
Convergence for Natural Policy Gradient on Infinite-State
Average-Reward Markov Decision Processes

ISAAC GROSOF, Georgia Institute of Technology
SIVA THEJA MAGULURI, Georgia Institute of Technology
R. SRIKANT, University of Illinois, Urbana-Champaign

Infinite-state Markov Decision Processes (MDPs) are essential in modeling and optimizing a wide variety of

engineering problems. In the reinforcement learning (RL) context, a variety of algorithms have been developed

to learn and optimize these MDPs. At the heart of many popular policy-gradient based learning algorithms,

such as natural actor-critic, TRPO, and PPO, lies the Natural Policy Gradient (NPG) algorithm. Convergence

results for these RL algorithms rest on convergence results for the NPG algorithm. However, all existing

results on the convergence of the NPG algorithm are limited to finite-state settings.

We prove the first convergence rate bound for the NPG algorithm for infinite-state average-reward MDPs,

proving a 𝑂 (1/
√
𝑇 ) convergence rate, if the NPG algorithm is initialized with a good initial policy. Moreover,

we show that in the context of a large class of queueing MDPs, the MaxWeight policy suffices to satisfy our

initial-policy requirement and achieve a 𝑂 (1/
√
𝑇 ) convergence rate. Key to our result are state-dependent

bounds on the relative value function achieved by the iterate policies of the NPG algorithm.

1 INTRODUCTION
Infinite-state Markov Decision Processes (MDPs) are used to model many engineering problems. A

state might include the number of orders for a product, the time since an event occurred, or the

number of people waiting in an unbounded queue. While artificial truncation could be imposed,

often the cleanest mathematical description of a problem will have infinitely many states.

In various disciplines, people have tried to study and optimize these MDPs using a variety of

tools, including methods based off of dynamic programming, such as value iteration and policy

iteration methods [5, 25], as well as gradient-based methods drawing on continuous optimization.

In the reinforcement learning (RL) context, algorithms have been developed to simultaneously

learn the structure of the MDPs and optimally solve them. While most standard learning theory

focuses on the settings with finite state spaces, some recent work has empirically established that

learning-based approaches can be used in the infinite-state setting as well [12].

An important and popular class of learning algorithms are policy-gradient-based methods, includ-

ing the actor-critic algorithm [30], the natural actor-critic algorithm [24], and more recent methods

such as the Trust Region Policy Optimization (TRPO) [26] and Proximal Policy Optimization (PPO)

algorithms [12, 27].

In this paper, we study the natural policy gradient (NPG) algorithm,which lies at the heart of

policy-gradient methods such as natural actor-critic, TRPO, and PPO [20], Algorithm 1. While the

interpretation of the original NPG algorithm is in terms of the gradient of the objective of the MDP

with respect to a value function parameterization, it can also be thought as a “softer" version of

policy iteration. In this viewpoint, instead of finding the optimal policy with respect to the current

estimate of the value function as in policy iteration, we find a randomized approximation to the

optimal policy. This encourages exploration of all states and actions, which is important in the RL

context. In the RL algorithm, the policy evaluation part of policy iteration is further replaced by

a learning algorithm such as TD learning, Using this viewpoint, the convergence of the overall

algorithm can be decomposed into an analysis of NPG with perfect policy evaluation and the
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analysis of TD learning; see, for example, [1]. In this paper, we focus on the analysis of NPG with

perfect policy evaluation. Understanding its behavior is critical to understanding the behavior of

the overall RL algorithm [1].

In recent years, progress has beenmade into understanding the convergence rate of these learning-

based algorithms, building upon convergence-rate results for the NPG algorithm. However, existing

results on the convergence of the NPG algorithm are limited to settings with finite (but potentially

large) state spaces [3, 13, 23].

We want to investigate the convergence rate of the NPG algorithm in infinite-state, average-

reward MDPs, inspired by the MDPs which arise when optimizing queueing systems. Specifically,

our goal is to establish theoretical bounds on the convergence rate of the NPG algorithm to the

globally optimal policy.

Main contributions:

• In Theorem 1, we prove that for any infinite-state average-reward MDP, given mild assump-

tions on the structure of the MDP and a good initial policy, the NPG algorithm converges to

the global optimum policy. Moreover, we prove an 𝑂 (1/
√
𝑇 ) convergence rate bound. This

result is the first convergence result for the NPG algorithm in the infinite-state setting. Prior

work in the finite-state setting required strong assumptions on all policies and over all states,

as we discuss in Section 4.1 [13, 23]. In contrast, our result only makes assumptions on the

initial policy.

• In Theorem 2, we examine a large class MDPs arising from queueing systems, and show

that the MaxWeight policy satisfies our quality requirement for the initial policy. Therefore,

initializing the NPG algorithm with MaxWeight will lead to an 𝑂 (1/
√
𝑇 ) convergence rate.

• Methodologically, the key step in our proof is to establish a bound the growth rate of the

relative value function, relative to the reward available in a given state. We do this by

showing that the relative value function only mildly changes between the iterations of

NPG, in conjunction with our assumption on the growth rate of the initial policy. Armed

with the growth rate bound, we make a novel alteration to the NPG algorithm by setting a

corresponding state-dependent step size. We prove that our state-dependent step size adjusts

for the growing relative value function, allowing us to prove our convergence result. We

discuss our approach in more detail in Section 4.1.

This paper focuses on infinite-state average-reward MDPs, which are the MDPs of most interest

in a variety of engineering contexts. While infinite-state discounted-reward MDPs have rarely been

explicitly studied, results on the NPG algorithm in such settings follow from existing finite-state

NPG results in the discounted setting. This is in contrast to infinite-state average-reward results, for

which new techniques were needed. We discuss infinite-state discounted-reward MDPs in Section 7.

The paper is organized as follows:

• Section 2: We discuss prior work on the NPG algorithm.

• Section 3: We define the MDP model, give our mild assumptions on the MDP, and define the

Natural Policy Gradient algorithm.

• Section 4: We state our convergence result for the NPG algorithm in the infinite-state, average-

reward setting, and discuss the key challenges and a sketch of our proof.

• Section 5: We prove our convergence result for the NPG in the infinite-state, average-reward

setting.

• Section 6: We demonstrate that our results are applicable to a natural class of infinite-state

average-reward MDPs arising out of queueing theory.

• Section 7: We briefly discuss the infinite-state discounted-reward setting.
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2 PRIORWORK
We overview prior results on the NPG algorithm in the finite-state setting in Section 2.1, connections

between the NPG algorithm and a variety of reinforcement learning algorithms in Section 2.2,

results on the NPG algorithm in highly-structured infinite-state settings in Section 2.3, and prior

work applying reinforcement learning to queueing problems in Section 2.4.

2.1 Natural Policy Gradient with finite state-space
The Natural Policy Gradient (NPG) algorithm for MDP optimization utilizes the Fisher information

associated with a policy to choose a gradient descent direction to update a MDP policy [20]. The

NPG algorithm has been shown to have attractive properties, including global convergence in the

tabular setting with finite state space [3].

In the discounted-reward tabular setting with finite-state space, NPG has been shown to converge

to the optimal policy at a rate of 𝑂 (1/𝑇 ): The expected discounted reward of the policy after 𝑇

iterations of NPG is within 𝑂 (1/𝑇 ) of the optimal expected discounted reward [3, 15].

As we discuss in Section 7, this result straightforwardly generalizes from the finite-state-space

setting with discounted reward to the infinite-state-space setting with discounted reward, given

mild assumptions on the structure of the infinite-state MDP, proving the same𝑂 (1/𝑇 ) convergence
result.

In the average-reward tabular setting with finite-state space, NPG has long been known to

converge to the optimal policy at a rate of 𝑂 (1/
√
𝑇 ) [13]. Recently, an improved convergence rate

result of 𝑂 (1/𝑇 ) has been proven for the average-reward finite-state setting [23].

However, as we discuss in Section 4.1, these average-reward results do not generalize from the

finite-state-space setting to the infinite-state-space setting. Each of the finite-state-space results

makes crucial assumptions bounding the behavior of a worst-case state in the MDP. If the state space

is finite, these assumptions are reasonable, but in an infinite-state space setting, the assumptions

fail. Proving convergence in this infinite-state average-reward setting is the focus of this paper.

2.2 NPG and Reinforcement Learning
The Natural Policy Gradient algorithm can be thought of as applying the Mirror Descent framework,

using a Kullback-Leiber divergence penalty to regularize the basic Policy Gradient algorithm [15].

Many reinforcement learning algorithms have been built off of this core idea. The first such

algorithm was the Natural Actor-Critic algorithm [24], which explicitly builds off of the NPG

algorithm, and which also generalizes previously existing reinforcement learning algorithms such

as the original Actor-Critic algorithm [30] and Linear Quadratic Q-Learning [7].

More recent, practically used reinforcement learning algorithms, such as the Trust Region Policy

Optimization (TRPO) [26] and Proximal Policy Optimization (PPO) [27], also build off the core

NPG algorithm. TRPO replaces the NPG algorithm’s KL divergence regularization term with a

KL divergence constraint, allowing the algorithm to take larger steps towards an improved policy,

and achieve better empirical performance. PPO further tweaks the handling of the KL divergence,

introducing a clipped surrogate objective based off of the KL divergence.

Further extensions of the PPO algorithm have recently been proposed and empirically studied, in-

cluding in the setting of infinite-state average-reward reinforcement learning [12]. These extensions

reduce the variance of the value estimation process, thereby improving learning performance.

The theoretical analysis of the NPG algorithm underpins the theoretical motivation for these

reinforcement learning algorithms. We prove the first convergence result for NPG in the infinite-

state average-reward setting, giving theoretical backing for the use of NPG-based reinforcement

learning algorithms in this setting.
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2.3 Natural Policy Gradient for specialized settings
The policy gradient algorithm has been studied in certain specialized settings with infinite state-

spaces and average-reward objective. These results rely heavily on the specific details of those

settings, and do not generalize beyond those specific contexts.

Fazel et al. [14] study the Linear Quadratic Regulator (LQR), an important problem in control

theory which can be thought of as an MDP optimization problem with an uncountably infinite

state-space and average reward. The paper proves that in this setting, the naive policy gradient

algorithm converges to the optimal policy, and the NPG algorithm converges with a faster rate

guarantee. Kunnumkal and Topaloglu [21] study the base-stock inventory control problem, and

prove that an algorithm using the policy gradient framework achieves convergence to the optimal

policy, with a bound on the convergence rate.

Follow-up study of these settings has recently demonstrated that these settings exhibit additional

structure which allows these convergence results to hold [6]. This additional structure relates to

the interplay between policy gradient algorithms, which the above results focus on, and policy

improvement algorithms. In particular, it has been shown that if the standard policy improvement

algorithm exhibits no suboptimal stationary points, then policy gradient algorithms will track the

standard policy iteration algorithm and thereby converge to the global optimum. This mechanism

is the root cause behind the prior convergence results in the LQR and base-stock settings.

In contrast, such properties do not hold for general infinite-state MDPs, such as the ones we

study, which have much less structure than these previously-studied settings.

2.4 Queueing and Reinforcement Learning
In this paper, we study infinite-state average-reward MDP optimization, and use MDPs arrising

from queueing theory as an example application of our results (See Section 6).

A variety of papers have studied applying reinforcement learning to queueing problems, including

using learning algorithms which build off of the NPG algorithm.

Dai and Gluzman [12] study variance reduction techniques for the PPO algorithm in the context of

queueing models, and demonstrate empirically strong performance, converging towards an optimal

policy in several queueing settings. Che et al. [10] further employ a differentiable simulation-based

modeling technique, allowing additional approximate gradient information to be derived, which is

then used to improve the empirical reinforcement learning performance in a queueing context.

Wei et al. [32] have demonstrated that a “sample augmentation” technique can reduce the amount

of sample data necessary to converge towards an optimal policy for pseudo-stochastic reinforcement

learning settings, including queueing models. However, the paper focuses on discounted-cost finite-

state queueing MDPs, rather than the infinite-state average-reward queueing models which are

preferred elsewhere in queueing theory.

In preprint work, Adler and Subramanian [2] study an infinite-state, average-reward MDP

optimization setting, where the underlying MDP is parameterized by an unknown parameter 𝜃 .

Queueing models with unknown dynamics are used as the motivating models. The paper assumes

that an optimal policy 𝜋∗
𝜃
is known for the MDP under any given parameter 𝜃 , and focuses on

learning the true parameter value 𝜃 ∗, and on minimizing the regret experienced while learning that

parameter. Our result complements this paper, as we show that the NPG algorithm can be used to

find optimal policies for MDPs in a setting where the underlying parameters are exactly known,

providing the necessary input 𝜋∗
𝜃
for the above result.

In work currently under submission, Chen et al. [11] study a primal-dual optimization technique

for optimizing constrained MDPs, such as those encountered in queueing problems. They consider

a Langrangian relaxation of the original MDP, and simultaneously optimize the policy and the
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dual weights of the relaxation. In the special case of an unconstrained MDP, the underlying primal

algorithm they study is the NPG algorithm.

While they consider an infinite-state, average-reward setting, they make a key assumption, [11,

Assumption 3], assuming that the state-action relative value function 𝑄𝜋 (𝑠, 𝑎) is bounded. This is
true in the finite-state average-reward setting, and in the infinite-state discounted-reward setting

with bounded reward, but fails to hold in the general infinite-state average-reward setting which

we study. Correspondingly, in their empirical evaluation, they study queueing MDPs where the

queue length has been truncated, allowing their assumption to hold. Using that assumption, they

prove an𝑂 (1/
√
𝑇 ) convergence rate to the optimal policy. In contrast, our result is the first to study

the NPG algorithm in a setting of unbounded relative value 𝑄𝜋 (𝑠, 𝑎), allowing our results to apply

to a much more general class of infinite-state, average-reward MDPs, including queueing models

with unbounded queue length.

3 MODEL, ASSUMPTIONS, AND ALGORITHM
We introduce our MDP model in Section 3.1, our mild assumptions on the structure of the MDP in

Section 3.2, and the NPG algorithm in Section 3.3.

3.1 Markov Decision Processes
We consider Markov Decision Processes (MDPs) with infinite horizon, infinite state space 𝑆 , and

finite action space 𝐴, and some class of randomized policies 𝜋 ∈ Π. Each policy 𝜋 ∈ Π is a function

from states to distributions over actions.

The environment is captured by a transition function P which maps a state-action pair (𝑠, 𝑎) to a
distribution over states 𝑠′ ∈ 𝑆 , denoted by P{𝑠′ | 𝑠, 𝑎}. For convenience, we will write P{𝑠′ | 𝑠, 𝜋} to
denote the probability of transition from 𝑠 to 𝑠′ under policy 𝜋 :

P𝜋 {𝑠′ | 𝑠} := P{𝑠′ | 𝑠, 𝜋} :=
∑︁

𝑎∈𝐴
𝜋 (𝑎 | 𝑠)P{𝑠′ | 𝑠, 𝑎}.

The reward is given by a reward function 𝑟 (𝑠, 𝑎) which maps a state-action pair to a real-

valued reward. We likewise write 𝑟 (𝑠, 𝜋) to denote the expected single-step reward associated

with policy 𝜋 and state 𝑠 . We define 𝑟max (𝑠) to be the maximum reward achievable in state 𝑠 ,

𝑟max (𝑠) := max𝑎 𝑟 (𝑠, 𝑎).
If 𝜋 gives rise to a stable Markov chain, let 𝐽𝜋 denote the average reward associated with policy

𝜋 , defined as

𝐽𝜋 = lim

𝑇→∞

1

𝑇
E𝜋

[∑︁𝑇−1

𝑖=0

𝑟 (𝑠𝑖 , 𝜋)
]
,

where 𝑠𝑖 is the state at time 𝑖 , and where the expectation E𝜋 is taken with respect to the transition

probability P𝜋 .
Let 𝑑𝜋 denote the stationary distribution over 𝑆 under the policy 𝜋 . We can express 𝐽𝜋 as

𝐽𝜋 = E𝑠∼𝑑𝜋 [𝑟 (𝑠, 𝜋)] .

The state relative value function𝑉𝜋 (𝑠) is defined, up to an additive constant𝐶 , to be the additive

transient effect of the initial state on the total reward:

𝑉𝜋 (𝑠) = 𝐶 + lim

𝑇→∞

(
E𝜋

[∑︁𝑇−1

𝑖=0

𝑟 (𝑠𝑖 , 𝜋) | 𝑠0 = 𝑠

]
− 𝐽𝜋𝑇

)
This is also the solution, up to an additive constant, of the Poisson equation:

𝐽𝜋 +𝑉𝜋 (𝑠) = 𝑟 (𝑠, 𝜋) + E𝑠′∼P𝜋 (𝑠 ) [𝑉𝜋 (𝑠′)]
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We also define the state-action relative value function𝑄𝜋 (𝑠, 𝑎) and its associated Poisson equation:

𝑄𝜋 (𝑠, 𝑎) = 𝐶 + lim

𝑇→∞

(
E𝜋

[∑︁𝑇−1

𝑖=0

𝑟 (𝑠𝑖 , 𝜋) | 𝑠0 = 𝑠, 𝑎0 = 𝑎

]
− 𝐽𝜋𝑇

)
𝐽𝜋 +𝑄𝜋 (𝑠, 𝑎) = 𝑟 (𝑠, 𝑎) + E𝑠′∼P𝜋 (𝑠 ) [𝑄𝜋 (𝑠′, 𝜋)] .

To uniquely specify the additive constant 𝐶 , we will adopt the convention that 𝑉𝜋 (®0) = 0, for a

specially identified state ®0 defined in Assumption 1. In the queueing setting discussed in Section 6,

®0 is the state with no jobs in the system.

Let 𝜏𝜋 (𝑠) denote the expected time under policy 𝜋 to hit the specially identified state ®0, starting
from state 𝑠 .

Let 𝜋0, 𝜋1, . . . , 𝜋𝑘 , . . . denote the iterate policies of the NPG algorithm defined in Section 3.3. For

concision, we will write 𝐽𝑘 , 𝜏𝑘 , 𝑄𝑘 , etc. as shorthand for 𝐽𝜋𝑘 , 𝜏𝜋𝑘 , 𝑄𝜋𝑘 , etc., to denote functions of the

iterate policy 𝜋𝑘 .

3.2 Assumptions
We make two assumptions on the structure of our MDP: One on the rewards in the MDP, and

one on the connectedness of high-reward states. We verify these assumptions for a large class of

queueing MDPs in Theorem 2.

First, we make mild assumptions on the reward structure of the MDP:

Assumption 1 (Reward structure).

(a) We assume that the MDP has bounded positive reward, though it may have unlimited negative
reward (e.g. unlimited cost). Specifically, we assume that 𝑐max := sup𝑠,𝑎 𝑟 (𝑠, 𝑎) < ∞.

It will be useful in some cases to normalize this upper bound to 0. Let us define the reduced reward
𝑟 (𝑠, 𝑎) := 𝑟 (𝑠, 𝑎) − 𝑐max.
(b) We assume that there are finitely many high-reward states. Specifically, for any 𝑧, we assume that

there are finitely many states 𝑠 such that 𝑟max (𝑠) ≥ 𝑧.
From (a) and (b), it follows that there must exist a state 𝑠∗ which achieves the maximum reward
𝑟max (𝑠∗) = 𝑐max. Let ®0 be a specific maximum-reward state.
(c) We assume the reward 𝑟 (𝑠, 𝑎) is not overwhelmingly dominated by the action 𝑎, as opposed to the

state 𝑠 . Specifically, we assume that there exist constants 𝑅1, 𝑅2 ≥ 0 such that for all states 𝑠 and all
actions 𝑎, 𝑟max (𝑠) − 𝑟 (𝑠, 𝑎) ≤ 𝑅1𝑟max (𝑠)2 + 𝑅2.

(d) We assume that the reward 𝑟max (𝑠) does not change very quickly between neighboring states.
Specifically, we assume that there exist constants 𝑅3 ≥ 1, 𝑅4 ≥ 0, such that, if 𝑠, 𝑠′ are a pair of
states such that P{𝑠 | 𝑠, 𝑎} > 0 for some action 𝑎, then 𝑟max (𝑠′) ≥ 𝑅3𝑟max (𝑠) − 𝑅4.

Second, we assume that the high-reward states are uniformly connected, under an arbitrary

policy:

Assumption 2 (Uniform connectedness of high-reward states). Given a reward threshold
𝑧, we assume that there exists a number of steps 𝑥𝑧 and a probability 𝑝𝑧 > 0 such that for all states
𝑠, 𝑠′ where 𝑟max (𝑠) ≥ 𝑧, 𝑟max (𝑠′) ≥ 𝑧, and for all policies 𝜋 , the probability that the MDP initialized at
state 𝑠 and transitioning under policy 𝜋 reaches state 𝑠′ in at most 𝑥𝑧 steps is at least 𝑝𝑧 .

3.3 NPG Algorithm
This paper studies the Natural Policy Gradient algorithm, given in Algorithm 1.

Note that the NPG algorithm is an MDP optimization algorithm, rather than a learning algorithm.

In particular, we assume that the relative value function 𝑄𝜋 (𝑠, 𝑎) can be exactly computed.
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Algorithm 1 The Natural Policy Gradient algorithm

Initialize: A learning rate function, mapping states 𝑠 to learning rates 𝛽𝑠 .

Initialize: An initial policy 𝜋0.

for each iteration 𝑘 = 0 to 𝑇 − 1 do
for all state-action pairs 𝑠, 𝑎 do

Compute the value function 𝑄𝑘 (𝑠, 𝑎).
Compute the weighted update 𝜋𝑘 (𝑎 | 𝑠)𝛽𝑄𝑘 (𝑠,𝑎)

𝑠 .

Set the new policy probability 𝜋𝑘+1 (𝑎 | 𝑠) = 𝜋𝑘 (𝑎 | 𝑠)𝛽𝑄𝑘 (𝑠,𝑎)
𝑠 /𝑍𝑠,𝑘 ,

where 𝑍𝑠,𝑘 =
∑
𝑎′ 𝜋𝑘 (𝑎′ | 𝑠)𝛽

𝑄𝑘 (𝑠,𝑎′ )
𝑠 .

4 RESULTS
We prove the first convergence result for the Natural Policy Gradient algorithm in an MDP setting

with infinite state space and average-reward objective.

Theorem 1. For any average-reward MDP satisfying Assumptions 1 and 2, given an initial policy
𝜋0 such that there exist constants 𝑐0 > 0, 𝑐1 ≥ 0 such that

𝑉0 (𝑠) ≥ −𝑐0𝑟max (𝑠)2 − 𝑐1, (1)

the NPG algorithm with learning rate parameterization 𝛽𝑠 given in (5) achieves the convergence rate

𝐽∗ − 𝐽𝑇 ≤ 𝑐∗√
𝑇
,

where 𝑐∗ is a constant depending on the MDP parameters and on 𝑐0 and 𝑐1.

Proof deferred to Section 5.

To give a concrete example of an infinite-state average-reward MDP satisfying Assumptions 1

and 2 and an initial policy satisfying (1), we examine the “Generalized Switch with Static En-

vironment” (GSSE) in Section 6. This is a highly general queueing model which can capture a

wide variety of commonly studied queueing systems, including the N-system, the switch, and the

multiserver-job system. We study the MaxWeight initial policy in this setting.

In Theorem 2, we prove that in the GSSE setting, with the MaxWeight initial policy, the NPG

algorithm converges to the policy with optimal mean queue length with convergence rate𝑂 (1/
√
𝑇 ).

4.1 Challenges
To prove a convergence rate result for the NPG algorithm in the infinite-state-space, average-reward,

setting, a natural approach would be to try to generalize finite-state average-reward results to the

infinite-reward setting. There are two relevant approaches to consider: the approach of Even-Dar

et al. [13], and of Murthy and Srikant [23]. Unfortunately, each of these approaches makes crucial

use of assumptions that are only plausible for MDPs with finite state-spaces.

With respect to Even-Dar et al. [13], combining that paper’s Algorithm 4 (MDP Experts) with its

Algorithm 1 (Weighted Majority) results in exactly the Natural Policy Gradient algorithm, and the

paper’s Theorem 4.1 proves that NPG converges to the optimal policy in the finite-state average-

reward setting, with convergence rate 𝑂 (1/
√
𝑇 ). To prove this theorem, the paper assumes that

there exists some finite mixing time 𝜏 for all policies 𝜋 . Intuitively, this assumption states that every

policy takes the system state to a distribution becomes near the policy’s stationary distribution in

at most𝑂 (𝜏) steps. In a finite-state MDP, this is a reasonable assumption: For reasonable policies, 𝜏

might be exponential in |𝑆 | at worst. In contrast, in an infinite-state MDP with infinite diameter,
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such as the queueing systems we consider in Section 6, it is plainly false. No policy can achieve a

finite mixing time, much less all policies.

Murthy and Srikant [23] prove that the NPG algorithm converges to the optimal policy in the

finite-state average-reward setting at rate 𝑂 (1/𝑇 ). To do so, the paper assumes that there exists

some uniform lower bound Δ on the relative state probability of an arbitrary policy and of the

optimal policy, in stationarity:

Δ = inf

𝜋,𝑠

𝑑𝜋 (𝑠)
𝑑∗ (𝑠)

> 0

In a finite-state MDP, this is a reasonable assumption: As long as 𝑑𝜋 places nonzero probability on

every state 𝑠 , the assumption will be satisfied. In contrast, in an infinite-state MDP, 𝑑𝜋 (𝑠)/𝑑∗ (𝑠)
will approach zero as we look at more and more states 𝑠 , for almost all policies 𝜋 . Restricting to

a class of policies 𝜋 where 𝑑𝜋 (𝑠)/𝑑∗ (𝑠) remains bounded away from zero would require advance

knowledge of the optimal policy 𝜋∗
.

Another natural approach would be to try to use results from the discounted-reward setting to

prove results in the average-reward setting. A standard result states that a policy 𝜋 ’s average reward

𝐽𝜋 can be related to its discounted reward 𝑉 𝜋𝜂,𝛼 via the formula 𝐽𝜋 = lim𝛼→1 (1 − 𝛼)𝑉 𝜋𝜂,𝛼 , where
𝑉 𝜋𝜂,𝛼 denotes a policy 𝜋 ’s expected reward, starting from distribution 𝜂, with discount factor 𝛼 [5].

Unfortunately, existing convergence-rate bounds on NPG in the discounted-reward setting, such as

[3, Theorem 16], have a 𝜃 ( 1

(1−𝛼 )2
) dependency on 𝛼 , so discounted-reward results do not prove that

the NPG algorithm converges in the average-reward setting, much less bound its convergence rate.

These proof approaches do not straightforwardly generalize to our infinite-state average-reward

setting.

4.2 Proof sketch
Delving deeper into the Even-Dar et al. [13] approach, their key insight is that one can think of the

MDP optimization problem as consisting of many instances of the expert advice problem [9], and

think of the NPG algorithm as running a separate instance of the weighted majority algorithm for

each state 𝑠 , where the reward function at time step 𝑘 is 𝑄𝑘 (𝑠, 𝑎).
In the expert advice problem, an agent has a set of possible actions, each with a secret reward.

After an action 𝑎𝑘 is chosen on time-step 𝑘 , the reward function �̃�𝑘 (·) is revealed to the agent. The

goal of the expert advice problem is to choose a sequence of actions {𝑎𝑘 } whose total reward is

close to that of the optimal single action, 𝑎∗.
The weighted majority algorithm maintains a distribution 𝜋 over actions, sampling an action at

random from its distribution at each time step. At each time step, the action distribution is updated

according to the rule:

𝜋𝑘+1 (𝑎) = 𝛽 �̃�𝑘 (𝑎)/𝑍𝑘 , where 𝑍𝑘 =
∑︁

𝑎′
𝜋𝑘 (𝑎′)𝛽 �̃�𝑘 (𝑎) .

[9, Theorem 4.4.3], restated as Lemma 4, states that, as long as the reward �̃�𝑘 (𝑎) is bounded,
there exists a choice of 𝛽 such that the weighted majority algorithm achieves 𝑂 (

√
𝑇 ) regret when

compared to the optimal action.

Thus, to bound the convergence rate of the NPG algorithm, it is crucial to bound the relative

value function 𝑉𝜋 (𝑠), and thereby bound the state-action relative value 𝑄𝑘 (𝑠, 𝑎). In the finite-state

setting, Even-Dar et al. [13] use their bounded-mixing time assumption to prove a universal bound

on 𝑉𝜋 (𝑠) over all policies 𝜋 , states 𝑠 , and actions 𝑎, which allows the NPG convergence rate proof

to be completed.

In our infinite-state setting, we also prove bounds on 𝑉𝜋 (𝑠), but we prove policy- and state-

dependent bounds. Specifically, we prove strong enough bounds to complete the proof in a similar
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fashion to Even-Dar et al. [13], transferring bounds on the relative value function to bounds on the

convergence rate. These relative-value bounds form the key novelty of this paper.

We now outline our lemmas, which primarily focus on bounding 𝑉𝜋 (𝑠), towards our goal of
proving Theorem 1, our convergence rate bound.

Step 1: Bounding change in relative value under NPG update The presence of unstable

policies 𝜋 shows that for general policies 𝜋 , 𝑉𝜋 (𝑠) may be unbounded. However, we don’t need to

bound 𝑉𝜋 (𝑠) over all policies 𝜋 . Instead, we focus on the specific policies 𝜋𝑘 visited by the NPG

algorithm, and bound the relative value functions 𝑉𝑘 (𝑠) of only those policies.

We start with Lemma 5 by bounding how much worse 𝑉𝑘+1 (𝑠) can be than 𝑉𝑘 (𝑠), relative to the

policy’s hitting time 𝜏𝑘 (𝑠) from states 𝑠 to the special state ®0. This lemma builds on Lemma 1, a

standard monotonicity result for the NPG policy.

Step 2: Bounding high-reward states Next, in Lemma 6, we bound the time 𝜏𝜋 (𝑠) for the
system to hit ®0, starting from a high-reward state 𝑠 under policies 𝜋 with high average reward 𝐽𝜋 .

Here, we make use of the fact that the NPG algorithm is known to monotonically increase the

average reward at each iteration (Lemma 2), so this result applies to all iterates of the algorithm.

Step 3: Bounding all states Putting it all together, in Lemma 7, we bound the relative value

𝑉𝑘 (𝑠) of the iterate policies in comparison to the relative value𝑉0 (𝑠) of the initial policy, for arbitrary
states 𝑠 . Thus, if the initial policy has a well-behaved relative value function, then each iterate

policy will also have a well-behaved relative value function, and we can prove fast convergence.

Step 4: Main result, using the quadratic assumption In Theorem 1, we specifically assume

that the initial policy’s relative value function 𝑉0 (𝑠) grows at most quadratically relative to the

reward 𝑟 (𝑠, 𝑎), an assumption that we show in Section 6 is satisfied by the MaxWeight policy in the

setting of queueing MDPs.

As a result, we now have a bound on the relative value function 𝑉𝑘 (𝑠) for each NPG iterate 𝜋𝑘
which depends on the state 𝑠 – the bound is not uniform over all states. We specify this bound in

Lemma 8. Correspondingly, we set our learning rate 𝛽 as a function of the state 𝑠 , based on the

bound on the relative value function that we are able to prove in that particular state. In states with

more negative reward, our bound on 𝑉𝜋 (𝑠) is weaker, so we use a slower learning rate, to improve

convergence.

Now, with our state-dependent bounds on the relative value function for the NPG iterate policies,

we are ready to employ the approach outlined at the beginning of this section: Thinking of the

MDP optimization problem as many instances of the expert advice problem, and thinking of the

NPG algorithm has many instances of the weighted majority algorithm for that problem.

In Theorem 1, we prove that by starting with a initial policy 𝜋0 whose relative value function

𝑉0 (𝑠) grows at most quadratically with respect to reward 𝑟 (𝑠, 𝑎), and by selecting the right 𝛽𝑠

function, the NPG algorithm is guaranteed to achieve a 𝑂 (1/
√
𝑇 ) convergence rate. Our quadratic

assumption on the initial policy is exactly strong enough to prove this convergence rate.

5 PROOFS
We start by stating background lemmas from the literature in Section 5.1. Then we proceed with

our proof:

(1) In Lemma 5, we bound the change in relative value between two policies which are consecutive

iterates of the NPG algorithm.

(2) In Lemma 6, we bound the hitting time 𝜏𝑘 (𝑠) for high-reward states 𝑠 under high-average-

reward policies, such as the policies which are iterates of the NPG algorithm.

(3) In Lemma 7, we bound the relative value of all NPG iterates in all states 𝑠 , in comparison to

the initial policy 𝜋0.
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(4) In Section 5.5, we prove our main result, Theorem 1, making use of our quadratic-relative-

value assumption on our initial policy 𝜋0.

5.1 Background lemmas
We start by restating results from the literature. Note that Lemmas 1 and 2 were each originally

proven in a setting with fixed 𝛽 , but the proofs still hold unchanged in our setting with variable 𝛽𝑠 .

First, we state two monotonicity results for the NPG algorithm, both proven in [23, Lemma 2].

Lemma 1. Policy 𝜋𝑘+1 improves upon policy 𝜋𝑘 relative to 𝜋𝑘 ’s relative-value function 𝑄𝑘 :

𝑄𝑘 (𝑠, 𝜋𝑘+1) ≥ 𝑄𝑘 (𝑠, 𝜋𝑘 ) = 𝑉𝑘 (𝑠)

Proof. In [23, Lemma 2]. We restate the proof in Appendix A for added clarity. □

Lemma 2. Average reward increases monotonically: 𝐽𝑘+1 ≥ 𝐽𝑘 .

Lemma 2 follows immediately from Lemma 1 and the Performance Difference Lemma, Lemma 3,

which relates the difference in average reward between two policies to their relative value functions:

Lemma 3. [8, (10)] For any pair of policies 𝜋, 𝜋 ′,

𝐽𝜋 − 𝐽𝜋 ′ = 𝐸𝑠∼𝑑𝜋 [𝑄𝜋 ′ (𝑠, 𝜋) −𝑉𝜋 ′ (𝑠)] .

In particular, Lemma 3 holds in our infinite-state setting. The proof of Lemma 3 given by Cao [8]

requires only that the underlying Markov chains are ergodic, ensuring that the relevant quantities

are well-defined.

Finally, we state a result on the weighted majority algorithm for the expert advice problem. The

problem and algorithm are described in Section 4.2. Note that this paper operates in a reward

maximization framework rather than the loss minimization framework of [9], so we invert 𝑔(𝑧)
relative to that paper.

Lemma 4. [9, Theorem 4.4.3] Consider an instance of the expert advice problem, where for any step
𝑘 and any pair of actions 𝑎, 𝑎′,𝑀 is an upper bound on the value of �̃�𝑘 (𝑎) − 𝑟𝑘 (𝑎′). By selecting

𝛽 = 𝑔

(√︂
ln |𝐴|
𝑇𝑀

)
,where 𝑔(𝑧) = 1 + 2𝑧 + 𝑧2/ln 2, (2)

the weighted majority algorithm achieves the following regret guarantee:∑︁𝑇

𝑘=1

𝑟𝑘 (𝑎∗) − 𝑟𝑘 (𝑎𝑘 ) ≤
√︁
𝑇𝑀 ln |𝐴| + log

2
( |𝐴|)/2.

5.2 Step 1: Bounding change in relative value under NPG update
First, we bound the amount by which the relative value function of an NPG iterate 𝑉𝑘+1 (𝑠) can be

lower (i.e. worse) than 𝑉𝑘 (𝑠), the previous policy iterate, relative to 𝜏𝑘+1 (𝑠), the time to hit ®0 from

state 𝑠 under policy 𝜋𝑘+1:

Lemma 5. For any two NPG policy iterates 𝜋𝑘 and 𝜋𝑘+1, and any state 𝑠 , we can lower bound𝑉𝑘+1 (𝑠):
𝑉𝑘+1 (𝑠) ≥ 𝑉𝑘 (𝑠) − 𝜏𝑘+1 (𝑠) (𝐽𝑘+1 − 𝐽𝑘 ).

Proof. To compare 𝑉𝑘+1 and 𝑉𝑘 , we will examine non-stationary policies which perform policy

𝜋𝑘+1 for some number of steps, and then perform 𝜋𝑘 afterwards. Note that such policies have an

average reward of 𝐽𝑘 , so their relative values are directly comparable to 𝑉𝑘 (𝑠).
Let𝑉 𝑛

𝑘
(𝑠) denote the relative value of the policy which performs 𝜋𝑘+1 for 𝑛 steps before switching

to 𝜋𝑘 . Note that 𝑉
0

𝑘
(𝑠) = 𝑉𝑘 (𝑠), and that 𝑉 1

𝑘
(𝑠) = 𝑄𝑘 (𝑠, 𝜋𝑘+1).
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Applying Lemma 1, we know that 𝑉 1

𝑘
(𝑠) ≥ 𝑉 0

𝑘
(𝑠). Furthermore, let us compare 𝑉 2

𝑘
(𝑠) and 𝑉 1

𝑘
(𝑠).

Both policies start by applying 𝜋𝑘+1 for one step, accruing the same reward and transitioning to the

same distribution over states. From that point onward, Lemma 1 again tells us that 𝑉 2

𝑘
(𝑠) ≥ 𝑉 1

𝑘
(𝑠).

In general, 𝑉 𝑛
𝑘
(𝑠) ≥ 𝑉 0

𝑘
(𝑠) for any number of steps 𝑛. Even if 𝑛 is chosen to be a stopping time,

rather than a constant number of steps, 𝑉 𝑛
𝑘
(𝑠) ≥ 𝑉 0

𝑘
(𝑠).

Let us consider the specific case where the number of steps 𝑛 is the time to hit ®0 from state 𝑠

under the policy 𝜋𝑘+1. This policy has relative value 𝑉
𝜏𝑘+1 (𝑠 )
𝑘

(𝑠).
Because we define𝑉𝜋 (®0) = 0, for any policy 𝜋 , to compute a policy’s relative value, we need only

examine its relative value over the first 𝜏𝜋 (𝑠) steps. In particular,

𝑉𝜋 (𝑠) = E
[∑︁𝜏𝜋 (𝑠 )

𝑖=0

(𝑟 (𝑠𝜋 (𝑖), 𝑎𝜋 (𝑖)) − 𝐽𝜋 )
]
,

where 𝑠𝜋 (𝑖), 𝑎𝜋 (𝑖) are the state and action taken by policy 𝜋 on iteration 𝑖 .

Applying this formula for 𝑉
𝜏𝑘+1 (𝑠 )
𝑘

(𝑠), we find that

𝑉
𝜏𝑘+1 (𝑠 )
𝑘

(𝑠) = E
[∑︁𝜏𝑘+1 (𝑠 )

𝑖=0

(𝑟 (𝑠𝑘+1 (𝑖), 𝑎𝑘+1 (𝑖)) − 𝐽𝑘 )
]
= 𝑉𝑘+1 (𝑠) + 𝜏𝑘+1 (𝑠) (𝐽𝑘+1 − 𝐽𝑘 )

Applying the fact that 𝑉
𝜏𝑘+1 (𝑠 )
𝑘

(𝑠) ≥ 𝑉𝑘 (𝑠), we find that

𝑉𝑘+1 (𝑠) + 𝜏𝑘+1 (𝑠) (𝐽𝑘+1 − 𝐽𝑘 ) = 𝑉 𝜏𝑘+1 (𝑠 )
𝑘

(𝑠) ≥ 𝑉𝑘 (𝑠) =⇒ 𝑉𝑘+1 (𝑠) ≥ 𝑉𝑘 (𝑠) − 𝜏𝑘+1 (𝑠) (𝐽𝑘+1 − 𝐽𝑘 ). □

5.3 Step 2: Bounding the time to hit the highest-reward state ®0.
Now, we bound the time 𝜏𝜋 (𝑠) for the system to hit the highest reward state ®0, starting from any

state 𝑠 and under any policy 𝜋 . Later, we will apply this bound when the initial state 𝑠 has high

reward 𝑟max (𝑠) and for policies 𝜋 with high average reward 𝐽𝜋 (𝑠). In doing so, we will make key

use of Assumption 2, our assumption of uniform connectedness of states with high reward 𝑟max (𝑠).

Lemma 6. Let 𝑦, 𝑧 be two reward thresholds, 𝑦 > 𝑧. For all states 𝑠 with 𝑟max (𝑠) ≥ 𝑧 and all policies
𝜋 such that 𝐽𝜋 ≥ 𝑦, the hitting time is bounded:

𝜏𝜋 (𝑠) ≤ 𝜏𝑏𝑜𝑢𝑛𝑑𝑦,𝑧 :=
𝑥𝑧 (𝑐max − 𝑦)
𝑝2

𝑧 (𝑦 − 𝑧)
+ 𝑥𝑧

where 𝑥𝑧 and 𝑝𝑧 are the constants from Assumption 2.

Proof. Let S𝑧 be the set of states 𝑠 such that 𝑟max (𝑠) ≥ 𝑧. For each state 𝑠 ∈ S𝑧 , let 𝑡𝜋,𝑧 (𝑠) be the
expected amount of time until policy 𝜋 next reaches a state 𝑠′ ∈ S𝑧 , starting in state 𝑠 . Let 𝑡max

𝜋,𝑧 be

the maximum over 𝑠 ∈ S𝑧 of 𝑡𝜋,𝑧 (𝑠). Let 𝑠∗ be the state in S𝑧 which achieves this maximum. By

Assumption 2, every state 𝑠 ∈ S𝑧 has at least 𝑝𝑧 probability of moving to state 𝑠∗ in the next 𝑥𝑧
steps, and therefore spending at most 𝑥𝑧 of the next 𝑡

max

𝜋,𝑧 + 𝑥𝑧 steps inside S𝑧 .
Let us use a renewal-reward argument, where the renewal moments are steps on which the

system visits state 𝑠∗. Let us subdivide this renewal period into three segments:

(1) Starting at 𝑠∗, the time until a state 𝑠 ∈ 𝑆𝑧 is next visited.
(2) Starting from a state 𝑠 ∈ 𝑆𝑧 , the next 𝑥𝑧 steps, during which there is at least a 𝑝𝑧 probability

of reaching the state 𝑠∗.
(3) Any time not in either of these two segments, which must be spent outside of 𝑆𝑧 .

From these segments, we can upper-bound the fraction of time during the renewal period that the

system spends in S𝑧 : The system can only be in S𝑧 during Item 2, and the system can spend at most
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1

𝑝𝑧
periods of length at most 𝑥𝑧 in that segment. The fraction of time spent in S𝑧 is maximized if no

time is spent in Item 3, resulting in the following bound:

P{𝑠𝑡 ∈ S𝑧} ≤
𝑥𝑧/𝑝𝑧

𝑡max

𝜋,𝑧 + 𝑥𝑧/𝑝𝑧
Recalling that the system accrues at most 𝑐max reward inside of S𝑧 and at most 𝑧 reward outside

of 𝑧, we can conclude that the long-term reward of the policy 𝜋 is at most

𝐽𝜋 ≤ 𝑐max

𝑥𝑧/𝑝𝑧
𝑡max

𝜋,𝑧 + 𝑥𝑧/𝑝𝑧
+ 𝑧

𝑡max

𝜋,𝑧

𝑡max

𝜋,𝑧 + 𝑥𝑧/𝑝𝑧
=
𝑥𝑧𝑐max + 𝑝𝑧𝑡max

𝜋,𝑧 𝑧

𝑥𝑧 + 𝑝𝑧𝑡max

𝜋,𝑧

(3)

However, we know that 𝐽𝜋 ≥ 𝑦. We can therefore use (3) to bound 𝑡max

𝜋,𝑧 :

𝑦 ≤
𝑥𝑧𝑐max + 𝑝𝑧𝑡max

𝜋,𝑧 𝑧

𝑥𝑧 + 𝑝𝑧𝑡max

𝜋,𝑧

=⇒ 𝑡max

𝜋,𝑧 ≤ 𝑥𝑧 (𝑐max − 𝑦)
𝑝𝑧 (𝑦 − 𝑧)

Now, we can bound the time until we reach ®0, starting from 𝑠 . Whenever the system is in a state in

S𝑧 , there is a 𝑝𝑧 chance of reaching ®0 in the next 𝑥𝑧 steps, and a 𝑡max

𝜋,𝑧 expected time until we next

get the opportunity.

Let 𝑝𝜋,𝑧 (𝑠) be the probability that the system reaches ®0 from 𝑠 in at most 𝑥𝑧 steps. Let 𝑡
′
𝜋,𝑧 (𝑠) be

the expected time until the system re-enters S𝑧 , conditional on not reaching ®0 in at most 𝑥𝑧 steps.

Note that by Markov’s inequality, 𝑡 ′𝜋,𝑧 (𝑠) ≤
𝑡𝜋,𝑧 (𝑠 )

1−𝑝𝜋,𝑧 (𝑠 ) . We can now start to bound 𝜏𝜋 (𝑠) as follows:

𝜏𝜋 (𝑠) ≤ 𝑝𝜋,𝑧 (𝑠)𝑥𝑧 + (1 − 𝑝𝜋,𝑧 (𝑠)) (𝑡 ′𝜋,𝑧 (𝑠) + 𝜏𝜋 (𝑠′))

where 𝑠′ is the state at which we re-enter S𝑧 . Thus,

𝜏𝜋 (𝑠) ≤ 𝑝𝜋,𝑧 (𝑠)𝑥𝑧 + (1 − 𝑝𝜋,𝑧 (𝑠))
(

𝑡𝜋,𝑧 (𝑠)
1 − 𝑝𝜋,𝑧 (𝑠)

+ 𝜏𝜋 (𝑠′)
)
= 𝑥𝑧 + 𝑡𝜋,𝑧 (𝑠) + (1 − 𝑝𝜋,𝑧 (𝑠)) (𝜏𝜋 (𝑠′) − 𝑥𝑧)

In particular, letting 𝜏max

𝜋 be the maximum over 𝑠 ∈ S𝑧 of 𝜏𝜋 (𝑠), and letting 𝑠∗𝜏 be the state in which

that maximum occurs, we have

𝜏max

𝜋 ≤ 𝑥𝑧 + 𝑡𝜋,𝑧 (𝑠∗𝜏 ) + (1 − 𝑝𝜋,𝑧 (𝑠∗𝜏 )) (𝜏max

𝜋 − 𝑥𝑧)

𝜏max

𝜋 ≤ 𝑥𝑧 +
𝑡𝜋,𝑧 (𝑠∗𝜏 )
𝑝𝜋,𝑧 (𝑠∗𝜏 )

≤ 𝑥𝑧 +
𝑡max

𝜋,𝑧

𝑝𝑧
=
𝑥𝑧 (𝑐max − 𝑦)
𝑝2

𝑧 (𝑦 − 𝑧)
+ 𝑥𝑧 . □

5.4 Step 3: Bounding relative value 𝑉𝑘 (𝑠) for all states 𝑠
We are now ready to bound the relative value function 𝑉𝑘 for all iterates 𝜋𝑘 of the Natural Policy

Gradient algorithm, and for all states 𝑠 . Lemma 6 covered high-reward states, so this lemma focuses

on low-reward states, building off of Lemma 5 to do so.

Lemma 7. For any reward threshold 𝑧 < 𝐽0, and for each iterate 𝜋𝑘 of the NPG algorithm, the
relative value function is lower and upper bounded as follows:

∀𝑠, 𝑘, 𝑉𝑘 (𝑠) ≥ min(𝑉0 (𝑠)
𝐽∗ − 𝑧
𝐽0 − 𝑧

,𝑉0 (𝑠)) − 𝜏𝑏𝑜𝑢𝑛𝑑𝐽0,𝑧

(𝐽∗ − 𝐽0) (𝑐max − 𝑧) (𝐽∗ − 𝑧)
(𝐽0 − 𝑧)2

∀𝑠, 𝑘, 𝑉𝑘 (𝑠) ≤ 𝜏𝑏𝑜𝑢𝑛𝑑𝐽0,𝑧
(𝑐max − 𝐽0),

where 𝜏𝑏𝑜𝑢𝑛𝑑𝑦,𝑧 is the hitting-time bound from Lemma 6. Note that these bounds do not depend on the
iteration 𝑘 , and they only depend on the state 𝑠 via the initial policy’s relative value 𝑉0 (𝑠).
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Proof. To lower bound 𝑉𝑘 (𝑠), let us start by using the following formula for 𝑉𝑘 (𝑠):

𝑉𝑘 (𝑠) = −𝐽𝑘𝜏𝑘 (𝑠) + 𝑟𝑘 (𝑠)𝜏𝑘 (𝑠)

where 𝑟𝑘 (𝑠) is the average reward that policy 𝜋𝑘 accrues over the interval until it first enters state

®0.
Let us subdivide the time 𝜏𝑘 (𝑠) into two periods: Let 𝜏𝑜𝑢𝑡

𝑘
be the time until the policy 𝜋𝑘 first

enters S𝑧 , and let 𝜏𝑖𝑛
𝑘

be the time from then until the policy first enters state ®0. We define 𝑟𝑜𝑢𝑡
𝑘

and

𝑟 𝑖𝑛
𝑘

similarly.

Similarly, let us define 𝑉 𝑜𝑢𝑡
𝑘

(𝑠) and 𝑉 𝑖𝑛
𝑘
(𝑠):

𝑉 𝑜𝑢𝑡
𝑘

(𝑠) = −𝐽𝑘𝜏𝑜𝑢𝑡𝑘
(𝑠) + 𝑟𝑜𝑢𝑡

𝑘
(𝑠)𝜏𝑜𝑢𝑡

𝑘
(𝑠),𝑉 𝑖𝑛

𝑘
(𝑠) = −𝐽𝑘𝜏𝑖𝑛𝑘 (𝑠) + 𝑟 𝑖𝑛

𝑘
(𝑠)𝜏𝑖𝑛

𝑘
(𝑠)

Note that 𝑉𝑘 (𝑠) = 𝑉 𝑜𝑢𝑡𝑘
(𝑠) +𝑉 𝑖𝑛

𝑘
(𝑠)

We can upper bound each of these quantities. Note that 𝑟𝑜𝑢𝑡
𝑘

(𝑠) ≤ 𝑧, and 𝑟 𝑖𝑛
𝑘
(𝑠) ≤ 𝑐max. Note that

𝜏𝑖𝑛
𝑘
(𝑠) ≤ 𝜏𝑏𝑜𝑢𝑛𝑑

𝐽0,𝑧
, by Lemma 6. Together, we can upper bound 𝑉𝑘 (𝑠) relative to 𝜏𝑘 (𝑠), or equivalently

upper bound 𝜏𝑘 (𝑠) relative to 𝑉𝑘 (𝑠):

𝑉𝑘 (𝑠) ≤ −𝐽𝑘𝜏𝑘 (𝑠) + 𝑧𝜏𝑘 (𝑠) + (𝑐max − 𝑧)𝜏𝑏𝑜𝑢𝑛𝑑𝐽0,𝑧

𝑉𝑘 (𝑠) − (𝑐max − 𝑧)𝜏𝑏𝑜𝑢𝑛𝑑𝐽0,𝑧

−𝐽𝑘 + 𝑧
≥ 𝜏𝑘 (𝑠)

Note that −𝐽𝑘 + 𝑧 < 0, so the direction of the inequality flips.

The key fact relating 𝑉𝑘 (𝑠) and 𝑉𝑘+1 (𝑠) is Lemma 5: 𝑉𝑘+1 (𝑠) ≥ 𝑉𝑘 (𝑠) − 𝜏𝑘+1 (𝑠) (𝐽𝑘+1 − 𝐽𝑘 ). Com-

bining our bounds, we find that

𝑉𝑘+1 (𝑠) ≥ 𝑉𝑘 (𝑠) −
𝑉𝑘+1 (𝑠) − (𝑐max − 𝑧)𝜏𝑏𝑜𝑢𝑛𝑑𝐽0,𝑧

−𝐽𝑘+1 + 𝑧
(𝐽𝑘+1 − 𝐽𝑘 )

𝑉𝑘+1 (𝑠) ≥ 𝑉𝑘 (𝑠)
𝐽𝑘+1 − 𝑧
𝐽𝑘 − 𝑧

− 𝜏𝑏𝑜𝑢𝑛𝑑𝐽0,𝑧
(𝐽𝑘+1 − 𝐽𝑘 )

(𝑐max − 𝑧)
𝐽𝑘 − 𝑧

Now, we apply this bound telescopically, for all 𝜋𝑖 ∈ [0, 𝑘]. By doing so, we find that

𝑉𝑘 (𝑠) ≥ 𝑉0 (𝑠)
𝐽𝑘 − 𝑧
𝐽0 − 𝑧

− 𝜏𝑏𝑜𝑢𝑛𝑑𝐽0,𝑧

𝑘−1∑︁
𝑖=0

(𝐽𝑖+1 − 𝐽𝑖 )
𝑐max − 𝑧
𝐽𝑖 − 𝑧

𝐽𝑘 − 𝑧
𝐽𝑖+1 − 𝑧

Applying the monotonicity bound 𝐽0 ≤ 𝐽𝑘 (Lemma 2) and the optimality bound 𝐽𝑘 ≤ 𝐽∗,

𝑉𝑘 (𝑠) ≥ min(𝑉0 (𝑠)
𝐽∗ − 𝑧
𝐽0 − 𝑧

,𝑉0 (𝑠)) − 𝜏𝑏𝑜𝑢𝑛𝑑𝐽0,𝑧

(𝐽∗ − 𝐽0) (𝑐max − 𝑧) (𝐽∗ − 𝑧)
(𝐽0 − 𝑧)2

That completes the proof of the lower bound.

To upper bound 𝑉𝑘 (𝑠), let’s again focus on 𝑉 𝑜𝑢𝑡
𝑘

(𝑠) and 𝑉 𝑖𝑛
𝑘
(𝑠).

𝑉 𝑜𝑢𝑡
𝑘

(𝑠) = −𝐽𝑘𝜏𝑜𝑢𝑡𝑘
(𝑠) + 𝑟𝑜𝑢𝑡

𝑘
(𝑠)𝜏𝑜𝑢𝑡

𝑘
(𝑠) ≤ −𝐽𝑘𝜏𝑜𝑢𝑡𝑘

(𝑠) + 𝑧𝜏𝑜𝑢𝑡
𝑘

(𝑠) = (−𝐽𝑘 + 𝑧)𝜏𝑜𝑢𝑡𝑘
(𝑠) ≤ 0

𝑉 𝑖𝑛
𝑘
(𝑠) = −𝐽𝑘𝜏𝑖𝑛𝑘 (𝑠) + 𝑟 𝑖𝑛

𝑘
(𝑠)𝜏𝑖𝑛

𝑘
(𝑠) ≤ (𝑐max − 𝐽𝑘 )𝜏𝑖𝑛𝑘 (𝑠) ≤ (𝑐max − 𝐽0)𝜏𝑏𝑜𝑢𝑛𝑑 𝐽0,𝑧

𝑉𝑘 (𝑠) = 𝑉 𝑜𝑢𝑡𝑘
(𝑠) +𝑉 𝑖𝑛

𝑘
(𝑠) ≤ (𝑐max − 𝐽0)𝜏𝑏𝑜𝑢𝑛𝑑 𝐽0,𝑧 □

Now, we combine Lemma 7 with an assumption on the initial policy and our mild structural

assumption on the MDP, Assumption 1, to give a state-dependent bound on 𝑄𝑘 (𝑠, 𝑎):
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Lemma 8. Given an MDP satisfying Assumption 1, and given an initial policy 𝜋0 such that there
exist constants 𝑐0 > 0, 𝑐1 ≥ 0 such that

𝑉0 (𝑠) ≥ −𝑐0𝑟max (𝑠)2 − 𝑐1,

there exists a uniform bound𝑀𝑠 :

𝑀𝑠 := 𝑐2 |𝑟max (𝑠) |2 + 𝑐3 |𝑟max (𝑠) | + 𝑐4,

for constants 𝑐2, 𝑐3, 𝑐4 ≥ 0 depending on 𝑐0, 𝑐1, and the MDP parameters, such that for any NPG iterate
𝜋𝑘 , and any pair of actions 𝑎, 𝑎′,

𝑄𝑘 (𝑠, 𝑎) −𝑄𝑘 (𝑠, 𝑎′) ≤ 𝑀𝑠 .

Proof. Deferred to Appendix B. □

5.5 Step 4: Proof of main result
With our bound Lemma 8 on the relative value function 𝑉𝑘 (𝑠) of the iterates of the NPG algorithm,

we are now ready to prove our main result on the convergence of the NPG algorithm, Theorem 1.

Theorem 1. For any average-reward MDP satisfying Assumptions 1 and 2, given an initial policy
𝜋0 such that there exist constants 𝑐0 > 0, 𝑐1 ≥ 0 such that

𝑉0 (𝑠) ≥ −𝑐0𝑟max (𝑠)2 − 𝑐1, (4)

the NPG algorithm with learning rate parameterization 𝛽𝑠 given in (5) achieves the convergence rate
𝐽∗ − 𝐽𝑇 ≤ 𝑐∗√

𝑇
, where 𝑐∗ is a constant depending on the MDP parameters and on 𝑐0 and 𝑐1.

Proof. As outlined in Section 4.2, we will think of the MDP optimization problem as many

instances of the expert advice problem with reward 𝑄𝑘 (𝑠, 𝑎). Note that the NPG algorithm, Algo-

rithm 1, is exactly identical to the weighted majority algorithm, executing a parallel instance of the

weighted majority algorithm in every state 𝑠 .

Moreover, the MDP objective of maximizing the average reward 𝐽𝜋 is closely related to the

objective ofmaximizing total reward in the expert advice problem. Recall the PerformanceDifference

Lemma, Lemma 3, which states that for any pair of policies 𝜋, 𝜋 ′
:

𝐽𝜋 − 𝐽𝜋 ′ = 𝐸𝑠∼𝑑𝜋 [𝑄𝜋 ′ (𝑠, 𝜋) −𝑉𝜋 ′ (𝑠)] .
Let us apply this lemma for the iterates 𝜋𝑘 of our algorithm, in comparison to the optimal policy

𝜋∗, summing over all iterates 𝑘 ∈ [1,𝑇 ]:∑︁𝑇

𝑘=1

𝐽∗ − 𝐽𝑘 = 𝐸𝑠∼𝜋∗

[∑︁𝑇

𝑘=1

𝑄𝑘 (𝑠, 𝜋∗) −𝑉𝑘 (𝑠)
]

Note that for any specific state 𝑠 ,
∑𝑇
𝑘=1

𝑄𝑘 (𝑠, 𝜋∗) −𝑉𝑘 (𝑠) is exactly the difference in total reward

between a specific fixed policy 𝜋∗ (𝑎 | 𝑠) and the weighted majority policy 𝜋𝑘 (𝑎 | 𝑠) of the expert
advice problem with with reward function at time step 𝑘 of 𝑄𝑘 (𝑠, 𝑎).
Thus, we can apply Lemma 4, a known regret bound on the performance of the weighted majority

algorithm for the expert advice problem, to bound the convergence rate of the NPG algorithm. To

do so, we use Lemma 8, which states that for all NPG intermediate policies 𝜋𝑘 and actions 𝑎, 𝑎′,

𝑄𝑘 (𝑠, 𝑎) −𝑄𝑘 (𝑠, 𝑎′) ≤ 𝑀𝑠

where𝑀𝑠 := 𝑐2 |𝑟max (𝑠) |2 + 𝑐3 |𝑟max (𝑠) | + 𝑐4,

for some positive constants 𝑐2, 𝑐3, 𝑐4 given in the proof of Lemma 8. In particular,𝑀𝑠 can be computed

ahead of time, given only the structure of the MDP and the initial policy 𝜋0.



Convergence for Natural Policy Gradient on Infinite-State Average-Reward Markov Decision Processes 15

We select the learning rate 𝛽𝑠 for state 𝑠 as given in Lemma 4:

𝛽𝑠 := 𝑔
©«
√︄

ln |𝐴|
𝑇𝑀𝑠

ª®¬ ,where 𝑔(𝑧) = 1 + 2𝑧 + 𝑧2/ln 2. (5)

Thus, we may apply Lemma 4, and thereby obtain the following regret guarantee for the NPG

algorithm:∑︁𝑇

𝑘=1

𝑄𝑘 (𝑠, 𝜋∗) −𝑉𝑘 (𝑠) ≤
√︁
𝑇𝑀𝑠 ln |𝐴| + log

2
( |𝐴|)

=
√︁
𝑇 ln |𝐴|

√︁
𝑐2 |𝑟max (𝑠)2 | + 𝑐3 |𝑟max (𝑠) | + 𝑐4 + log

2
( |𝐴|)/2

≤
√︁
𝑇 ln |𝐴| (𝑐5 |𝑟max (𝑠) | + 𝑐6) + log

2
( |𝐴|)/2

where 𝑐5 :=
√
𝑐2 +

√
𝑐3, and 𝑐6 :=

√
𝑐3/4 + √

𝑐4 .

Now, let’s bound the difference in average reward between the iterates and the optimal policy:∑︁𝑇

𝑘=1

𝐽∗ − 𝐽𝑘 ≤
√︁
𝑇 ln |𝐴| (𝑐5𝐸𝑠∼𝜋∗ [|𝑟max (𝑠) |] + 𝑐6) + log

2
( |𝐴|)/2

Here, we see the importance of our quadratic assumption on𝜋0, (4).We know that 𝐽∗ = 𝐸𝑠∼𝜋∗ [𝑟 (𝑠, 𝜋∗ (𝑠))]
is finite and small. This is essentially the only property we know about the optimal policy 𝜋∗. Because
of our quadratic assumption, we have shown that 𝐽𝑘 depends crucially on 𝐸𝑠∼𝜋∗ [|𝑟max (𝑠) |]. If 𝜋0

had a faster-growing relative value function, we would only be able to relate 𝐽𝑘 to 𝐸𝑠∼𝜋∗ [|𝑟max (𝑠) |𝛼 ]
for some 𝛼 > 1, which we would not be able to bound.

Now that we have shown that, under our assumption, the NPG algorithm’s regret depends on

𝐸𝑠∼𝜋∗ [|𝑟max (𝑠) |], note that |𝑟max (𝑠) | ≤ |𝑟 (𝑠, 𝑎) | = 𝑐max − 𝑟 (𝑠, 𝑎) for any action 𝑎. As a result,∑︁𝑇

𝑘=1

𝐽∗ − 𝐽𝑘 ≤
√︁
𝑇 ln |𝐴| (𝑐5𝐸𝑠∼𝜋∗ [𝑐max − 𝑟 (𝑠, 𝜋∗)] + 𝑐6) + log

2
( |𝐴|)/2

=
√︁
𝑇 ln |𝐴| (𝑐5 (𝑐max − 𝐽∗) + 𝑐6) + log

2
( |𝐴|)/2

Thus, because 𝑇 ≥ 1, we have∑︁𝑇

𝑘=1

𝐽∗ − 𝐽𝑘 ≤ 𝑐∗
√
𝑇, where 𝑐∗ :=

√︁
ln |𝐴| (𝑐5 (𝑐max − 𝐽∗) + 𝑐6) + log

2
( |𝐴|)/2.

Finally, by Lemma 2, we know that 𝐽𝑇 ≥ 𝐽𝑘 for all iterates 𝑘 . As a result,

𝐽∗ − 𝐽𝑇 ≤ 𝑐∗√
𝑇
. □

6 QUEUEING MDPS
We have proven Theorem 1, which gives a convergence rate bound for the Natural Policy Gradient

(NPG) algorithm in infinite-state, average-reward MDPs that satisfy Assumptions 1 and 2, given

an assumption on the quality of the initial policy. In this section, we demonstrate that a broad,

natural family of MDPs arising from queueing theory, known as the generalized switch with static

environment (GSSE) setting “[29], satisfy these assumptions. Moreover, we prove that a natural and

well-studied policy, the MaxWeight policy, satisfies the requirement to be used as an initial policy

in Theorem 1. We therefore demonstrate that NPG efficiently converges to the optimal policy in

this broad natural class, when initialized with the MaxWeight policy.

We define the GSSE setting in Section 6.1. This setting is broad enough to capture a wide

variety of natural queueing problems, including the N-system, the input-queued switch, and the

multiserver-job setting. We primarily focus on the optimization goal of minimizing mean queue

length 𝐸 [𝑞], which corresponds to the reward function equal to the negative total queue length.
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Our results also apply to generalizations such as expected weighted queue length 𝐸 [𝑐𝑞] or the 𝛼th
moment of queue length 𝐸 [𝑞𝛼 ].
In Section 6.2, we discuss prior work on MaxWeight and the Generalized Switch setting. In

Section 6.5, we prove that NPGwith MaxWeight initialization meets the requirements for Theorem 1

and converges rapidly, using lemmas built up in Sections 6.3 and 6.4.

6.1 Definition of Generalized Switch with Static Environment
The Generalized Switch with Static Environment (GSSE) is a queueing model with 𝑛 classes of jobs,

and the state of the system is a size-𝑛 vector 𝑞 = {𝑞𝑖 } specifying the number of jobs of each class

present in the system. This model is a special-case of the Generalized Switch model [29].

The system evolves in discrete time: At each time step, 𝑣𝑖 jobs of class 𝑖 arrive, where 𝑣𝑖 is a

bounded, i.i.d. random variable. Jobs of each class arrive independently.

There are𝑚 service options. At each time step, prior to new jobs arriving, the scheduling policy

selects a service option 𝑗 . If the policy selects service option 𝑗 , then 𝑤
𝑗

𝑖
jobs of class 𝑖 complete,

where𝑤
𝑗

𝑖
is a bounded, i.i.d. random variable. Jobs of each class complete independently. If on some

time step 𝑡 ,𝑤
𝑗

𝑖
(𝑡) exceeds 𝑞𝑖 (𝑡), the number of jobs of class 𝑖 present in the system, then all of the

class 𝑖 jobs complete.

We use the notation 𝑣,𝑤 instead of the more common 𝑎, 𝑠 to avoid collision with the action and

state notation defined in Section 3.

Let ℓ be the maximum number of jobs of any class that can arrive or depart in one time slot: The

maximum over all 𝑣𝑖 and all 𝑤
𝑗

𝑖
. Let 𝜆𝑖 = 𝐸 [𝑣𝑖 ] be the average arrival rate of class 𝑖 jobs, and let

𝜇
𝑗

𝑖
= 𝐸 [𝑤 𝑗

𝑖
] be the average completion rate of class 𝑖 jobs under service option 𝑗 .

We make certain non-triviality assumptions to ensure that the state space is not disconnected

under any scheduling policy, namely:

• For each class 𝑖 , it is possible for no class 𝑖 jobs to arrive (𝑃 (𝑣𝑖 = 0) > 0).

• For each class 𝑖 , it is possible for a class 𝑖 job to arrive (𝑃 (𝑣𝑖 > 0) > 0).

• For each pair (𝑖, 𝑗), it is possible for more jobs arrive than depart (𝑃 (𝑤 𝑗

𝑖
> 𝑣𝑖 ) > 0).

• For each pair (𝑖, 𝑗), it is possible for equally many jobs to arrive as depart (𝑃 (𝑤 𝑗

𝑖
= 𝑣𝑖 ) > 0).

Less restrictive assumptions are possible – we make these assumptions for simplicity.

Finally, we assume that the scheduling policy 𝜋 is non-idling: If there are any jobs in the system,

we assume that the policy selects a service option 𝑗 with a nonzero chance of completing a job.

Subject to that restriction, the scheduling policy may be arbitrary.

Our primary reward function 𝑟 (𝑠, ·) of state 𝑠 = {𝑞𝑖 } under any action is the negative total queue

length 𝑟 (𝑠, ·) = −∑
𝑖 𝑞𝑖 . We will also consider the setting where the reward is the negative 𝛼-th

moment of the total queue length, −(∑𝑖 𝑞𝑖 )𝛼 , for a generic 𝛼 ≥ 1.

Many commonly-studied queueing models fall within the GSSE framework, with appropriate

choices of arrival distributions and service options. For instance, the input-queued switch [22],

the multiserver-job model [16], and parallel server systems [18] such as the N-system [17], all fit

within the GSSE framework.

6.2 Prior work on MaxWeight and Generalized Switch
The Generalized Switch is an expansive queueing model, simultaneously generalizing the input-

queued switch and the parallel server system [29]. An important scheduling policy in the General-

ized Switch model is the MaxWeight policy [31], which chooses the service option which maximizes
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the inner product of the queue lengths and the service rates:

MaxWeight(𝑞) := arg max

𝑗

∑︁
𝑖
𝑞𝑖𝜇

𝑗

𝑖
(6)

MaxWeight is known to have many advantageous properties in the heavy traffic limit. The heavy

traffic limit is the limit in which the arrival rates approach the boundary of the capacity region. In

the GSSE setting, the capacity region is the convex hull of the available service rates 𝜇
𝑗

𝑖
.

In particular, MaxWeight is known to be throughput optimal, meaning that it keeps the system

stable for all arrival rates within the capacity region [19, 29]. Moreover, MaxWeight asymptotically

minimizes the total queue length

∑
𝑖 𝑞𝑖 in the heavy traffic limit [29].

Outside of the heavy-traffic limit, in non-asymptotic regimes, it is known that MaxWeight can

be significantly outperformed, especially by methods based on MDP optimization. For instance,

in the N-system, a threshold-based policy is known to significantly outperform MaxWeight at

nonasymptotic arrival rates [4], and optimization-based methods are needed to find the optimal

policy in the non-asymptotic arrival-rate regime [12].

6.3 Framework for bounding 𝑉𝜋 (𝑠)
First, we show how to bound 𝑉𝜋 (𝑠) using a Lyanpunov function argument.

Lemma 9. Under a given policy 𝜋 , suppose that there exists a function 𝑓 (𝑠) ≥ 0 and constants
𝑐1 > 0, 𝑐2 ≥ 0 such that

∀𝑠, 𝐸𝜋 [𝑓 (𝑠𝑡+1) − 𝑓 (𝑠𝑡 ) | 𝑠𝑡 = 𝑠] ≤ 𝑐1𝑟 (𝑠, 𝜋) + 𝑐2.

Then there exist explicit constants 𝑐3, 𝑐4 ≥ 0 such that 𝑉𝜋 (𝑠) ≥ −𝑐3 𝑓 (𝑠) − 𝑐4.

Proof. We will start by rescaling the function 𝑓 (𝑠) to more closely relate it to the value function.

Let 𝑓 (𝑠) = 2

𝑐1

𝑓 (𝑠). Then we have

𝐸𝜋 [𝑓 (𝑠𝑡+1) − 𝑓 (𝑠𝑡 ) | 𝑠𝑡 = 𝑠] ≤ 2𝑟 (𝑠, 𝜋) + 2𝑐2/𝑐1

Next, let 𝑐5 be the reward threshold 𝑐5 = − 2𝑐2

𝑐1

− 𝐽𝜋 . For states 𝑠 for which 𝑟max (𝑠) ≤ 𝑐5, we have

𝐸𝜋 [𝑓 (𝑠𝑡+1) − 𝑓 (𝑠𝑡 ) | 𝑠𝑡 = 𝑠] ≤ 𝑟 (𝑠, 𝜋) − 𝐽𝜋
Next, letting 𝑠0 = 𝑠 , let 𝜏

𝑐5
be the first positive time when the system enters S𝑐5

, the set of states

for which 𝑟max (𝑠) ≥ 𝑐5. Let 𝑉
𝑐5 (𝑠) be the expected relative value after this point in time:∑︁𝜏𝑐5

𝑡=0

𝐸𝜋 [𝑓 (𝑠𝑡+1) − 𝑓 (𝑠𝑡 )] ≤
∑︁𝜏𝑐5

𝑡=0

𝑟 (𝑠𝑡 ) − 𝐽𝜋

𝑓 (𝑠𝜏𝑐5 ) − 𝑓 (𝑠) ≤ 𝑉𝜋 (𝑠) −𝑉 𝑐5 (𝑠)

𝑉𝜋 (𝑠) ≥ 𝑉 𝑐5 (𝑠) + 𝑓 (𝑠𝜏𝑐5 ) − 𝑓 (𝑠) .

Because 𝑓 (𝑠) ≥ 0, we know that 𝑓 (𝑠) ≥ 0. Because S𝑐5
is a finite set, 𝑉 𝑐5

is bounded below:

𝑉 𝑐5 (𝑠) ≥ 𝑉min := min

𝑠∈S𝑐
5

𝑉 (𝑠)

𝑉𝜋 (𝑠) ≥ 𝑉min − 𝑓 (𝑠) = − 2

𝑐1

𝑓 (𝑠) +𝑉min .

Setting 𝑐3 =
2

𝑐1

and 𝑐4 = (−𝑉min)+ completes the proof.

□
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6.4 Bounding 𝑉𝑀𝑊 (𝑠) for MaxWeight
Now, we use the framework established in Section 6.3 to bound the relative value function for the

MaxWeight policy.

The stability region of a queueing system is defined to be the set of average arrival rates 𝜆𝑖 for

which there exists a scheduling policy such that the system is stable, i.e. the system state converges

to a stationary distribution. The GSSE stability region is the convex hull of the mean service rates

𝜇
𝑗

𝑖
. The optimal stability region is achieved by the MaxWeight policy, defined in (6).

The GSSE stability region is defined by the following constraints: For an arrival rate vector 𝜆 to

be stable, there must exist a nonnegative service vector 𝛾 ≥ 0 and a slack margin 𝜖 > 0 such that∑︁
𝑗
𝛾 𝑗 = 1 and ∀𝑖, (1 + 𝜖)𝜆𝑖 ≤

∑︁
𝑗
𝛾 𝑗 𝜇

𝑗

𝑖
. (7)

We can bound MaxWeight’s relative value 𝑉𝑀𝑊 (𝑞) if we can prove a Lyapunov function result

of the form given by Lemma 9. We prove such a result using the Lyapunov function 𝑓 (𝑞) = ∑
𝑖 𝑞

2

𝑖 ,

which implies that 𝑉𝑀𝑊 (𝑞) is 𝑂 (𝑞2).

Lemma 10. For any GSSE queueing system,

𝐸𝑀𝑊 [𝑓 (𝑞(𝑡 + 1)) − 𝑓 (𝑞(𝑡)) | 𝑞(𝑡) = 𝑞] ≤ 𝑐1𝑟 (𝑞(𝑡)) + 𝑐2,

where𝑀𝑊 denotes the MaxWeight policy, where 𝑓 (𝑞) :=
∑
𝑖 𝑞

2

𝑖 , and where 𝑐1 and 𝑐2 are:

𝑐1 = 2𝜖 min

𝑖
𝜆𝑖 , 𝑐2 = ℓ

2𝑛

Proof. This result is proven in [28, Theorem 4.2.4], for the classic switch model. However, the

proof applies unchanged to any GSSE system. For completeness, we reprove the result in the GSSE

setting in Appendix C.1. □

6.5 Rapid convergence for NPG on queueing MDPs
Theorem 2. For any GSSE queueing system, with the objective of minimizing mean queue length

starting with the initial policy 𝜋0 =MaxWeight, the NPG algorithm with learning rate parameterization
𝛽𝑠 given in Theorem 1 achieves the convergence rate 𝐸 [𝑞𝜋𝑇 ] ≥ 𝐸 [𝑞∗] − 𝑐∗√

𝑇
for a constant 𝑐∗ given in

the proof of Theorem 1.

Proof. To prove this result, we will apply Theorem 1. To do so, we will verify Assumptions 1

and 2 and prove the MaxWeight achieves the required bound (4) on the relative value function.

Let us start by verifying Assumption 1.

• Assumption 1(a): The maximum possible reward is 0, achieved by the all-zeros state 𝑞𝑖 = 0.

• Assumption 1(b): The set of states with total reward at least 𝑧 is the set of states with total

queue length at most |𝑧 |. As a generous bound, there are at most 𝑛 |𝑧 | such states, recalling

that 𝑛 is the number of job classes.

• Assumption 1(c): In each state, the reward under all actions is equal.

• Assumption 1(d): If it is possible to transition from state 𝑠 and 𝑠′, then 𝑠 and 𝑠′ have similar

numbers of jobs, differing by at most ℓ𝑛, where 𝑛 is the number of job classes and ℓ is the

maximum arrivals or departures per class in a step. As a result, the maximum reward in those

states also differs by at most ℓ𝑛.

Now, let’s turn to Assumption 2, the assumption that the set of states with at most |𝑧 | jobs present
is uniformly connected under an arbitrary policy 𝜋 .

In particular, we will show that there is a nonzero probability that, for any pair of states 𝑞, 𝑞′ with
at most |𝑧 | jobs present, the system moves from 𝑞 to 𝑞′ in at most 2|𝑧 | time steps. More specifically,
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there is a nonzero probability that the system moves from 𝑞 to ®0 in at most |𝑧 | time steps, and then

moves from ®0 to 𝑞′ in at most |𝑧 | time steps.

To see why, first recall from Section 6.1 that we require that the policy 𝜋 is non-idling: If the

system state is not the all-zero state, the 𝜋 selects a service option which has a nonzero probability

of completing a job. Recall also that on each time step, there’s a nonzero probability that no new

job arrives. Thus, on each of the first |𝑧 | time steps, if the system is not yet empty there is a nonzero

probability that at least one job completes and no new job arrives. At some point during those

steps, we will reach the all-zeros state.

Recall also that we require that for any service option 𝑗 , for each class 𝑖 there is a nonzero chance

that more jobs arrive than complete, and a nonzero chance that the same number of jobs arrive as

complete. Thus, over the next |𝑧 | time steps, regardless of the policy selected, there is a nonzero

chance that the number of jobs present of class 𝑖 rises from 0 to 𝑞′𝑖 , and then stays at 𝑞′𝑖 , allowing
the system to reach the state 𝑞. This verifies Assumption 2.

Finally, let us verify that the MaxWeight initial policy satisfies the desired relationship,

𝑉𝑀𝑊 (𝑠) ≥ −𝑐0𝑟max (𝑠)2 − 𝑐1,

for some constants 𝑐0 and 𝑐1.

To do so, we simply apply the Lyapunov function argument from Lemma 9, using the Lyapunov

function 𝑓 (𝑞) = ∑
𝑖 𝑞

2

𝑖 , which we verified is a valid Lyapunov function in Lemma 10.

Thus, Theorem 1 applies to any GSSE queueing MDP, given the MaxWeight initial policy. □

This result can be generalized to other reward functions, including a weighted queue length

reward, as well as the 𝛼-moment reward function −(∑𝑖 𝑞𝑖 )𝛼 , for any 𝛼 ≥ 1. For these generaliza-

tions of the reward function, we can use weighted-MaxWeight and 𝛼-MaxWeight as the initial

policies. These policies replace the 𝑞𝑖 term in the MaxWeight definition (6) with the weighted

queue length or 𝛼th power of queue length. The proof that weighted-MaxWeight has the desired

relative value property (4) is essentially immediate, and for 𝛼-MaxWeight one can use the Lyapunov

function 𝑓𝛼 (𝑞) =
∑
𝑖 𝑞
𝛼+1

𝑖
. Assumptions 1 and 2 are straightforward to verify for the weighted queue

length setting, and Assumption 1(a-c) and Assumption 2 are straightforward to verify for the 𝛼th

moment reward function. Assumption 1(d) is slightly more involved, but we verify that it holds in

Appendix C.2.

7 INFINITE STATE, DISCOUNTED REWARD
In this section, we discuss the discounted setting: Rather than seeking to maximize the average

reward, we seek to maximize the 𝛾-discounted reward, for some 𝛾 < 1, in expectation over some

starting distribution 𝜂. In this setting, one can generalize existing finite-state results to the infinite-

state setting. In particular, we can state the following theorem:

Theorem 3. In the infinite-state discounted-reward setting, if the discounted relative-value function
𝑉 𝜋𝜂 is uniformly bounded over all policies 𝜋 for a given initial distribution 𝜂, then the NPG algorithm
converges to the globally optimum discounted reward with 𝑂 (1/𝑇 ) convergence rate.

Proof. The proof of [3, Theorem 16] goes through nearly unchanged. The assumption of a finite

state space is only to justify a bounded reward assumption, which in turn is only used in [3, Lemma

17], to prove that 𝑉 𝜋𝜂 , the expected discounted reward starting in initial-state-distribution 𝜂, is

bounded. In the infinite-state setting, if 𝑉 𝜋𝜂 is bounded, the proof still holds. □

This standard proof only uses its finite-state assumption to justify its bounded reward assumption.

In particular, even when the state space is infinite, if the reward is bounded, the proof goes through
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unchanged. This is due in part to the fact that in the discounted-reward setting, a policy need not

be stable to achieve finite reward.

In particular, if the reward is unbounded, but only grows polynomially from state to state, such

as in the queueing setting, one can still prove that𝑉 𝜋𝜂 is bounded, and still prove a convergence-rate

bound. More generally, it is sufficient for the worst-case discounted sum of rewards to be finite.

The dependence on the discount rate 𝛾 degrades in the 𝛾 → 1 limit, depending on the growth rate

of the reward, but the dependence on the number of iterations 𝑇 is unchanged.

Thus, in the discounted-reward setting, the standard proof of NPG’s convergence does generalize

from the finite-state setting to the infinite-state setting, in contrast to the average-reward setting

studied in this paper.

8 CONCLUSION
We give the first proof of convergence for the Natural Policy Gradient algorithm in the infinite-state

average-reward setting. In particular, we demonstrate that by setting the learning rate function

𝛽𝑠 appropriately, we can guarantee an 𝑂 (1/
√
𝑇 ) convergence rate to the optimal policy, as long

as the initial policy has a well-behaved relative value function. Moreover, we demonstrate that in

infinite-state average-reward MDPs arising out of queueing theory, the MaxWeight policy satisfies

our requirement on the initial policy, allowing our results on the NPG algorithm to apply.

One potential direction for future work would be to tighten the dependence of our convergence

rate result on the structural parameters of the MDP, which we did not seek to optimize in this

result. Another potential direction would be to extend our result to an uncountably-infinite-state

setting, rather than the countably-infinite setting that we focused on, by tweaking the assumptions

made in Section 3.2.

In the reinforcement learning (RL) setting, an important direction for future work would be to

build off of our MDP optimization result to prove convergence-rate results for policy-gradient-based

RL algorithms in the infinite-state setting.
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Lemma 1. Policy 𝜋𝑘+1 improves upon policy 𝜋𝑘 relative to 𝜋𝑘 ’s relative-value function 𝑄𝑘 :

𝑄𝑘 (𝑠, 𝜋𝑘+1) ≥ 𝑄𝑘 (𝑠, 𝜋𝑘 ) = 𝑉𝑘 (𝑠)

Proof. Recall the definition of the NPG algorithm:

𝜋𝑘+1 (𝑎 | 𝑠) = 𝜋𝑘 (𝑎 | 𝑠)𝛽𝑄𝑘 (𝑠,𝑎)
𝑠 /𝑍𝑠,𝑘 ,where 𝑍𝑠,𝑘 =

∑︁
𝑎′
𝜋𝑘 (𝑎′ | 𝑠)𝛽𝑄𝑘 (𝑠,𝑎′ )

𝑠 .

Rearranging to solve for 𝑄𝑘 (𝑠, 𝑎), we find that

𝑄𝑘 (𝑠, 𝑎) =
1

log 𝛽𝑠
log

(
𝑍𝑠,𝑘𝜋𝑘+1 (𝑎 | 𝑠)
𝜋𝑘 (𝑎 | 𝑠)

)
Now, let’s start manipulating 𝑄𝑘 (𝑠, 𝜋𝑘+1):

𝑄𝑘 (𝑠, 𝜋𝑘+1) =
∑︁
𝑎

𝜋𝑘+1 (𝑎 | 𝑠)𝑄𝑘 (𝑠, 𝑎) =
∑︁
𝑎

𝜋𝑘+1 (𝑎 | 𝑠) 1

log 𝛽𝑠
log

(
𝑍𝑠,𝑘𝜋𝑘+1 (𝑎 | 𝑠)
𝜋𝑘 (𝑎 | 𝑠)

)
=

1

log 𝛽𝑠

∑︁
𝑎

𝜋𝑘+1 (𝑎 | 𝑠) log

(
𝜋𝑘+1 (𝑎 | 𝑠)
𝜋𝑘 (𝑎 | 𝑠)

)
+ 1

log 𝛽𝑠

∑︁
𝑎

𝜋𝑘+1 (𝑎 | 𝑠) log𝑍𝑠,𝑘 (8)

Note that the left-hand term in (8) is simply the 𝐾𝐿 divergence 𝐷𝐾𝐿 (𝜋𝑘+1 (·|𝑠) | |𝜋𝑘 (·|𝑠)). As a result,
it is positive. Thus,

𝑄𝑘 (𝑠, 𝜋𝑘+1) ≥
1

log 𝛽𝑠

∑︁
𝑎

𝜋𝑘+1 (𝑎 | 𝑠) log𝑍𝑠,𝑘 =
1

log 𝛽𝑠
log𝑍𝑠,𝑘 =

1

log 𝛽𝑠
log

∑︁
𝑎′
𝜋𝑘 (𝑎′ | 𝑠)𝛽𝑄𝑘 (𝑠,𝑎′ )

𝑠

Note that the log function is concave, so we can apply Jensen’s inequality:

𝑄𝑘 (𝑠, 𝜋𝑘+1) ≥
1

log 𝛽𝑠

∑︁
𝑎′
𝜋𝑘 (𝑎′ | 𝑠)𝑄𝑘 (𝑠, 𝑎′) log 𝛽𝑠 =

∑︁
𝑎′
𝜋𝑘 (𝑎′ | 𝑠)𝑄𝑘 (𝑠, 𝑎′) = 𝑄𝑘 (𝑠, 𝜋𝑘 ) = 𝑉𝑘 (𝑠). □

B BOUNDING RELATIVE VALUE
Lemma 8. Given an MDP satisfying Assumption 1, and given an initial policy 𝜋0 such that there

exist constants 𝑐0 > 0, 𝑐1 ≥ 0 such that

𝑉0 (𝑠) ≥ −𝑐0𝑟max (𝑠)2 − 𝑐1, (9)

there exists a uniform bound𝑀𝑠 :

𝑀𝑠 := 𝑐2 |𝑟max (𝑠) |2 + 𝑐3 |𝑟max (𝑠) | + 𝑐4,

for constants 𝑐2, 𝑐3, 𝑐4 ≥ 0 depending on 𝑐0, 𝑐1, and the MDP parameters, such that for any NPG iterate
𝜋𝑘 , and any pair of actions 𝑎, 𝑎′,

𝑄𝑘 (𝑠, 𝑎) −𝑄𝑘 (𝑠, 𝑎′) ≤ 𝑀𝑠 .

Proof. The difference 𝑄𝑘 (𝑠, 𝑎) −𝑄𝑘 (𝑠, 𝑎′) can be separated into the following terms:

𝑄𝑘 (𝑠, 𝑎) −𝑄𝑘 (𝑠, 𝑎′) = 𝐸𝑠′∼𝑃 (𝑠,𝑎) [𝑉𝑘 (𝑠′)] − 𝐸𝑠′′∼𝑃 (𝑠,𝑎′ ) [𝑉𝑘 (𝑠′′)] + 𝑟 (𝑠, 𝑎) − 𝑟 (𝑠, 𝑎′)
We will bound these terms relative to |𝑟max (𝑠) |, recalling that rewards are negative.

Let us start by applying the upper and lower bounds from Lemma 7. Define the following

constants, where 𝑧 is an arbitrary reward threshold below 𝐽0:

𝑐5 :=
𝐽∗ − 𝑧
𝐽0 − 𝑧

, 𝑐6 := 𝜏𝑏𝑜𝑢𝑛𝑑𝐽0,𝑧

(𝐽∗ − 𝐽0) (𝑐max − 𝑧) (𝐽∗ − 𝑧)
(𝐽0 − 𝑧)2

, 𝑐7 := 𝜏𝑏𝑜𝑢𝑛𝑑𝐽0,𝑧
(𝑐max − 𝐽0)

Note that 𝑐5, 𝑐6, 𝑐7 are all positive. Our results hold for all values of 𝑧 < 𝐽0.
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Lemma 7 states that min(𝑐5𝑉0 (𝑠),𝑉0 (𝑠)) − 𝑐6 ≤ 𝑉𝑘 (𝑠) ≤ 𝑐7. Our lower bound on 𝑉0 (𝑠), (9), is
negative, so we can simplify the bound to 𝑐5𝑉0 (𝑠) − 𝑐6 ≤ 𝑉𝑘 (𝑠) ≤ 𝑐7, where 𝑉0 is our lower bound

on 𝑉0. As a result,

𝑐5𝐸𝑠′′∼𝑃 (𝑠,𝑎′ ) [𝑉0 (𝑠′′)] − 𝑐6 ≤ 𝐸𝑠′′∼𝑃 (𝑠,𝑎′ ) [𝑉𝑘 (𝑠′′)]
𝐸𝑠′∼𝑃 (𝑠,𝑎) [𝑉𝑘 (𝑠′)] ≤ 𝑐7.

To relate 𝑉0 (𝑠′′) to 𝑟max (𝑠), we will combine (9), our assumption on 𝑉0 (𝑠), with Assumption 1(d):

𝑉0 (𝑠′′) ≥ −𝑐0𝑟max (𝑠′′)2 − 𝑐1 ≥ −𝑐0 (𝑅3𝑟max (𝑠) − 𝑅4)2 − 𝑐1 = −𝑐0 (𝑅3 |𝑟max (𝑠) | + 𝑅4)2 − 𝑐1

𝐸𝑠′′∼𝑃 (𝑠,𝑎′ ) [𝑉𝑘 (𝑠′′)] ≥ −𝑐0𝑐5 (𝑅3 |𝑟max (𝑠) | + 𝑅4)2 − 𝑐1𝑐5 − 𝑐6

Finally, we can bound 𝑟 (𝑠, 𝑎) − 𝑟 (𝑠, 𝑎′) using Assumption 1(c): 𝑟 (𝑠, 𝑎) − 𝑟 (𝑠, 𝑎′) ≤ 𝑅1𝑟max (𝑠)2 + 𝑅2.

Combining these bounds together, we find that

𝑄𝑘 (𝑠, 𝑎) −𝑄𝑘 (𝑠, 𝑎′) ≤ 𝑐0𝑐5 (𝑅3 |𝑟max (𝑠) | + 𝑅4)2 + 𝑐1𝑐5 + 𝑐6 + 𝑐7 + 𝑅1 |𝑟max (𝑠) |2 + 𝑅2

= (𝑐0𝑐5𝑅
2

3
+ 𝑅1) |𝑟max (𝑠) |2 + 2𝑐0𝑐5𝑅3𝑅4 |𝑟max (𝑠) | + 𝑐0𝑐5𝑅

2

4
+ 𝑐1𝑐5 + 𝑐6 + 𝑐7 + 𝑅2

= 𝑐2 |𝑟max (𝑠) |2 + 𝑐3 |𝑟max (𝑠) | + 𝑐4

where 𝑐2 := 𝑐0𝑐5𝑅
2

3
+ 𝑅1, 𝑐3 := 2𝑐0𝑐5𝑅3𝑅4, and 𝑐4 := 𝑐0𝑐5𝑅

2

4
+ 𝑐1𝑐5 + 𝑐6 + 𝑐7 + 𝑅2.

Note that 𝑐2, 𝑐3, and 𝑐4 are all nonnegative. □

C QUEUEING LEMMAS
C.1 Bound on MaxWeight
This result is proven in [28, Theorem 4.2.4], for the classic switch model. For completeness, we now

reprove the result for the general GSSE setting.

Lemma 10. For any GSSE queueing system,

𝐸𝑀𝑊 [𝑓 (𝑞(𝑡 + 1)) − 𝑓 (𝑞(𝑡)) | 𝑞(𝑡) = 𝑞] ≤ 𝑐1𝑟 (𝑞(𝑡)) + 𝑐2,

where𝑀𝑊 denotes the MaxWeight policy, where 𝑓 (𝑞) :=
∑
𝑖 𝑞

2

𝑖 , and where 𝑐1 and 𝑐2 are the following
constants:

𝑐1 = 2𝜖 min

𝑖
𝜆𝑖 , 𝑐2 = ℓ

2𝑛

Proof. Let𝑤𝑀𝑊
𝑖

(𝑡) denote MaxWeight’s service on step 𝑡 . We proceed as follows:

𝑓 (𝑞(𝑡 + 1)) − 𝑓 (𝑞(𝑡)) =
∑︁
𝑖

(
(𝑞𝑖 (𝑡) + 𝑣𝑖 (𝑡) −𝑤𝑀𝑊𝑖 (𝑡))+

)
2

−
∑︁
𝑖

𝑞2

𝑖 (𝑡)

≤
∑︁
𝑖

(
𝑞𝑖 (𝑡) + 𝑣𝑖 (𝑡) −𝑤𝑀𝑊𝑖 (𝑡)

)
2

−
∑︁
𝑖

𝑞2

𝑖 (𝑡)

=
∑︁
𝑖

(2𝑞𝑖 (𝑡) + 𝑣𝑖 (𝑡) −𝑤𝑀𝑊𝑖 (𝑡)) (𝑣𝑖 (𝑡) −𝑤𝑀𝑊𝑖 (𝑡))

=
∑︁
𝑖

2𝑞𝑖 (𝑡) (𝑣𝑖 (𝑡) −𝑤𝑀𝑊𝑖 (𝑡)) +
∑︁
𝑖

(𝑣𝑖 (𝑡) −𝑤𝑀𝑊𝑖 (𝑡))2

Note that the second term is bounded. Recall that ℓ is the maximum number of jobs that can

arrive or depart from a class in one time step. As a result, (𝑣𝑖 (𝑡) −𝑤𝑀𝑊𝑖 (𝑡))2 ≤ ℓ2
, so the second

summation is bounded by ℓ2𝑛.
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Taking expectations, we find that

𝐸 [𝑓 (𝑞(𝑡 + 1)) − 𝑓 (𝑞(𝑡)) | 𝑞(𝑡) = 𝑞] ≤ 2

∑︁
𝑖

𝑞𝑖 (𝜆𝑖 − 𝜇𝑀𝑊𝑖 ) + ℓ2𝑛 (10)

Let us now lower bound

∑
𝑖 𝑞𝑖𝜇

𝑀𝑊
𝑖

. Recall that Maxweight selects the service option 𝑗 which

maximizes

∑
𝑖 𝑞𝑖𝜇

𝑗

𝑖
. Thus, for all 𝑗 , ∑︁

𝑖

𝑞𝑖𝜇
𝑀𝑊
𝑖 ≥

∑︁
𝑖

𝑞𝑖𝜇
𝑗

𝑖
. (11)

Recall that we assumed that 𝜆 lies within the stability region. In particular, by (7), there exists a

vector 𝛾 ≥ 0 of service-option weights such that∑︁
𝑗

𝛾 𝑗 = 1 and ∀𝑖, (1 + 𝜖)𝜆𝑖 ≤
∑︁
𝑗

𝛾 𝑗 𝜇
𝑗

𝑖

Let us multiply this inequality by 𝑞𝑖 and sum over 𝑖 . We then find that∑︁
𝑖, 𝑗

𝑞𝑖𝛾 𝑗 𝜇
𝑗

𝑖
≥ (1 + 𝜖)

∑︁
𝑖

𝑞𝑖𝜆𝑖 . (12)

On the other hand, let us take the MaxWeight inequality (11), multiply by 𝛾 𝑗 and sum over 𝑗 . We

then find that ∑︁
𝑖

𝑞𝑖𝜇
𝑀𝑊
𝑖

∑︁
𝑗

𝛾 𝑗 ≥
∑︁
𝑖, 𝑗

𝑞𝑖𝛾 𝑗 𝜇
𝑗

𝑖∑︁
𝑖

𝑞𝑖𝜇
𝑀𝑊
𝑖 ≥

∑︁
𝑖, 𝑗

𝑞𝑖𝛾 𝑗 𝜇
𝑗

𝑖
(13)

Combining (12) and (13), we find the desired lower bound on

∑
𝑖 𝑞𝑖𝜇

𝑀𝑊
𝑖

:∑︁
𝑖

𝑞𝑖𝜇
𝑀𝑊
𝑖 ≥ (1 + 𝜖)

∑︁
𝑖

𝑞𝑖𝜆𝑖 (14)

Substituting this bound into (10), we find that

𝐸 [𝑓 (𝑞(𝑡 + 1)) − 𝑓 (𝑞(𝑡)) | 𝑞(𝑡) = 𝑞] ≤ −2𝜖
∑︁
𝑖

𝑞𝑖𝜆𝑖 + ℓ2𝑛

Recall that 𝑟 (𝑞) = −∑
𝑖 𝑞𝑖 . Note that

∑
𝑖 𝑞𝑖𝜆𝑖 ≥ −𝑟 (𝑞) min𝑖 𝜆𝑖 . As a result, taking 𝑐1 = 2𝜖 min𝑖 𝜆𝑖

and taking 𝑐2 = 𝑛, the proof is complete.

□

The above argument straightforwardly generalizes to the setting where the reward is the 𝛼-th

moment of the total queue length, using the Lyapunov function 𝑓 (𝑞) = ∑
𝑖 𝑞
𝛼+1

.

C.2 Verifying Assumption 1(d) for 𝛼-moment reward
We want to verify Assumption 1(d) for the GSSE MDP with reward −(∑𝑖 𝑞𝑖 )𝛼 , for 𝛼 ≥ 1.

Lemma 11. In any GSSE MDP with the 𝛼-moment reward function, there exists a pair of constants
𝑅3 ≥ 1 and 𝑅4 ≥ 0 such that for any pair of states 𝑠, 𝑠′ such that there is a nonzero probability of
transitioning from 𝑠 to 𝑠′ under some action 𝑎,

𝑟max (𝑠′) ≥ 𝑅3𝑟max (𝑠) − 𝑅4
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Proof. Let 𝑞 be the total queue length of state 𝑠 . Note that the total queue length of states 𝑠′ is
at most 𝑞 + ℓ𝑛, because at most ℓ jobs of each of the 𝑛 job classes can arrive in a given time step.

Let 𝑛′ ≤ ℓ𝑛 denote this maximum possible number of arriving jobs.

We have

|𝑟max (𝑠) | = 𝑞𝛼 , |𝑟max (𝑠′) | ≤ (𝑞 + 𝑛′)𝛼

Let us set 𝑅3 = 2. We want to find some 𝑅4 such that

(𝑞 + 𝑛′)𝛼 ≤ 2𝑞𝛼 + 𝑅4, ∀𝑛′, 𝛼 ≥ 1

First, let’s apply the mean value theorem to the quantity (𝑞 + 𝑛′)𝛼 − 𝑞𝛼 . The function 𝑥𝛼 has

derivative 𝛼𝑥𝛼−1
, which is increasing for positive 𝑥 . Thus,

(𝑞 + 𝑛)𝛼 − 𝑞𝛼 ≤ 𝑛′𝛼 (𝑞 + 𝑛′)𝛼−1

We will bound 𝑛′𝛼 (𝑞 +𝑛′)𝛼−1
in two parts: For large 𝑞, we will show 𝑛′𝛼 (𝑞 +𝑛′)𝛼−1 ≤ 𝑞𝛼 . For small

𝑞, we will select 𝑅4 such that 𝑛′𝛼 (𝑞 + 𝑛′)𝛼−1 ≤ 𝑅4. Our split between these bounds is the value

𝑞 = 2𝑛′𝛼 , where𝑊 is the Lambert𝑊 function.

First, for large 𝑞,

∀𝑞 ≥ 2𝑛′𝛼, 𝑞𝛼 ≥ 2𝑛′𝛼𝑞𝛼−1

= 2𝑛′𝛼 (𝑞 + 𝑛′)𝛼−1

(
𝑞 + 𝑛′
𝑞

)−𝛼+1

= 2𝑛′𝛼 (𝑞 + 𝑛′)𝛼−1

(
1 + 𝑛

′

𝑞

)−𝛼+1

≥ 2𝑛′𝛼 (𝑞 + 𝑛′)𝛼−1

(
1 + 𝑛′

2𝑛′𝛼

)−𝛼+1

≥ 2𝑛′𝛼 (𝑞 + 𝑛′)𝛼−1

(
1 + 1

2𝛼

)−𝛼+1

≥ 2𝑛′𝛼 (𝑞 + 𝑛′)𝛼−1𝑒−1/2

≥ 𝑛′𝛼 (𝑞 + 𝑛′)𝛼−1

To cover small 𝑞, we simply set

𝑅4 = 𝑛
′𝛼 (2𝛼𝑛′ + 𝑛′)𝛼−1 ≥ 𝑛′𝛼 (𝑞 + 𝑛′)𝛼−1 ∀𝑞 ≤ 2𝑛′𝛼

Now we can conclude that

∀𝑞, 𝑛′𝛼 (𝑞 + 𝑛′)𝛼−1 ≤ 𝑞𝛼 + 𝑅4

(𝑞 + 𝑛′)𝛼 − 𝑞𝛼 ≤ 𝑞𝛼 + 𝑅4

(𝑞 + 𝑛′)𝛼 ≤ 2𝑞𝛼 + 𝑅4

□
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