two systems, completely emptying both. qMSJ = qAk =
|yMSJ| = 0. Next, k jobs arrive. Now qAk = k and qMSJ = 0. During this time yMSJ ̸= yAk.

• Then k jobs complete in the Ak system, no jobs complete in the MSJ system, and the newly generated
Ak jobs are sampled such that yMSJ = yAk, while qMSJ = qAk = 0.

• Next, k + 1 jobs arrive, and a good period begins.
• Finally, k+1 jobs complete in both systems, ending with yMSJ = yAk = y∗, and qMSJ = qAk = 0. Now
a y∗-cycle ends, and the next begins.

All of these events have strictly positive probability and are independent of each other, so their joint
occurrence has strictly positive probability as well. Thus, the length of a y∗-cycle is bounded by a geometric
number of S-visits, each of which has finite mean time, completing the proof.

6.2. Proof of Theorem 4.2

We now are ready to prove our main theorem, Theorem 4.2, progressing along similar lines as Theorem 4.1
and making use of Lemmas 5.1 and 6.2. First, we restate several definitions from Definition 5.2, specialized
to Ak system:

16

Definition 6.2. Recall the definitions of c0(y, q) and c1(y) from Definition 5.2:

c0(y, q) = GAk ◦ fAk
∆ (q, y)− (λ− λ∗)q

= −λ∆(y) +
1

2
λ+

∑
y′,a

µy,y′,a

(
1

2
(−a+ u−∆(y′))2 − 1

2
∆(y)2

)
,

c1(y) = −λ∆(y) +
1

2
λ+

∑
y′,a

µy,y′,a

(
1

2
(−a−∆(y′))2 − 1

2
∆(y)2

)
,

where u = 1{q = 0 ∧ a = 1}.

We also make use of a key fact about c1(y), from (9):

E[c1(Y Ak)] = λ∗ + λ∗∆(Y Sat
d) +Oλ

(
1− λ

λ∗

)
.

Throughout this section, whenever we make use of results from Section 5, we set π = Sat. In particular,
we make use of c0(y, q) and c1(y), from Definition 5.2.

Theorem 4.2. In the multiserver-job system, the expected response time in steady state satisfies

E[TMSJ] =
1

λ∗
1 + ∆(Y Sat

d , Y Sat)

1− λ/λ∗ +Oλ(1).

Proof. We will show that the MSJ model has the same asymptotic mean response time as the Ak system.
We will make use of the test function fMSJ

∆ (q, y), from Definition 6.1. Recall from Lemma 6.1 that

GMSJ ◦ fMSJ
∆ (q, y) = GAk ◦ fAk

∆ (q, y)1q>0 + 1q=0Oλ(1).

We will next use (2), the fact that the expected value of a generator function in steady state is zero, which
implies that

0 = E[GAk ◦ fAk
∆ (QMSJ, Y MSJ)1{QMSJ > 0}] + P(QMSJ = 0)Oλ(1). (13)

By Lemma 6.2, P(QMSJ = 0) = Oλ(1− λ
λ∗). Next, we apply Lemma 5.1 to the Ak system, finding that

GAk ◦ fAk
∆ (q, y) = (λ− λ∗)q + c0(y, q).

From Definition 6.2, we can see that c0(y, q)1q>0 = c1(y)1q>0. Combining with (13) and invoking
Lemmas 5.1 and 6.2 and the fact that c1(y) is bounded, we have

(λ− λ∗)E[QMSJ] + E[c0(Y MSJ, QMSJ)1{QMSJ > 0}] = Oλ(1− λ/λ∗),

(λ− λ∗)E[QMSJ] + E[c1(Y MSJ)] = Oλ(1− λ/λ∗),

E[QMSJ] =
E[c1(Y MSJ])

λ∗ − λ
+Oλ(1). (14)

Next, specializing (9) in the proof of Theorem 4.1 to the Ak system, we know that

E[c1(Y Ak)] = λ∗ + λ∗∆(Y Sat
d) +Oλ

(
1− λ

λ∗

)
.

By Lemma 6.2, we know that P(Y Ak ̸= Y MSJ) = Oλ(1− λ
λ∗). Again because c1(y) is bounded,

E[c1(Y MSJ)] = E[c1(Y Ak)] +Oλ

(
1− λ

λ∗

)
= λ∗ + λ∗∆(Y Sat

d) +Oλ

(
1− λ

λ∗

)
.

17

Therefore, applying (14), we find that

E[QMSJ] =
1 + ∆(Y Sat

d)

1− λ/λ∗ +Oλ(1).

Now, we apply Little’s Law, which states that E[TAk] = 1
λE[N

Ak]. Note that QAk and NAk differ by the
number of jobs in the front, which is Oλ(1):

E[TMSJ] =
1

λ

1 + ∆(Y Sat
d)

1− λ/λ∗ +Oλ

(
1

λ

)
=

1

λ∗
1 + ∆(Y Sat

d)

1− λ/λ∗ +Oλ

(
1

λ

)
.

For the second equality, note that for any x, 1
λ

x
1−λ/λ∗ = 1

λ∗
x

1−λ/λ∗ + x
λ . Here x is a constant, so the extra

term is absorbed by the Oλ(1/λ).
By the same bounding argument as used for (10) in the λ → 0 limit,

E[TMSJ] =
1

λ∗
1 + ∆(Y Sat

d)

1− λ/λ∗ +Oλ(1).

7. Extensions of RESET: Finite skip models

While our main MSJ result, Theorem 4.2, was stated for the MSJ FCFS model, our techniques do not
depend on the details of that model. Our RESET technique can handle a wide variety of models, which we
call “finite skip” models:

Definition 7.1. A finite skip queueing model is one in which jobs are served in near-FCFS order. Only
jobs among the n oldest jobs in arrival order are eligible for service, for some constant n. Service is only
dependent on the states of the n oldest jobs in arrival order, plus an optional environmental state from a
finite-state Markov chain. Furthermore, jobs must have finite state spaces, and arrivals must be Poisson
with i.i.d. initial job states.

Definition 7.1 generalizes the work-conserving finite-skip (WCFS) class [17]. The MARC and RESET
techniques can characterize the asymptotic mean response time of any finite skip model, via the procedure
in Fig. 1. Additional finite skip MSJ models include nontrivial scheduling policies, including some backfilling
policies; changing server need during service; multidimensional resource constraints; heterogeneous servers;
turning off idle servers; and preemption overheads. For discussion of each of these variants, see Appendix H.

8. Empirical Validation

We have characterized the asymptotic mean response time behavior of the FCFS multiserver-job system.
To illustrate and empirically validate our theoretical results, we simulate the mean response time of the MSJ
model to compare it to our predictions. Recall (4) from Theorem 4.2, in which we proved mean response
time can be characterized as a dominant term plus a Oλ(1) term:

E[TMSJ] =
1

λ∗
1 + ∆(Y Sat

d , Y Sat)

1− λ/λ∗ +Oλ(1). (15)

In this section, we simulate mean response time E[TMSJ], and compare it against the dominant term of (15),
which we compute explicitly.

18

0.4 0.5 0.6 0.7

Arrival rate λ

0

20

40

60

80

M
e
a
n
 r

e
s
p
o
n
s
e
 t

im
e
 E

[T
]

Empirical, k= 3

Predicted, k= 3

Empirical, k= 20

Predicted, k= 20

(a) (1) k = 3, server need sampled uniformly from {1, 2, 3}, dura-
tions Exp(1/3), Exp(2/3), and Exp(1), respectively. (2) k = 20,
server need sampled uniformly from {1, 20}, durations Exp(1) and
Exp(1/2), respectively.

0.25 0.30 0.35 0.40 0.45 0.50 0.55

Arrival rate λ

0

20

40

60

80

M
e
a
n
 r

e
s
p
o
n
s
e
 t

im
e
 E

[T
]

Empirical, k= 4

Predicted, k= 4

Empirical, k= 10

Predicted, k= 10

(b) (1) k = 4, two classes of jobs: Server need 1, duration Exp(1/4)
w.p. 42%. Server need 4, duration Exp(1) w.p. 58%. (2) k = 10,
two classes of jobs: Server need 1, duration Exp(1/10) w.p. 10%.
Server need 10, duration Exp(1) w.p. 90%.

Figure 2: Empirical and predicted mean response time E[T] for two MSJ settings in each of figures (a) and (b). Simulated 108

arrivals at arrival rates ranging over λ/λ∗ ∈ [0.5, 0.99].

8.1. Accuracy of formula

In Fig. 2a, we show that our predictions are an excellent match for the empirical behavior of the MSJ
system in two different settings. In the first, there are k = 3 servers and jobs have server needs of 1, 2,
and 3. In the second, there are k = 20 servers, and jobs have server needs 1 and 20. We thereby cover a
spectrum from few-server-systems to many-server-systems, demonstrating extremely high accuracy in both
regimes. The Oλ(1) term in (15) is negligible in both of these examples.

In Fig. 2b, we compare mean response time in two settings with the same size distribution and stability
region, but which have very different ∆. We discuss these settings further in Section 8.2.

The first setting has k = 4, and 42% of jobs have server need 1, while 58% of jobs have server need 4.
The second setting has k = 10, and 10% of jobs have server need 1, while 90% of jobs have server need
10. The settings’ stability regions are near-identical, with thresholds λ∗

4 ≈ 0.5413, λ∗
10 ≈ 0.5411, and their

size distributions, defined as duration times server need over k, are both Exp(1). However, our predictions
for mean response time are very different in the two settings: ∆(Y Sat

d)4 ≈ 0.3271,∆(Y Sat
d)10 ≈ 1.850. The

k = 10 setting considered here, with its relatively large value of ∆(Y Sat
d), is an especially difficult test-case.

Nonetheless, our predictions are validated by the simulation results in Fig. 2b.
In Fig. 3, we illustrate the relative error between our predicted mean response time and the simulated

mean response time for the four settings depicted in Fig. 2. In all four settings, as the arrival rate λ
approaches λ∗, the threshold of the stability region, the relative error converges to 0.

Note that the convergence rate is slowest in the k = 10 setting, which also has the largest ∆(Y Sat
d) value.

We further explore the relationship between ∆(Y Sat
d) values and convergence rates in Appendix I. We find

that such a correlation exists in some settings, but it is not robust or reliable.

8.2. Understanding the importance of ∆

Our results show that the relative completions function ∆ is key to understanding the response time
behavior of non-work-conserving systems such as the MSJ FCFS system. This is in contrast to work-
conserving systems, in which response time is determined by the size distribution and load [17]. This
contrast is illustrated by Fig. 2b, in which we compare mean response time in two settings with the same
size distribution and stability region, but which have very different ∆.

The differing mean response time behavior in these two settings is caused by the difference in waste
correlation. In the k = 10 case, wasteful states persist for long periods of time: If a 1-server job is the
only job in service, it takes more time for it to complete than in the k = 4 system. Thus, in the k = 4
case, wasteful states are more short-lasting. This difference in waste correlation produces the differences in
∆(Y Sat

d) and in mean response time.

19

0.0 0.2 0.4 0.6 0.8 1.0

Load λ/λ *

−20%

−10%

0%

10%

20%

R
e
la

ti
v
e
 e

rr
o
r
E
([
T
p
re
d
]
−
E
[T

])
/E

[T
]

k= 3

k= 20

k= 4

k= 10

0 error

Figure 3: Relative error between empirical and predicted mean response time E[T] for the four MSJ setting described in Fig. 2.
Simulated 108 arrivals at arrival rates ranging over λ/λ∗ ∈ [0, 0.997].

This example highlights a crucial feature of MSJ FCFS: The failure of work conservation injects idiosyn-
cratic idleness patterns in to the system. To characterize E[T], we need to characterize these patterns, which
the RESET and MARC techniques enable us to do for the first time.

9. Conclusion

We introduce the RESET and MARC techniques. The RESET technique allows us to reduce the problem
of characterizing mean response time in the MSJ FCFS system, up to an additive constant, to the problem of
characterizing the M/M/1 with Markovian service rate (MMSR), where the service process is controlled by
the saturated system. The MARC technique gives the first explicit characterization of mean response time
in the MMSR, up to an additive constant. Together, our techniques reduce E[TMSJ] to two properties of the
saturated system: the departure-average steady state Y Sat

d , and the relative completions function ∆(y1, y2).
Our RESET and MARC techniques apply to any finite skip model, including many MSJ generalizations.

We also introduce the simplified saturated system, a yet-simper variant of the saturated system with
identical behavior. We empirically validate our theoretical result, showing that it closely tracks simulation
at all arrival rates λ.

An important direction for future work is to analytically characterize the relative completions ∆(y1, y2)
for specific MSJ FCFS settings, such as settings where Y Sat

d is known to have a product-form distribution
[16, 42].

10. Acknowledgements

Isaac Grosof and Mor Harchol-Balter were supported by the National Science Foundation under grant
number CMMI-2307008. Yige Hong was supported by the National Science Foundation under grant number
ECCS-2145713. We thank the shepherd and the anonymous reviewers for their helpful comments.

References

[1] Larisa Afanaseva, Elena Bashtova, and Svetlana Grishunina. 2019. Stability Analysis of a Multi-server Model with
Simultaneous Service and a Regenerative Input Flow. Methodology and Computing in Applied Probability (2019), 1–17.

[2] François Baccelli and Serguei Foss. 1995. On the saturation rule for the stability of queues. Journal of Applied Probability
32, 2 (1995), 494–507. https://doi.org/10.2307/3215303

20

https://doi.org/10.2307/3215303

[3] Percy H. Brill and Linda Green. 1984. Queues in Which Customers Receive Simultaneous Service from a Random Number
of Servers: A System Point Approach. Management Science 30, 1 (1984), 51–68.

[4] Danilo Carastan-Santos, Raphael Y. De Camargo, Denis Trystram, and Salah Zrigui. 2019. One Can Only Gain by
Replacing EASY Backfilling: A Simple Scheduling Policies Case Study. In 2019 19th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGRID). 1–10.

[5] A Bruce Clarke. 1956. A waiting line process of Markov type. The Annals of Mathematical Statistics (1956), 452–459.
[6] Mohammad Delasay, Armann Ingolfsson, and Bora Kolfal. 2016. Modeling Load and Overwork Effects in Queueing

Systems with Adaptive Service Rates. Operations Research 64, 4 (2016), 867–885.
[7] Sherwin Doroudi. 2016. Stochastic analysis of maintenance and routing policies in queueing systems. (2016).
[8] Atilla Eryilmaz and R. Srikant. 2012. Asymptotically Tight Steady-State Queue Length Bounds Implied by Drift Condi-

tions. Queueing Syst. Theory Appl. 72, 3–4 (dec 2012), 311–359. https://doi.org/10.1007/s11134-012-9305-y

[9] Yoav Etsion and Dan Tsafrir. 2005. A short survey of commercial cluster batch schedulers. School of Computer Science
and Engineering, The Hebrew University of Jerusalem 44221 (2005), 2005–13.

[10] Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn. 2004. Parallel job scheduling—a status report. In Workshop
on Job Scheduling Strategies for Parallel Processing. Springer, New York, NY, USA, 1–16.

[11] Dimitrios Filippopoulos and Helen Karatza. 2007. An M/M/2 parallel system model with pure space sharing among rigid
jobs. Mathematical and Computer Modelling 45, 5 (2007), 491 – 530.

[12] Serguei Foss and Takis Konstantopoulos. 2004. An overview of some stochastic stability methods. Journal of the Operations
Research Society of Japan 47, 4 (2004), 275–303.

[13] Javad Ghaderi. 2016. Randomized algorithms for scheduling VMs in the cloud. In IEEE INFOCOM 2016 - The 35th
Annual IEEE International Conference on Computer Communications. 1–9.

[14] Peter W Glynn, Assaf Zeevi, et al. 2008. Bounding stationary expectations of Markov processes. Markov processes and
related topics: a Festschrift for Thomas G. Kurtz 4 (2008), 195–214.

[15] Isaac Grosof and Mor Harchol-Balter. 2023. Invited Paper: ServerFilling: A Better Approach to Packing Multiserver
Jobs. In Proceedings of the 5th Workshop on Advanced Tools, Programming Languages, and PLatforms for Implementing
and Evaluating Algorithms for Distributed Systems (Orlando, FL, USA) (ApPLIED 2023). Association for Computing
Machinery, New York, NY, USA, Article 7, 5 pages. https://doi.org/10.1145/3584684.3597264

[16] Isaac Grosof, Mor Harchol-Balter, and Alan Scheller-Wolf. 2020. Stability for two-class multiserver-job systems. arXiv
preprint arXiv:2010.00631 (2020).

[17] Isaac Grosof, Mor Harchol-Balter, and Alan Scheller-Wolf. 2022. WCFS: A new framework for analyzing multiserver
systems. Queueing Systems (2022).

[18] Isaac Grosof, Mor Harchol-Balter, and Alan Scheller-Wolf. 2023. New stability results for multiserver-job models via
product-form saturated systems. MAthematical performance Modeling and Analysis (MAMA) 4, 6 (2023), 1.

[19] Isaac Grosof, Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf. 2022. Optimal Scheduling in the Multiserver-Job
Model under Heavy Traffic. Proc. ACM Meas. Anal. Comput. Syst. 6, 3, Article 51 (dec 2022), 32 pages. https:

//doi.org/10.1145/3570612

[20] Varun Gupta, Mor Harchol-Balter, Alan Scheller Wolf, and Uri Yechiali. 2006. Fundamental characteristics of queues with
fluctuating load. In Proceedings of the joint international conference on Measurement and modeling of computer systems.
203–215.

[21] Bruce Hajek. 1982. Hitting-time and occupation-time bounds implied by drift analysis with applications. Advances in
Applied Probability 14, 3 (1982), 502–525. https://doi.org/10.2307/1426671

[22] Yige Hong. 2022. Sharp Zero-Queueing Bounds for Multi-Server Jobs. SIGMETRICS Perform. Eval. Rev. 49, 2 (jan
2022), 66–68.

[23] James Patton Jones and Bill Nitzberg. 1999. Scheduling for Parallel Supercomputing: A Historical Perspective of Achiev-
able Utilization. In Job Scheduling Strategies for Parallel Processing, Dror G. Feitelson and Larry Rudolph (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 1–16.

[24] Charles Knessl and Yongzhi Peter Yang. 2002. An exact solution for an M (t)/M (t)/1 queue with time-dependent arrivals
and service. Queueing systems 40 (2002), 233–245.

[25] David M Lucantoni and Marcel F Neuts. 1994. Some steady-state distributions for the MAP/SM/1 queue. Stochastic
Models 10, 3 (1994), 575–598.

[26] Syed Hamid Hussain Madni, Muhammad Shafie Abd Latiff, Mohammed Abdullahi, Shafi’i Muhammad Abdulhamid,
and Mohammed Joda Usman. 2017. Performance comparison of heuristic algorithms for task scheduling in IaaS cloud
computing environment. PLOS ONE 12, 5 (05 2017), 1–26. https://doi.org/10.1371/journal.pone.0176321

[27] S. T. Maguluri and R. Srikant. 2014. Scheduling Jobs With Unknown Duration in Clouds. IEEE/ACM Transactions on
Networking 22, 6 (2014), 1938–1951.

[28] Siva Theja Maguluri and R. Srikant. 2016. Heavy traffic queue length behavior in a switch under the MaxWeight algorithm.
6, 1 (2016), 211–250.

[29] William A Massey. 1985. Asymptotic analysis of the time dependent M/M/1 queue. Mathematics of Operations Research
10, 2 (1985), 305–327.

[30] Sean Meyn. 2008. Control techniques for complex networks. Cambridge University Press.
[31] Isi Mitrani and Ram Chakka. 1995. Spectral expansion solution for a class of Markov models: Application and comparison

with the matrix-geometric method. Performance Evaluation 23, 3 (1995), 241–260.
[32] Evsey Morozov and Alexander Rumyantsev. 2016. Stability Analysis of a MAP/M/s Cluster Model by Matrix-Analytic

Method. In Computer Performance Engineering, Dieter Fiems, Marco Paolieri, and Agapios N. Platis (Eds.). Springer
International Publishing, Cham, 63–76.

21

https://doi.org/10.1007/s11134-012-9305-y
https://doi.org/10.1145/3584684.3597264
https://doi.org/10.1145/3570612
https://doi.org/10.1145/3570612
https://doi.org/10.2307/1426671
https://doi.org/10.1371/journal.pone.0176321

[33] Marcel F Neuts. 1966. The single server queue with Poisson input and semi-Markov service times. Journal of Applied
Probability 3, 1 (1966), 202–230.

[34] GF Newell. 1968. Queues with time-dependent arrival rates. III—A mild rush hour. Journal of Applied Probability 5, 3
(1968), 591–606.

[35] GF Newell. 1968. Queues with time-dependent arrival rates. II—The maximum queue and the return to equilibrium.
Journal of Applied Probability 5, 3 (1968), 579–590.

[36] Gordon Frank Newell. 1968. Queues with time-dependent arrival rates I—the transition through saturation. Journal of
Applied Probability 5, 2 (1968), 436–451.

[37] Edwin Peng. 2022. Exact Response Time Analysis of Preemptive Priority Scheduling with Switching Overhead. ACM
SIGMETRICS Performance Evaluation Review 49, 2 (2022), 72–74.

[38] Efrat Perel and Uri Yechiali. 2008. Queues where customers of one queue act as servers of the other queue. Queueing
Systems 60 (2008), 271–288.

[39] Konstantinos Psychas and Javad Ghaderi. 2018. Randomized Algorithms for Scheduling Multi-Resource Jobs in the Cloud.
IEEE/ACM Transactions on Networking 26, 5 (2018), 2202–2215.

[40] Alexander Rumyantsev. 2020. Stability of multiclass multiserver models with automata-type phase transitions. In Pro-
ceedings of the second international workshop on stochastic modeling and applied research of technology (SMARTY 2020),
Vol. 2792. 213–225.

[41] Alexander Rumyantsev, Robert Basmadjian, Sergey Astafiev, and Alexander Golovin. 2022. Three-level modeling of a
speed-scaling supercomputer. Annals of Operations Research (2022), 1–29.

[42] Alexander Rumyantsev and Evsey Morozov. 2017. Stability criterion of a multiserver model with simultaneous service.
Annals of Operations Research 252, 1 (2017), 29–39.

[43] Leszek Sliwko. 2019. A Taxonomy of Schedulers–Operating Systems, Clusters and Big Data Frameworks. Global Journal
of Computer Science and Technology (2019).

[44] Rayadurgam Srikant and Lei Ying. 2013. Communication networks: an optimization, control, and stochastic networks
perspective. Cambridge University Press.

[45] Srividya Srinivasan, Rajkumar Kettimuthu, Vijay Subramani, and Ponnuswamy Sadayappan. 2002. Characterization of
backfilling strategies for parallel job scheduling. In Proceedings. International Conference on Parallel Processing Workshop.
514–519.

[46] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E. Haque, Zhijing Gene Qin, Steven Hand, Mor Harchol-Balter,
and John Wilkes. 2020. Borg: The next Generation. In Proceedings of the Fifteenth European Conference on Computer
Systems (Heraklion, Greece) (EuroSys ’20). Association for Computing Machinery, New York, NY, USA, Article 30,
14 pages.

[47] Rein Vesilo, Mor Harchol-Balter, and Alan Scheller-Wolf. 2022. Scaling properties of queues with time-varying load
processes: extensions and applications. Probability in the Engineering and Informational Sciences 36, 3 (2022), 690–731.

[48] Juan Wang and Wenming Guo. 2009. The Application of Backfilling in Cluster Systems. In 2009 WRI International
Conference on Communications and Mobile Computing, Vol. 3. 55–59.

[49] Weina Wang, Qiaomin Xie, and Mor Harchol-Balter. 2021. Zero Queueing for Multi-Server Jobs. In Abstract Proceedings of
the 2021 ACM SIGMETRICS / International Conference on Measurement and Modeling of Computer Systems (Virtual
Event, China) (SIGMETRICS ’21). Association for Computing Machinery, New York, NY, USA, 13–14.

[50] Ury Yechiali and Pinhas Naor. 1971. Queuing problems with heterogeneous arrivals and service. Operations Research 19,
3 (1971), 722–734.

Appendix A. Finiteness of ∆, and the conditions for drift lemma

Lemma A.1. The relative completion function

∆π(y1, y2) = lim
t→∞

E[Cπ(y1, t)− Cπ(y2, t)]

is well-defined and finite for any pair of states y1 and y2 of the service process π.

Proof. Throughout this proof, we leave the subscript π implicit.
To characterize E[C(y1, t) − C(y2, t)], we construct a coupling between the two instances of the service

process π, starting with initial states y1 and y2. We let the two chains transition independently when their
states are different, and let them transition identically once their states become the same. Let τ be the time
that the states of the two systems become the same. Because the two systems remain identical after τ , for
any t ≥ 0,

C(y1, t)− C(y2, t) = C(y1,min(t, τ))− C(y2,min(t, τ)).

We assume that the system π is irreducible. Because each system is irreducible, the joint Markov chain of
two systems is also irreducible and τ < ∞ almost surely. Therefore,

lim
t→∞

E[C(y1, t)− C(y2, t)] = E[C(y1, τ)− C(y2, τ)].

22

The RHS of the above equality is clearly finite.

Now we show that for any Markov chain η,

E[Gη ◦ f(Qη, Y η)] = 0. (2)

The lemma below is implied by [14, Proposition 3]:

Lemma 3.2. Let f be a real-valued function of the state of a Markov chain η. Assume that the transition
rates of the Markov chain η are uniformly bounded, and E[f(Qη, Y η)] < ∞. Then

E(q,y)∼(Qη,Y η)[G
η ◦ f(q, y)] = 0. (2)

To check that the conditions of Lemma 3.2 hold for the At-least-k and MSJ systems, first notice that
their transitions rates are both uniformly bounded. In particular, the transition rates of the At-least-k
system are uniformly bounded by λ + maxy

∑
y′,a µ

Ak
y,y′,a, and the transition rates of the MSJ system are

uniformly bounded by λ + maxy,b
∑

y′,a µ
MSJ
y,y′,a,b. Therefore we only need to check that each f used in the

paper has finite steady-state expectations in At-least-k and MSJ systems, i.e.

E[f(QAk, Y Ak)] < ∞,

E[f(QMSJ, Y MSJ)] < ∞.

The following lemma shows that a function f has finite expectations in the At-least-k and MSJ system
as long as it grows at a polynomial rate in q, which is true for all f which we will apply Lemma 3.2 to.

Lemma A.2. Consider the MMSR system controlled by the Markov chain π and the MSJ system. For any
positive integer m,

E[(Qπ)m] < ∞,

E[(QMSJ)m] < ∞.

To prove the lemma, we need [21, Theorem 2.3], restated as below:

Lemma A.3. Consider a Markov chain η with uniformly bounded total transition rates, and a Lyapunov
function V that satisfy the conditions below: V (q, y) ≥ 0; there exists a constant b, γ > 0 such that whenever
V (q, y) ≥ b,

Gη ◦ V (q, y) ≤ −γ; (A.1)

there exists d > 0 such that
max

next state (q′,y′)
|V (q′, y′)− V (q, y)| ≤ d. (A.2)

Then there exists θ > 0 such that
E[eθV (Qη,Y η)] < ∞. (A.3)

Now we prove Lemma A.2.

Proof of Lemma A.2. We first prove the lemma for the MMSR system controlled by the Markov chain π.
Let ∆max be the maximal absolute value of ∆π(y) for any y in the state spaces of Yπ, which must be

finite due to Lemma A.1 and the fact that there are only finitely many possible y.
We construct the Lyapunov function V (q, y) = (q−∆(y))+. We first check the conditions of Lemma A.3

for the MMSR system controlled by π. To check (A.1), we let b = 1+2∆max and γ = λ∗−λ. If V (q, y) ≥ b,
we must have q ≥ 1 + ∆max; for any state (q′, y′) that the system can jump to after one transition,
V (q′, y′) ≥ q′ −∆(y′) ≥ q − 1−∆max ≥ 0, so V (q′, y′) = q′ −∆(y′). Therefore,

Gπ ◦ V (q, y) = Gπ ◦ (q −∆(y)) = λ− λ∗ = −γ.

23

It is also easy to see that (A.2) holds with d = 1 + 2∆max. Therefore, by Lemma A.3, there exists θ > 0
such that

E[eθV (Qπ,Y π)] < ∞.

Observe that eθV (q,y) grows with q exponentially fast. Therefore, for any positive integer m,

qm = O(eθV (q,y)),

E[(Qπ)m] < ∞.

The analysis of the MSJ system is similar to the analysis of the At-least-k system, which is a special case
of the MMSR system with π = Sat. We consider the Lyapunov function

V (q, y) =

{
if q > 1 (q −∆Sat(y))

+

otherwise 0,

and check the conditions of Lemma A.3. Notice that GMSJ ◦ V (q, y) = GAk ◦ V (q, y) for any q ≥ 1, so the
rest of the argument is verbatim.

Appendix B. Simplified Saturated System

For clarity, we refer to the previously-defined saturated system, defined in Section 3.5, as the “main
saturated system.”

While the main saturated system is a finite-state system, it can have a very large number of possible
states. We therefore introduce the simplified saturated system (SSS), a new closed system with identical
behavior, but smaller state space. The SSS can be more amenable to theoretical analysis, such as in the
case of the product-form result in [16].

The simplified saturated system is a closed system which always contains jobs with total server need ≥ k,
and contains the minimal number of jobs to reach that threshold. Whenever a job completes, the system
admits new jobs until the total server need is ≥ k. Jobs are served in FCFS order. Note that at most one
job in the system is not in service.

In particular, a state of the SSS consists of a multiset of job states for the jobs in service, plus the server
need of the job not in service, if any. The total server need of these jobs is just enough to be ≥ k.

For instance, consider a system with k = 30 jobs, and server needs either 3 or 10, and exponential
durations. The main saturated system has state space YSat = {3, 10}30, with over a billion states. In
contrast, the simplified saturated system has 13 states. We will write each state as a triple, consisting of
the server need of the job not in service, and the number of 3-server and 10-server jobs in service. Then the
state space of the SSS is:

YSSS = {[∅, 0, 3], [10, 1, 2], [10, 2, 2], [3, 3, 2], [10, 3, 2], [10, 4, 1], [10, 5, 1],
[3, 6, 1], [10, 6, 1], [10, 7, 0], [10, 8, 0], [10, 9, 0], [∅, 10, 0]}.

Despite its much smaller state space, the SSS has essentially identical behavior to the main saturated
system:

Lemma 3.3. There exists a coupling under which the main saturated system and simplified saturated system
have identical completions.

Proof. To form the coupling, let us sample in advance the entire arrival sequence: For each arrival, we
pre-sample which initial state it will arrive in.

Next, we initialize both systems based on this arrival sequence: For the main saturated system, the first
k jobs are initially present, while for the simplified saturated system, a subset of those jobs are initially
present. Note that the set of jobs in service in the main saturated system is identical to the set of jobs
in service in the simplified saturated system, because the total server need of jobs in service is at most k.

24

Note that the ordering of the jobs in service does not affect any transitions, so the fact that SSS does not
track this information poses no obstacle. We will ensure that the set of jobs in service in the two systems is
identical throughout time.

Next, we couple the two systems’ completions and job state transitions to be identical. Jobs’ states can
only change while those jobs are in service, so this coupling is valid as long as the set of jobs in service is
identical in both systems. Finally, whenever a pair of jobs completes, new jobs are generated according to
the shared global arrival sequence. This ensures that the jobs that enter service are identical in the two
systems.

By construction, the set of jobs in service is always identical in the two systems. Under this coupling,
the completion moments are also identical in the two systems.

Appendix C. Closed-form formulas for λ∗, Yd,∆(y)

Our result on the M/M/1 with Markovian Service Rate (MMSR), Theorem 4.1, characterizes mean
response time in the MMSR-π system in terms of the following quantities:

• λ∗
π, the threshold of the stability region of the MMSR-π system,

• Y π
d , the departure-average steady state of the service process π, and

• ∆π(y), the relative completions function of the service process π.
Similarly, our result on the MSJ system, Theorem 4.2, characterizes mean response time in the MSJ

system in terms of λ∗, Y Sat
d , and ∆Sat(y), or equivalently in terms of λ∗, Y SSS

d , and ∆SSS(y), by Corollary 4.1.
In this section, we demonstrate how to explicitly calculate λ∗

π, Y
π
d , and ∆π(y) by solving a system of

linear equations, and walk through this exercise for a specific parameterized setting, giving an explicit,
closed-form expression for mean response time within the given parameterized setting.

Appendix C.1. Solving for λ∗
π, Y

π
d , and ∆π(y)

First, we solve the continuous-time balance equations for the service process π to determine the time-
average steady state Y π:

∀y ∈ Yπ, P(Y π = y)µy,·,· =
∑

y′∈Yπ

P(Y π = y′)µy′,y,·, (C.1)

∑
y∈Yπ

P(Y π = y) = 1.

Next, we calculate the throughput Xπ of the service process π, which by prior results [2] is equal to the
threshold of the MMSR-π stability region, λ∗

π:

λ∗
π = Xπ = Ey∼Y π [µy,·,1] =

∑
y∈YAk

µy,·,1P(Y π = y). (C.2)

Next, we calculate the departure-average steady state Y π
d . Recall that Y π

d is the steady-state distribution
of the embedded DTMC which samples states just after each departure from π. To calculate P(Y π

d = y) from
P(Y π = d), we divide by the expected time spent in state y per visit, 1

µy,·,·
, and multiply by the probability

that the transition into state y was a completion:

P(Y π
d = y) = ZπP(Y π = y)

µ·,y,1

µ·,y,·
µy,·,·, (C.3)

where Zπ is a normalization constant.
Finally, we calculate the relative completions function ∆π(y). To do so, we use the system of equations

given in Corollary D.1:

∆π(y) =
µy,·,1 − λ∗

π

µy,·,·
+
∑
y′

µy,y′,·

µy,·,·
∆π(y

′). (C.4)

25

This system of equations characterizes ∆π(y) up to an additive offset. To uniquely determine ∆π(y), we
use the fact that ∆(Y π) = 0:

0 = ∆(Y π) =
∑
y

P(Y π = y)∆(y). (C.5)

Appendix C.2. Specific parameterized example: Two servers, arbitrary service rates

We now walk through the process of determining λ∗, Y SSS
d , and ∆SSS(y), in a parameterized MSJ setting,

allowing us to use Theorem 4.2 to explicitly characterize mean response time E[TMSJ].
Consider an MSJ system with k = 2 servers, and jobs with server need either 1 or 2. p1 fraction of

jobs have server need 1, and p2 = 1 − p1 have server need 2. Let server need 1 jobs have service duration
Exp(µ1), and server need 2 jobs have service duration Exp(µ2).

Note that this setting is a generalized, parameterized version of the setting discussed in Section 8. The
same methods can handle any MSJ setting with phase-type service durations - we merely choose this one as
a clean example.

The Simplified Saturated System (SSS) for this setting has three states: [1, 1], [1, 2], and [2]. Between
these states, we have the following transition rates:

µ[1,1],[1,1],1 = 2µ1p1, µ[1,1],[1,2],1 = 2µ1p2, µ[1,2],[2],1 = µ1,

µ[2],[1,1],1 = µ2p
2
1, µ[2],[1,2],1 = µ2p1p2, µ[2],[2],1] = µ2p2.

Note that all transitions in this setting involve a completion. This is due to the fact that the service durations
are exponential. For more complex service duration distributions, there would also be non-completion
transitions.

Now, we calculate the time-average steady state Y , using (C.1):

2µ1P(Y = [1, 1]) = 2µ1p1P(Y = [1, 1]) + µ2p
2
1P(Y = [2]),

µ1P(Y = [1, 2]) = 2µ1p2P(Y = [1, 1]) + µ2p1p2P(Y = [2]),

µ2P(Y = [2]) = µ1P(Y = [1, 2]) + µ2p2P(Y = [2]),

P(Y = [1, 1]) + P(Y = [1, 2]) + P(Y = [2]) = 1.

Solving, we find that

P(Y = [1, 1]) =
µ2p

2
1

µ2p21 + 2µ2p1p2 + 2µ1p2
,

P(Y = [1, 2]) =
2µ2p1p2

µ2p21 + 2µ2p1p2 + 2µ1p2
,

P(Y = [2]) =
2µ1p2

µ2p21 + 2µ2p1p2 + 2µ1p2
.

Next, we use (C.2) to calculate λ∗, the threshold of the stability region:

λ∗ = 2µ1P(Y = [1, 1]) + µ1P(Y = [1, 2]) + µ2P(Y = [2]) =
2µ1µ2

µ2p21 + 2µ2p1p2 + 2µ1p2
.

Next, we use (C.3) to calculate Yd, the departure-average steady-state. Note that all transitions are
completions, so (C.3) simplifies to the following:

P(Yd = y) =
1

λ∗P(Y = y)µy,·,·,

P(Yd = [1, 1]) = p21, (C.6)

P(Yd = [1, 2]) = p1p2,

P(Yd = [2]) = p2.

26

Note that this is a product-form distribution. This is a special case of the product-form behavior that was
established for the general 2-class exponential MSJ setting [16, 18].

Finally, we use (C.4) and (C.5) to derive ∆(y) for each state y. Because all transitions are completions,
(C.4) simplifies to the following:

∆(y) = 1− λ∗

µy,·,·
+
∑
y′

µy,y′,·

µy,·,·
∆(y′).

Now, let’s substitute in our expressions for λ∗ and the transition rates and simplify. First we characterize
∆([1, 1]):

∆([1, 1]) = 1− 1

2µ1

2µ1µ2

µ2p21 + 2µ2p1p2 + 2µ1p2
+ p1∆([1, 1]) + p2∆([1, 2]),

p2∆([1, 1]) = 1− µ2

µ2p21 + 2µ2p1p2 + 2µ1p2
+ p2∆([1, 2]),

∆([1, 1]) =
1

p2

µ2p
2
1 + 2µ2p1p2 + 2µ1p2 − µ2

µ2p21 + 2µ2p1p2 + 2µ1p2
+∆([1, 2])

=
1

p2

µ2p1p2 + (2µ1 − µ2)p2
µ2p21 + 2µ2p1p2 + 2µ1p2

+∆([1, 2])

=
µ2p1 + 2µ1 − µ2

µ2p21 + 2µ2p1p2 + 2µ1p2
+∆([1, 2])

=
2µ1 − µ2p2

µ2p21 + 2µ2p1p2 + 2µ1p2
+∆([1, 2]). (C.7)

Next ∆([1, 2]):

∆([1, 2]) = 1− 1

µ1

2µ1µ2

µ2p21 + 2µ2p1p2 + 2µ1p2
+∆([2])

= 1− 2µ2

µ2p21 + 2µ2p1p2 + 2µ1p2
+∆([2])

=
µ2p

2
1 + 2µ2p1p2 + 2µ1p2 − 2µ2

µ2p21 + 2µ2p1p2 + 2µ1p2
+∆([2])

=
−µ2p

2
1 + 2(µ1 − µ2)p2

µ2p21 + 2µ2p1p2 + 2µ1p2
+∆([2]) (C.8)

Finally, we characterize ∆([2]):

∆([2]) = 1− 1

µ2

2µ1µ2

µ2p21 + 2µ2p1p2 + 2µ1p2
+ p21∆([1, 1]) + p1p2∆([1, 2]) + p2∆([2]),

p1∆([2]) = 1− 2µ1

µ2p21 + 2µ2p1p2 + 2µ1p2
+ p21∆([1, 1]) + p1p2∆([1, 2]),

∆([2]) =
1

p1

µ2p
2
1 + 2µ2p1p2 + 2µ1p2 − 2µ1

µ2p21 + 2µ2p1p2 + 2µ1p2
+ p1∆([1, 1]) + p2∆([1, 2])

=
1

p1

(µ2 − 2µ1)p
2
1 + 2(µ2 − µ1)p1p2

µ2p21 + 2µ2p1p2 + 2µ1p2
+ p1∆([1, 1]) + p2∆([1, 2])

=
(µ2 − 2µ1)p1 + 2(µ2 − µ1)p2
µ2p21 + 2µ2p1p2 + 2µ1p2

+ p1∆([1, 1]) + p2∆([1, 2]). (C.9)

Note that our final equations, (C.7), (C.8), and (C.9), are redundant: We can omit any one and still

27

calculate ∆(y), up to an additive constant. From these equations, we find that

∆([1, 1]) =
2µ1 − µ2p2

µ2p21 + 2µ2p1p2 + 2µ1p2
+ C,

∆([1, 2]) = C,

∆([2]) =
µ2p

2
1 + 2(µ2 − µ1)p2

µ2p21 + 2µ2p1p2 + 2µ1p2
+ C,

where C is an additive constant to be determined. To find C, we use (C.5). Substituting our known values,
we find that

0 =
µ2p

2
1(2µ1 − µ2p2)

(µ2p21 + 2µ2p1p2 + 2µ1p2)2
+

2µ1p2(µ2p
2
1 + 2(µ2 − µ1)p2)

(µ2p21 + 2µ2p1p2 + 2µ1p2)2
+ C,

−C(µ2p
2
1 + 2µ2p1p2 + 2µ1p2)

2 = µ2p
2
1(2µ1 − µ2p2) + 2µ1p2(µ2p

2
1 + 2(µ2 − µ1)p2)

= −4µ2
1p

2
2 + 2µ1µ2(p

2
1 + p21p2 + 2p22)− µ2

2p
2
1p2,

C =
4µ2

1p
2
2 − 2µ1µ2(p

2
1 + p21p2 + 2p22) + µ2

2p
2
1p2

(µ2p21 + 2µ2p1p2 + 2µ1p2)2
.

We can therefore derive expressions for ∆(y):

∆([1, 1]) =
2p2(2µ

2
1(1 + p2)− µ1µ2(−2p1 + p21 + 3p2)− µ2

2p1p2)

(µ2p21 + 2µ2p1p2 + 2µ1p2)2
,

∆([1, 2]) =
4µ2

1p
2
2 − 2µ1µ2(p

2
1 + p21p2 + 2p22) + µ2

2p
2
1p2

(µ2p21 + 2µ2p1p2 + 2µ1p2)2
,

∆([2]) =
µ2p1(−2µ1(1 + p22) + µ2(p

2
1p

2
1p2 + 3p2 + p22))

(µ2p21 + 2µ2p1p2 + 2µ1p2)2
.

Finally, we can apply our expressions for Yd, (C.6), to calculate ∆(Yd):

∆(Yd) = Ey∼Yd
[∆(y)]

= ∆([1, 1])P(Yd = [1, 1]) + ∆([1, 2])P(Yd = [1, 2]) + ∆([2])P(Yd = [2])

= p21∆([1, 1]) + p1p2∆([1, 2]) + p2∆([2])

=
p1p2(4µ

2
1 − 2µ1µ2(1 + 3p2) + µ2

2(1 + p2 + 2p22))

(µ2p21 + 2µ2p1p2 + 2µ1p2)2
.

Having explicitly characterized λ∗ and ∆(Yd), our main result, Theorem 4.2, gives an explicit, closed-form
expression for mean response time:

E[TMSJ] =
1

λ∗
1 + ∆(Yd)

1− λ/λ∗ +Oλ(1).

Appendix D. MMSR Lemmas

Lemma D.1. Consider the MMSR system controlled by the Markov chain π. For any state y ∈ Yπ,

Gπ ◦∆π(y, Y
π) = λ∗

π − µπ
y,·,1. (D.1)

Proof. Recall that by the definition of the generator, Gπ ◦∆π(y, Y
π) is given by

Gπ ◦∆π(y, Y
π) = lim

t→0

1

t
E[∆π(Y

π(t), Y π)−∆π(y, Y
π)|Y π(0) = y]. (D.2)

28

To figure out E[∆π(Y
π(t), Y π)−∆π(y, Y

π)|Y π(0) = y], recall the definition that

∆π(y, Y
π) = lim

t′→∞
E[Cπ(y, t

′)− λ∗
πt

′],

where recall that Cπ(y, t
′) is the expected number of completion up to time t′ of the MMSR system whose

service process is controlled by the Markov chain π initializing in state y. Therefore, if we replace y by Y π(t)
on the LHS of the above definition and take the expectation, we have

E[∆π(Y
π(t), Y π)|Y π(0) = y]

= lim
t′→∞

E[Cπ(Y
π(t), t′)− λ∗

πt
′|Y π(0) = y]

= lim
t′→∞

E[Cπ(y, t+ t′)− Cπ(y, t)− λ∗
πt

′|Y π(0) = y],

where in the second equality we have used the fact that

E[Cπ(y, t+ t′)] = E[Cπ(y, t) + Cπ([Yπ(t) | Yπ(0) = y], t′)] (D.3)

E[Cπ(Yπ(t), t
′) | Yπ(0) = y] = E[Cπ(y, t+ t′)]− E[Cπ(y, t)].

(D.3) simply splits up the completions from time 0 to t+ t′ into the completions from time 0 to t, and the
completions from time t to t+ t′.

Therefore,

E[∆π(Y
π(t), Y π))−∆π(y, Y

π)|Y π(0) = y]

= lim
t′→∞

E[Cπ(y, t+ t′)− Cπ(y, t)− λ∗
πt

′]− lim
t′→∞

E[Cπ(y, t
′)− λ∗

πt
′]

= lim
t′→∞

E[Cπ(y, t+ t′)− Cπ(y, t)− λ∗
πt

′]− lim
t′→∞

E[Cπ(y, t+ t′)− λ∗
πt− λ∗

πt
′]

= E[−Cπ(y, t) + λ∗
πt],

where in the second inequality we replace t′ with t+ t′ in the second term, which will not change the limit
because t′ and t+ t′ are both going to infinity. Plugging the above calculations into (D.2), we get

Gπ ◦∆π(y, Y
π) = lim

t→0

1

t
E[−Cπ(y, t) + λ∗

πt] = −µπ
y,·,1 + λ∗

π,

where in the last inequality we use the fact that limt→0
1
tE[Cπ(y, t)] = µπ

y,·,1 (the instantaneous completion
rate at state y).

Lemma D.2. For any f(q, y) which is a real-valued function of the state of the MMSR-π system,

Gπ ◦ f(q, y) = λ (f(q + 1, y)− f(q, y)) +
∑

y′∈Yπ,
a∈{0,1}

µπ
y,y′,a

(
f((q − a)+, y′)− f(q, y)

)
.

Proof. In this proof we omit π in the subscript of ∆π(y) and in the superscript of µπ
y,y′,a for readability.

Recall the definition of the generator

Gπ ◦ f(q, y) = lim
t→0

1

t
E[f(Qπ(t), Y π(t))− f(q, y)|Qπ(0) = q, Y π(0) = y],

which can be interpreted as the instantaneous rate of change of the function f(Qπ(t), Y π(t)) when (Qπ(t), Y π(t))
is initialized in (q, y). Note that (Qπ(t), Y π(t)) can change either due to an arrival event, or a transition
event of the Markov chain π. An arrival event happens with rate λ, and causes Qπ(t) to change from q to
q + 1, so arrival events contribute

λ (f(q + 1, y)− f(q, y))

29

to Gπ ◦ f(q, y). A transition event of the Markov chain π from y to y′ ∈ Yπ accompanied by a ∈ {0, 1}
completions happens with rate µy,y′,a. Such a event causes (Qπ(t), Y π(t)) to change from (q, y) to ((q −
a)+, y′), so it contributes

µy,y′,a

(
f((q − a)+, y′)− f(q, y)

)
to Gπ ◦ f(q, y), for each y′ ∈ YAk and a ∈ {0, 1}. This proves the expression in the lemma statement.

As a corollary of Lemma D.1 and Lemma D.2, we can derive a forward recurrence for ∆π(y) := ∆π(y, Y
π).

Solving the resulting system of equations, together with the fact that ∆π(Y
π) = 0, gives the value of ∆π(y).

Corollary D.1. For any MMSR-π system and any state y ∈ Yπ,

∆π(y) =
µy,·,1 − λ∗

π

µy,·,·
+
∑
y′

µy,y′,·

µy,·,·
∆(y′),

where µy,·,· is the total transition rate out of state y.
Moreover, if all transitions in π are associated with completions (if a always equals 1), then the recurrence

simplifies:

∆π(y) = 1− λ∗
π

µy,·,1
+
∑
y′

µy,y′,1

µy,·,1
∆(y′).

Proof. Start with Lemma D.1:

Gπ ◦∆π(y) = λ∗
π − µπ

y,·,1. (D.4)

Here we write ∆π(y) as a shorthand for ∆π(y, Y
π).

Expand the left-hand side of (D.4) using Lemma D.2:

Gπ ◦∆π(y) =
∑
y′,a

µπ
y,y′,a(∆π(y

′)−∆π(y)).

Note that Lemma D.2 simplifies because ∆π(y) does not depend on q.
Now we can perform algebraic manipulation to complete the proof:

λ∗
π − µπ

y,·,1 =
∑
y′,a

µπ
y,y′,a(∆π(y

′)−∆π(y))

= −µπ
y,·,·∆π(y) +

∑
y′,a

µπ
y,y′,a∆π(y

′),

µπ
y,·,·∆π(y) = µπ

y,·,1 − λ∗
π +

∑
y′,a

µπ
y,y′,a∆π(y

′),

∆π(y) =
µπ
y,·,1 − λ∗

π

µπ
y,·,·

+
∑
y′,a

µπ
y,y′,a

µπ
y,·,·

∆π(y
′).

Note that if all transitions are associated with completions, e.g. if a = 1, then µπ
y,·,1 = µπ

y,·,·

Lemma 5.1. For any state (q, y) of the MMSR-π system,

Gπ ◦ fπ
∆(q, y) = (λ− λ∗

π)q − λ∆π(y) +
1

2
λ+

∑
y′,a

µπ
y,y′,a

(
1

2
(−a+ u−∆π(y

′))2 − 1

2
∆π(y)

2

)
. (D.5)

30

Proof. In this proof we omit π in the subscript of ∆π(y) and in the superscript of µπ
y,y′,a for readability.

To calculate Gπ ◦ fπ
∆(q, y), we begin by applying Lemma D.2:

Gπ ◦ fπ
∆(q, y) = λ(q −∆(y) +

1

2
) (D.6)

+
∑
y′,a

µy,y′,a

(
1

2

(
(q − a)+ −∆(y′)

)2 − 1

2
(q −∆(y))

2

)
. (D.7)

Recall that the unused service u = 1{q = 0∧ a = 1}, so (q− a)+ = q− a+ u. We can decompose (D.7) into
two terms, with and without q:

(D.7) = q
∑
y′,a

µy,y′,a (−a+ u−∆(y′) + ∆(y)) (D.8)

+
∑
y′,a

µy,y′,a

(
1

2
(−a+ u−∆(y′))2 − 1

2
∆(y)2

)
.

The coefficient of q in (D.8) can be simplified considerably using Lemma D.1.∑
y′,a

µy,y′,a (−a+ u−∆(y′) + ∆(y))

=
∑
y′,a

µy,y′,a(−a) +
∑
y′,a

µy,y′,au−
∑
y′,a

µy,y′,a(∆(y′)−∆(y))

= −µy,·,1 −GAk ◦∆(y) +
∑
y′,a

µy,y′,au

= −µy,·,1 − (λ∗
π − µAk

y,·,1) +
∑
y′,a

µy,y′,au

= −λ∗
π +

∑
y′,a

µy,y′,au.

Note that either u = 0 or q = 0, because new jobs are only generated if the queue is empty. As a result,
qu = 0. We can therefore further simplify the q-term in (D.8):

q(
∑
y′,a

µy,y′,au− λ∗
π) = −qλ∗

π (D.9)

Substituting (D.9) into (D.8), (D.8) into (D.7), and performing some rearrangement, we find that

Gπ ◦ fπ
∆(q, y) = (λ− λ∗

π)q − λ∆(y) +
1

2
λ+

∑
y′,a

µy,y′,a

(
1

2
(−a+ u−∆(y′))2 − 1

2
∆(y)2

)
.

Lemma D.3. In the MMSR-π system, the departure average distribution Y π
d is given by

1

λ∗
π

Ey∼Y π [µπ
y,y′,1] = P(Y π

d = y′). (D.10)

Proof. We will show that

P(Y π
d = y′) =

1

λ∗
π

∑
y

P(Y π = y)µy,y′,1.

As an intermediate step, let Y π
DTMC be the transition-average steady state of the Markov chain π.

P(Y π
DTMC = y) is the fraction of state-visits that are visits to y, in the embedded DTMC of π.

31

Let µy,·,· be the total transition rate out of state y:

µy,·,· =
∑
y′,a

µy,y′,a.

Note that the CTMC that controls Y π and the DTMC that controls Y π
DTMC visit the same states in the

same order, but that Y π stays in state y for Exp(µy,·,·) time for each visit. As a result,

P(Y π = y) = aπP(Y π
DTMC = y)

1

µy,·,·
.

where aπ is a normalization constant. Specifically, aπ is the long-term transition rate, which can be calculated
as the reciprocal of the average time per visit to a state:

aπ =

(∑
y

P(Y π
DTMC = y)

1

µy,·,·

)−1

.

From Y π
DTMC , we can calculate the fraction of transitions that move from a generic state y to another

generic state y′ via a completion. Call this fraction py→y′,1:

py→y′,1 = P(Y π
DTMC = y)

µy,y′,1

µy,·,·
.

Summing over all initial states y, we can find the fraction of transitions that are completions which result
in the state y′:

p·→y′,1 =
∑
y

P(Y π
DTMC = y)

µy,y′,1

µy,·,·
.

Let bπ be the overall fraction of transitions that are completions. Conditioning on the transition into state
y′ being a completion, we find that the probability that a generic completion results in state y′ is

P(Y π
d = y′) =

p·→y′,1

bπ
.

Combining all of the above equations, we find that

P(Y π
d = y′) =

1

bπ

∑
y

P(Y π
DTMC = y)

µy,y′,1

µy,·,·

=
1

bπ

∑
y

1

aπ
P(Y π = y)µy,·,·

µy,y′,1

µy,·,·

=
1

aπbπ

∑
y

P(Y π = y)µy,y′,1.

Recall that aπ is the long-term transition rate, and that bπ is the fraction of transitions that are com-
pletions. Thus, aπbπ is the long-term completion rate Xπ = λ∗

π.

32

Appendix E. Lemmas about GMSJ

Lemma E.1. For any f(q, y) which is a real-valued function of the state of the MSJ system,

GMSJ ◦ f(q, y) = λ (f(q + 1, y)− f(q, y))1{y∈YAk} (E.1)

+ 1q=0,y ̸∈YAkλ
∑
i∈S

pi(f(0, y · i)− f(0, y)) (E.2)

+ 1q>0

∑
y′∈YAk,
a∈{0,1}

µAk
y,y′,a

(
f((q − a)+, y′)− f(q, y)

)
(E.3)

+ 1q=0

∑
y′∈YMSJ,
a∈{0,1}

µMSJ
y,y′,a,0

(
f((q − a)+, y′)− f(q, y)

)
. (E.4)

Proof. Recall the definition of the generator

GMSJ ◦ f(q, y) = lim
t→0

1

t
E[f(QMSJ(t), Y MSJ(t))− f(q, y)|QMSJ(0) = q, Y MSJ(0) = y],

which can be interpreted as the instantaneous rate of change of the function f(QMSJ(t), Y MSJ(t)) when
(QMSJ(t), Y MSJ(t)) is initialized in (q, y). Note that (QMSJ(t), Y MSJ(t)) can change either due to an arrival
event, or a transition event of the front state. An arrival event happens with rate λ, and its effect depends
on whether y ∈ YAk: if y ∈ YAk, there are k jobs in the front, so QMSJ(t) changes from q to q + 1, Y MSJ(t)
remains unchanged; if y /∈ YAk, there are strictly fewer than k jobs in the front, so QMSJ(t) remains zero
after the arrival, and Y MSJ(t) changes from y to y · i with probability pi (append a fresh job in state i to
the front state with probability pi). Therefore, arrival events contribute

λ (f(q + 1, y)− f(q, y))1{y∈YAk}

+ 1q=0,y ̸∈YAkλ
∑
i∈S

pi(f(0, y · i)− f(0, y))

to GMSJ◦f(q, y), which are the terms in (E.1) and (E.2) in the lemma statement. As for the transition events
of the front, a transition from state y to state y′ accompanied by a completions causes (QMSJ(t), Y MSJ(t))
to change from (q, y) to ((q−a)+, y′). Such a transition happens with the rate µMSJ

y,y′,a,1 = µAk
y,y′,a if q > 0 and

y′ ∈ YAk, and happens with rate µMSJ
y,y′,a,0 if q = 0. Therefore, the transition events of the front contribute

1q>0

∑
y′∈YAk,
a∈{0,1}

µAk
y,y′,a

(
f((q − a)+, y′)− f(q, y)

)
+ 1q=0

∑
y′∈YMSJ,
a∈{0,1}

µMSJ
y,y′,a,0

(
f((q − a)+, y′)− f(q, y)

)

to GMSJ ◦ f(q, y), which are the terms in (E.3) and (E.4) in the lemma statement.

Lemma 6.1.

GMSJ ◦ fMSJ
∆ (q, y) = 1q>0G

Ak ◦ fAk
∆ (q, y) + 1q=0Oλ(1) (E.5)

Proof. Let us begin by using Lemmas D.2 and E.1 to give expressions for GMSJ ◦ fMSJ
∆ (q, y) and GAk ◦

fAk
∆ (q, y).

Note that whenever q > 0, GMSJ ◦ fMSJ
∆ (q, y) is identical to GAk ◦ fAk

∆ (q, y), because the two systems
have the same transitions and because fMSJ

∆ (q, y) and fAk
∆ (q, y) are identical.

33

Note also that whenever q = 0, both GMSJfMSJ
∆ (q, y) and GAk ◦ fAk

∆ (q, y) are Oλ(1), because ∆(y) is
bounded by a constant for all y, because YMSJ is finite.

As a result,

GMSJ ◦ fMSJ
∆ (q, y) = 1q>0G

Ak ◦ fAk
∆ (q, y) + 1q=0Oλ(1).

Appendix F. At-least-k busy period

We also prove a lemma about busy periods in the At-least-k system. Define a busy period to begin
when the back length qAk in the At-least-k system transitions from 0 to 1, and to end when the back length
next returns to 0. Let BAk be a random variable representing the length of a busy period in the At-least-k
system in stationarity.

Lemma F.1. In the At-least-k system, for all λ < λ∗

E[BAk] = Ωλ

(
1

1− λ/λ∗

)
. (F.1)

Proof. In this proof we omit Ak in the subscript of µAk
y,y′,a for readability.

To prove Lemma F.1, it suffices to show that P(QAk = 0) = Oλ(1− λ
λ∗), and that the non-busy periods

(periods when QAk = 0) have expected duration Ωλ(1). The latter follows from the fact that all transitions
have expected duration Ωλ(1).

To prove the former, let u(qAk, yAk) be the rate at which new jobs are generated due to completions
in a particular state (qAk, yAk) of the At-least-k system. Note that u(qAk, yAk) is positive only if qAk = 0.
The time-average value of u(qAk, yAk) is the difference between the completion rate of the system and the
Poisson arrival rate, because in steady state the total completion rate and total arrival rate must match.
Thus,

E[u(QAk, Y Ak)] = λ∗ − λ. (F.2)

Note that u(q, y) = µy,·,11{q=0}, so

E[µY Ak,·,11{QAk=0}] = λ∗ − λ.

Note that

P(QAk = 0) =
E[µY Ak,·,11{QAk=0}]

E[µY Ak,·,1|QAk = 0]
=

λ∗ − λ

E[µY Ak,·,1|QAk = 0]
. (F.3)

It therefore suffices to show that there exists a constant c > 0 not dependent on λ such that E[µY Ak,·,1|QAk =
0] ≥ c.

From an arbitrary state yAk with qAk = 0, the distribution of time until a completion next occurs
does not depend on λ. Consider the probability of a completion happening in the next second, with no
arrivals happening before that completion. This probability is nonzero, and only dependent only λ via the
arrival process. The probability can be lower bounded away from zero by substituting a Poisson(λ∗) process
instead. We can thus lower bound the completion rate over the next second with an empty back away
from 0. This therefore provides a lower bound on the completion rate conditional on the back being empty,
E[µY Ak,·,1|QAk = 0], as desired. Calling that lower bound c, we have:

P(QAk = 0) =
E[µY Ak,·,11{QAk=0}]

E[µY Ak,·,1|QAk = 0]
≤ λ∗ − λ

c
= Oλ

(
1− λ

λ∗

)
. (F.4)

This completes the proof.

34

Appendix G. Coupling Lemmas

Let us restate the coupling between the At-least-k and MSJ systems. We let the arrivals of the two
systems happen at the same time. We couple the transitions of their front states based on their joint state
(qMSJ, yMSJ, qAk, yAk). If yMSJ = yAk, qMSJ > 0, and qAk > 0, the completions happen at the same time in
both systems, the same jobs complete, the same job phase transitions occur, and the jobs entering the front
are the same. We call the two systems “merged” during such a time period. Note that under this coupling,
if the two systems become merged, they will stay merged until qMSJ = 0 or qAk = 0. If the systems are not
merged, the two systems have independent completions and phase transitions, and independently sampled
jobs.

The two systems transition according to synchronized Poisson timers whenever they are merged, and
independent Poisson timers otherwise. Because all transitions are exponentially distributed, this poses no
obstacle to the coupling.

Lemma 6.3 (Quick merge). From any joint MSJ, At-least-k state, for any ϵ > 0, under the coupling above,
the expected time until yMSJ = yAk, qMSJ ≥ k + 1, and qAk ≥ k + 1 is at most m1(ϵ) for some m1(ϵ)
independent of the arrival rate λ and initial joint states, given that λ ∈ [ϵ, λ∗).

Proof. We call the period of time until yMSJ = yAk, qMSJ ≥ k + 1, and qAk ≥ k + 1 the “bad period.” We
wish to show that the expected length of the bad period is upper bounded by some constant m1(ϵ) for all
λ such that λ ∈ [ϵ, λ∗).

Consider the possibility that the following sequence of events occurs: over a period of 1/2 second, at least
2k + 1 jobs arrive. Then, over another 1/2 second, k completions occur in each of the MSJ and At-least-k
systems, which is sufficient to clear out every job initially present in the fronts and replace them with freshly
sampled jobs. Finally, the sampled jobs in the fronts of the two systems are the same, in the same order.
After this sequence of events, yMSJ = yAk, qMSJ ≥ k + 1, and qAk ≥ k + 1, which ends the bad period.

Recall that as long as the front states of the two systems are distinct, their completions are independent.
As a result, the probability of this sequence of events is positive, for any λ > 0 and for any initial states
yMSJ, yAk. We call the probability of this sequence of events pGood(λ, yMSJ, yAk).

Moreover, pGood(λ, yMSJ, yAk) is monotonically increasing in λ, as λ only affects the probability that at
least 2k + 1 jobs arrive in the first half second.

Therefore, the least value of pGood(λ, yMSJ, yAk) is achieved when λ = ϵ. Because there are only finitely
many possible front states yMSJ ∈ YMSJ, yAk ∈ YAk, there must be some lowest value of pGood(ϵ, yMSJ, yAk).
We call this value pGood∗(ϵ). Note that for all λ ≥ ϵ and for all yMSJ ∈ YMSJ, yAk ∈ YAk,

pGood(λ, yMSJ, yAk) ≥ pGood∗(ϵ) > 0. (G.1)

In the first second, there is at least a pGood∗(ϵ) chance of the desired sequence of events happening and
the bad period completing. In the next second, the same is true. In general, the time until the bad period
completes is upper bounded by a geometric distribution with completion probability pGood∗(ϵ). Taking
m1(ϵ) = 1/pGood∗(ϵ), the mean time until the bad period completes is upper bounded by m1(ϵ), which is
independent of the arrival rate λ and initial joint states, as desired.

Lemma 6.4 (Long merged period). From any joint MSJ, At-least-k state such that yMSJ = yAk, qMSJ ≥
k + 1, and qAk ≥ k + 1, the expected time until qMSJ = 0, qAk = 0, or yMSJ ̸= yAk, is at least m2

1−λ/λ∗ for

some m2 independent of the arrival rate λ and initial joint states, given that λ < λ∗.

Note that the time until qMSJ = 0 or qAk = 0 is a lower bound on the time until yMSJ ̸= yAk.

Proof. In this proof we omit Ak in the subscript of µAk
y,y′,a for readability.

Let’s call the period of interest the “good period.” Note that throughout the good period, yMSJ = yAk.
Let us introduce a new lower-bounding MSJ system, M ′, beginning in a general state yM

′
= yMSJ = yAk

and beginning with qM
′
= k+ 1. Let us define a coupling between M ′ and the original MSJ and At-least-k

systems in the same synchronized/independent fashion defined at the start of Section 6.1. As a result, for

35

all time until qM
′
= 0, yM

′
= yMSJ = yAk, and qM

′ ≤ qMSJ, and qM
′ ≤ qAk. In particular, the duration

until qM
′
= 0 is a lower bound on the length of the good period.

Let us set up a new coupled system, M ′′. The M ′′ system is an At-least-k system initialized in a specific
front state distribution to be specified later and with qM

′′
= 1. Let us define a coupling between the M ′

and M ′′ systems in the same synchronized/independent fashion defined at the start of Section 6.1. Note
however that M ′′ is a new system, distinct from all of the previous systems.

Let BM ′
be the length of the first busy period of the M ′ system, which is the time in M ′ until qM

′
= 0;

similarly, let BM ′′
be the length of the first busy period of the M ′′ system. We want to show that

E[BM ′
] ≥ m3E[BM ′′

], (G.2)

E[BM ′′
] ≥ m4

1− λ/λ∗ . (G.3)

for some positive numbers m3 and m4 independent of the arrival rate λ and the initial front state of the M ′

system yM
′
.

We will choose the front state distribution of the M ′′ system in order to guarantee that (G.3) holds. To
do so, we will make use of Lemma F.1, which states that the At-least-k system has long busy periods:

E[BAk] = Ωλ

(
1

1− λ/λ∗

)
. (G.4)

Let Y Ak−BP denote the long-term-average distribution of the front state in the At-least-k system at
the start of a busy period. We let the initial state distribution of the M ′′ system be yM

′′ ∼ Y Ak−BP and
qM

′′
= 1. As a result, E[BM ′′

] = E[BAk], the expected busy period length of the At-least-k system. By
Lemma F.1, we have E[BM ′′

] ≥ m4

1−λ/λ∗ for some positive number m4 independent of λ and yM
′
.

Now, we wish to show (G.2): that the length of the first busy period in M ′, initialized in an arbitrary
initial front state yM

′
and qM

′
= k + 1, is also long in expectation.

To prove this, let us introduce a very fast Poisson process with a rate µ∗ given by

µ∗ = λ∗ + max
y∈YAk

∑
y′,a

µy,y′,a.

Note that µ∗ is at least as fast as the transition rate of M ′′ in any state, and µ∗ is independent of λ. Let
us define a coupling between the Poisson(µ∗) process and the M ′′ system. Transitions in the M ′′ system
only occur when the Poisson(µ∗) increment occurs, where with some probability sampled on each Poisson
increment a transition happens, and otherwise no transition occurs. In state y, a transition happens with
probability

λ+
∑

y′,a µy,y′,a

µ∗ .

Note that this probability is always less than 1, by the definition of µ∗.
To lower bound E[BM ′

], the expected busy period length in theM ′ system, let us consider E[BM ′
1{A1∧A2}],

where A1 and A2 are the following two events:
1. Event A1: the first increment of the Poisson(µ∗) process takes at least 1 second.
2. Event A2: during the first second M ′ has exactly k completions, after each of which the job entering

the front of the M ′ system is sampled to have the same server need as the corresponding job of the M ′′

system, and then all the jobs transition to the same phase as in the M ′′ system. At the end of the first
second, M ′ and M ′′ have identical front states y and back lengths q = 1 after exactly k completions
in the M ′ system.

First, note that

E[BM ′
] ≥ E[BM ′

1{A1∧A2}] = E[BM ′
|A1 ∧A2]P(A1 ∧A2). (G.5)

36

Note that P(A1 ∧ A2) is lower bounded by a positive constant for every λ such that ϵ ≤ λ ≤ λ∗, so we can
focus on E[BM ′ |A1 ∧A2].

Note that if events A1 and A2 occur, the M ′ and M ′′ systems have the same busy period length, because
after 1 second, the two systems have identical states. Specifically, both systems become empty at the same
time, which is the first time after each is initialized when each becomes empty.

As a result,

E[BM ′
|A1 ∧A2] = E[BM ′′

|A1 ∧A2]. (G.6)

Note that Event A2 is conditionally independent of the behavior of the M ′′ system, given that Event A1

occurs. As a result,

E[BM ′′
|A1 ∧A2] = E[BM ′′

|A1]. (G.7)

Notice that event A1 is independent of the state of M ′′. Conditioning on the event A1 merely increases
the time of the first transition in M ′′, without altering the future updates of M ′′ at all. As a result,

E[BM ′′
|A1] ≥ E[BM ′′

]. (G.8)

Thus, E[BM ′
] is lower bounded by a constant multiple of E[BM ′′

]. Recall that by construction, E[BM ′′
] =

Ωλ(
1

1−λ/λ∗). Combining (G.2) and (G.3) and letting m2 = m3m4, we get the desired lower bound on the

expected length of the good period.

Appendix H. Extensions of the Multiserver-job model

Appendix H.1. Nontrival scheduling policies: Backfilling

A common family of MSJ scheduling policies in practice are backfilling policies [4, 45, 48]. Under a
backfilling policy, the scheduler begins by placing jobs into service in arrival order, as in the FCFS policy.
However, once a job is encountered which does not fit in the available servers, additional jobs are considered
for service. By doing so, the stability region and mean response time are improved relative to FCFS, though
it is unclear whether the full stability region can be achieved [15]. Some backfilling policies give rise to finite
skip models, and can thus be handled by the RESET technique.

As an example, consider the “First Fit-k” policy: The scheduler iterates through the first k jobs in
arrival order, checking for each job whether it can be served in the available servers. Each job that fits is
served. This policy only serves jobs among the k oldest in arrival order, so it can be handled by the RESET
technique.

Beyond backfilling policies, more advanced packing policies can also be considered. For instance, for
small k the scheduler could simply search over all subsets of the k oldest jobs and serve the subset with
maximal total server need ≤ k. This policy is also finite skip, and the RESET technique also applies.

Appendix H.2. Changing server need during service

The standard MSJ model assumes that jobs require a fixed service need throughout their time in service.
However, in some settings, jobs may require a varying number of servers. For example, consider a fork-
join model with simultaneous start. Suppose that each job is made of some number of tasks, each with
independent duration, and each requiring 1 server. As the tasks complete, the server need of the job as a
whole diminishes, freeing up space for other jobs to run. This setting still gives rise to a finite-skip model,
and poses no difficulty to our RESET technique.

Another natural setting in which server needs change over time is the directed acyclic graph (DAG)
setting, in which jobs are broken up into small segments of work, with potentially complex dependencies
between segments. The DAG scheduling literature often focuses on scheduling the segments of an individual
DAG job. It is natural to consider a scheduling setting where many DAG jobs arrive over time. Holding
the DAG scheduling policy constant, this model effectively gives rise to a MSJ model where server needs
can vary over time, and potentially vary dynamically in response to the service conditions. As long as the
high-level scheduling policy deciding which DAG jobs to run is finite-skip, the model as a whole is finite-skip,
and our RESET technique can characterize its asymptotic mean response time.

37

Appendix H.3. Multidimensional resource constraints

The standard MSJ model considers a single constrained resource. However, computing jobs are often
constrained by a variety of resources, such as CPU, GPU, other accelerators, memory bandwidth, cache
capacity, network bandwidth, etc. Such multidimensional resource constraints are often considered in the
VM scheduling literature. In that literature, only stability results are known. Our RESET technique thus
gives the first characterization of asymptotic mean response time in that setting.

Appendix H.4. Heterogeneous servers

In the standard MSJ model, all servers are identical. However, it is also important to consider settings
where different kinds of servers are available, which can provide different amounts of resources. One can
also consider jobs that need to be served at a particular server or set of servers, such as a job that processes
data stored at that server. In a multidimensional resource setting, some servers may also provide different
resources, such as a GPU-heavy or CPU-heavy server. All of these extensions are compatible with the
RESET technique.

Appendix H.5. Turning off idle servers

To improve energy efficiency, it may be preferable to turn off idle servers. Idle servers consume nearly
as much energy as active servers. However, turned-off servers take some time to restart. It is important to
characterize the impact of this start-up delay on mean response time to understand the tradeoff inherent
in turning off idle servers. The process of turning off and on servers can be incorporated into a finite-skip
model, because there are a finite number of possible states that the servers can be in. As a result, our
RESET technique can provide a characterization of mean response time.

Appendix H.6. Preemption overheads

The FCFS policy never preempts any jobs. Prior work has studied settings with unlimited preemption.
However, practical settings often allow only a limited subset of jobs to be preempted, and jobs may incur
an overhead when preemption occurs. This overhead corresponds to the time necessary to snapshot a job in
service, and for the new job to be transferred onto the freed servers. Models with preemption overheads have
only recently begun to be analyzed in the M/G/1 setting [37], with no mean response time analysis known
in the one-server-per-job multiserver model, much less the multiserver-job model. Preemption overheads
can be modeled with a finite-number of additional states, marking the corresponding servers as undergoing
preemption. As a result, our RESET technique can provide a characterization of mean response time.

Appendix I. Empirical correlation between ∆(Y Sat
d) and convergence rate

As discussed in Section 8, we have empirically noticed a correlation between large ∆(Y Sat
d) values and

slower convergence rates of our predicted value of E[T] to the exact value, as λ → λ∗. Our predicted value
of mean response time is:

E[T pred] =
1

λ∗
∆(Y Sat

d) + 1

1− λ/λ∗ .

We prove in Theorem 4.2 that E[T pred] − E[T] = Oλ(1), ensuring that the two values reliably converge in
the λ → λ∗ limit in all settings, as illustrated in Section 8.

In this section, we further investigate this correlation by comparing ∆(Y Sat
d) with the relative error

E[Tpred]−E[T]
E[T] for a pair of parameterized sequences of workload settings. The setting we investigate has

k = 5 servers, with jobs having server need either 1 or 5. We set the arrival rate λ = 0.8λ∗, using 80% of
the stability region.

We separately parameterize the fraction of 1-server jobs present, as well as the duration of 1-server jobs.
First, we vary p1, the fraction of 1-server jobs from 1% to 99%, in 1% increments, while setting 1-server jobs
to have duration Exp(1/5). Second, we set the duration of 1-server jobs to be Exp(µ1), with µ1 ranging

38

0.2 0.4 0.6 0.8 1.0

Relative completions Δ(Yd)

−10%

0%

10%

20%

30%

40%

R
e
la

ti
v
e
 e

rr
o
r

(E
[T

p
re
d
]
−
E
[T

])
/E

[T
]

Varying μ1

Varying p1

Figure I.4: Empirical relationship between ∆(Y Sat
d) and the relative error between our prediction of mean response time and

the true value, in two parameterized workload settings, both with k = 5 servers and server needs either 1 or 5. We alternately
parameterize µ1, the completion rate of 1-server jobs, and p1, the fraction of 1-server jobs. Load λ/λ∗ = 0.8. Simulated 108

arrivals.

from 0.01 to 100 in 100 evenly multiplicatively-spaced increments, while setting 50% of jobs to have each
server need. In both cases, we set the 5-server jobs to have duration Exp(1).

We plot the behavior of these two settings in Fig. I.4, comparing the ∆(Y Sat
d), the relative completion in

the departure-average state of the saturated system, against the relative error E[Tpred]−E[T]
E[T] . The empirical

results show a significant correlation between ∆(Y Sat
d) and the relative error E[Tpred]−E[T]

E[T] in the case of

parameterized µ1 (R2 = 0.526), but no significant correlation in the case of parameterized p1 (R2 = 0.005).
This indicates that the correlation observed in Section 8 may exist in some settings, but is not robust or
reliable. Further investigation will be needed to better understand this correlation.

39

	Introduction
	Prior work
	Multiserver-job model
	Fixed number of servers, FCFS service
	Advanced scheduling policies
	Scaling number of servers

	Prior work on the saturated system
	M/M/1 with Markovian Service Rate
	Drift method and MARC

	Model
	Multiserver-job Model
	M/M/1 with Markovian Service Rate
	At-least-k System
	Running Example
	Saturated System
	Equivalence between MMSR-Sat and At-least-k
	Notation
	Relative completions
	Generator
	Asymptotic notation
	Simplified saturated system

	Results
	Example for demonstration

	MARC Proofs
	RESET Proofs
	Coupling between At-least-k and MSJ
	Proof of thm:msj-response-time

	Extensions of RESET: Finite skip models
	Empirical Validation
	Accuracy of formula
	Understanding the importance of

	Conclusion
	Acknowledgements
	Finiteness of , and the conditions for drift lemma
	Simplified Saturated System
	Closed-form formulas for *, Yd, (y)
	Solving for *, Yd, and (y)
	Specific parameterized example: Two servers, arbitrary service rates

	MMSR Lemmas
	Lemmas about GMSJ
	At-least-k busy period
	Coupling Lemmas
	Extensions of the Multiserver-job model
	Nontrival scheduling policies: Backfilling
	Changing server need during service
	Multidimensional resource constraints
	Heterogeneous servers
	Turning off idle servers
	Preemption overheads

	Empirical correlation between (YdSat) and convergence rate

