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Abstract

We consider policy optimization methods in reinforcement learning settings where
the state space is arbitrarily large, or even countably infinite. The motivation
arises from control problems in communication networks, matching markets, and
other queueing systems. We consider Natural Policy Gradient (NPG), which is a
popular algorithm for finite state spaces. Under reasonable assumptions, we derive
a performance bound for NPG that is independent of the size of the state space,
provided the error in policy evaluation is within a factor of the true value function.
We obtain this result by establishing new policy-independent bounds on the solution
to Poisson’s equation, i.e., the relative value function, and by combining these
bounds with previously known connections between MDPs and learning from
experts.

1 Introduction

We are motivated by control problems in queueing models of resource allocation, such as those
arising in communication networks, cloud computing systems, and riding hailing services. Examples
of such systems include the following:

(a) The switch fabric in Internet routers and data centers where packets have to be transported (or
switched) from one of many input ports to one of many output ports [SY13]: the system is
modeled as a bipartite graph with input ports on one side and output ports on the other side.
Technological constraints dictate that at each time slot, a matching must be selected in the
bipartite graph, and packets are transferred along the edges of the matching from each input to
the corresponding output. The goal is to find a sequence of matchings to minimize either the
average delay experienced by the packets in the switch or the probability that the delay exceeds
some threshold.

(b) Scheduling problems at base stations in 5G networks [SY13]: at a central controller (typically
the base station associated with a cell in a cellular network), packets arrive and are queued in a
separate queue for each receiver. The goal is to schedule these packets over different frequencies
and time slots to minimize the average delay of the packets in the system, while taking into
account the time-varying channel conditions in a wireless network due to fading and other
wireless medium effects.
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(c) Scheduling workloads in cloud computing systems [MSV+19]: a workload in such systems
takes the form of a collection directed acyclic graphs, where each DAG represents a job, the
nodes in the graphs represent tasks in the job and the directed edges represent precedence
relationships among the tasks in the graph. The goal is to allocate resources to tasks from a
sequence of arriving jobs, while respecting the precedence relationships of the tasks within each
job and minimizing the average delay experienced by the jobs.

(d) Customer-driver matching in ride hailing platforms such as Uber and Lyft [ÖW20, VBMW23]:
the role of such platforms can be modeled as controlling the number of nodes in a bipartite
graph, where one side is the set of waiting customers and the other side in the set of available
drivers. The goal of a ride hailing platform is to choose a set of prices and match customers to
drivers so that a weighted combination of the average delay experienced by customers and the
average profit is optimized.

The above problems exhibit several common features:

(i) The state space of these problems is discrete, typically consisting of the queue lengths of
the various entities waiting in the system such as packets, customers, drivers, jobs and tasks,
depending on the context. Discrete state spaces are commonly studied in the reinforcement
learning (RL) literature; however, in our applications, the state space is also countably infinite
for all practical purposes, since queue lengths can become unbounded. In some applications,
such as communication networks, the packet buffers may be finite but it is well known that
modeling them as infinite buffers leads to good scheduling algorithms [SY13]. It should be
noted that even if one were to model the finiteness of the buffers explicitly in our model, our
results will still hold, and our performance guarantees would not depend on the size of the
buffers.

(ii) Because we are dealing with a vector of queue lengths as the state of the system, the problems
have some limited amount of structure that can and should be exploited to design good
algorithms. In particular, it is relatively straightforward to design algorithms that ensures that
the system is stable, i.e., the queue length is finite with probability one [SY13]. On the other
hand, algorithms to optimize performance objectives such as average delay are unknown except
in limited regimes [ES12, MS16]. Therefore, data-driven approaches such as reinforcement
learning (RL) are natural candidates to solve such problems.

(iii) Due to a well-known result called Little’s law, minimizing average delay is equivalent to
minimizing average queue lengths [LG08]. Thus, the natural instantaneous cost in such
problems is the current total queue length. Note that unlike many RL models, this cost is
unbounded and results which assume that the costs (or rewards) at each (state, action) pair are
uniformly bounded do not hold for our problems.

Given the above background, our goal in this paper is to study policy optimization algorithms for
such countable state space models with discrete, finite action spaces where the cost is proportional to
the total queue length in the system, and can thus grow in an unbounded fashion. For this purpose,
we study the natural policy gradient (NPG) algorithm. Our main contributions are the following:

(1) One of the standard regret results for NPG uses a connection to a fundamental learning-theoretic
problem called the best-experts problem. We show that this standard analysis does not apply to
our problem due to the unbounded nature of the instantaneous cost in our problem.

(2) We show that one can obtain nontrivial regret bounds by making a small, but critical, change to
the step-size used in the best-experts algorithm, and by obtaining bounds on the relative value
function (called the solution of the Poisson’s equation in the applied probability literature).

(3) An important component of our work is to obtain bounds on the solution of Poisson’s equation
that are uniform across all policies. To the best of our knowledge, prior works on obtaining
bounds on the solution of Poisson’s equation are limited to specific policies. A key contribution
of our paper is to show that uniform bounds can be obtained by exploiting certain structural
properties of the mathematical models for the motivating applications mentioned earlier.

(4) Policy evaluation using temporal difference learning and Monte Carlo methods have been well
studied in the literature, so we do not consider them explicitly in this paper. However, we do
consider the error due to function approximation. Traditionally, for analytical purposes, it is
assumed that there is a uniform bound on the function approximation error of the value function.
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We argue that such an assumption does not make sense for queueing models and propose a more
general model for the function approximation. Existing mathematical tools for the study of
convergence of RL algorithms cannot handle our proposed model for the function approximation
error. However, we show that, by exploiting the special structure of our queueing models and the
associated bounds on the solution to Poisson’s equation, we can obtain non-trivial regret bounds
for policy optimization.

1.1 Related Work

The Natural Policy Gradient algorithm is a well-known and extensively studied algorithm for MDP
optimization, in both the average-reward and discounted-reward settings [Kak01, AKLM21, GSP19,
MS23, MMS23]. An important line of research on the NPG algorithm treats the MDP-optimization
problem as many parallel instances of the expert advice problem, and treats the NPG algorithm as
many parallel instances of the weighted majority algorithm. Even-dar et al. [EDKM09] use this
approach to prove the first convergence result for NPG in the finite-state average-reward tabular setting,
and [AYBB+19] expand upon that result to incorporate function approximation. Our result uses
the same “parallel weighted majority” framing, but generalizes the result to the infinite-state-space
setting by incorporating state-dependent learning rates.

Policy gradient algorithms have been studied in certain specialized settings with average-reward
uncountably-infinite state spaces [FGKM18, KT08]: the Linear Quadratic Regulator and the base-
stock inventory control problem, demonstrating rapid convergence to the optimal policy. However,
follow-up study of these settings has demonstrated that they exhibit additional structure which is
critical to these results, causing these policy-gradient algorithms to act like policy improvement
algorithms [BR24]. Our result is the first to handle an infinite state-space setting without the
specialized structure of these prior results.

Key to our result are novel bounds on the relative value function, building off of our drift assumption
for the policy space. This drift assumption is reasonable in a queueing setting, as we discuss in
section 3.2 [SY13]. Prior drift-based bounds on the relative-value function exist [GM96], but are
policy-dependent. In contrast, we prove policy-independent bounds on the relative-value function
using reasonable assumptions on the MDP structure, which are motivated by the structure of MDPs
in queueing networks. Our policy-independent bounds are critical to implement our state-dependent
learning rates, allowing us to generalize the NPG algorithm to the infinite-state setting.

Several works have studied applications of reinforcement learning to queueing problems, including
policy-gradient-based algorithms. In [SXX20], discounted reward reinforcement learning is applied
to queue length control. Their analysis assumes bounded single-step rewards and the presence of an
oracle capable of generating samples from the MDP to learn the value functions. This combination
of discounted rewards and bounded single-step rewards provides a uniform, state-independent upper
bound on the value function. However, this does not apply to our analysis since the single-step cost,
represented by the current queue length, is unbounded and our objective is the infinite horizon average
cost.

In [LXM19], a model-based approach addresses the challenge of a countable state space by using
thresholding. That is, the optimal policy is learned for a finite subset of low-cost states using model-
based methods, while a fixed stabilizing policy is applied outside this finite set. The optimality gap
is then determined based on the size of this finite set. Contrary to their approach, our assumptions
accommodate a soft thresholding, allowing for the learning of better policies beyond a finite set.
Additionally, our analysis is model-free.

Several results focus on the problem of learning the relative value function from samples, including
variance reduction techniques [DG22] and sample augmentation techniques [WLWY23]. Our results
complement these results, as we focus on the function approximation step, and prove results on
overall algorithmic performance, while these results focus on the policy evaluation step, and empiri-
cally demonstrate performance improvements. Dai and Gluzman [DG22] in particular empirically
demonstrate that with variance reduction techniques in use, policy gradient algorithms with function
approximation rapidly converge to the optimal policy in an infinite-state-space queueing setting. Our
results theoretically justify this empirical observation.
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2 Model and Preliminaries

We consider the class of Markov Decision Processes (MDP) with countably infinite states S (possibly
ZK
+ ), finite actions A and the infinite horizon average cost objective. Particularly, we consider the

context of queuing systems where each state of the MDP is denoted by a vector q ∈ S . Each element
of the vector q indicates the queue length for a specific type of job, with a total of K different job
types. We assume the buffer associated with the queue is of infinite capacity and therefore we obtain
a state space whose cardinality is countably infinite. We consider a randomized class of policies Π,
where a policy π ∈ Π maps each state to a probability vector over actions A, that is, π : S → ∆A.
The actions in the context of queues denote which particular job type to service, if any.

The underlying probability transition kernel is denoted by P : S → S and the transition kernel
corresponding to any policy π is denoted by Pπ, where Pπ(q

′|q) =
∑

a∈A π(a|q)P(q′|q, a) is
the probability of transitioning from q to q′ under policy π in a single step. Associated with each
state q is a single step cost c(q), which in the context of queues is the total queue length, that is,
c(q) = ∥q∥1. Since we consider unbounded queue lengths in this formulation, the single step costs
also are unbounded. In this scenario, it is important to note that the costs incurred in a single step
do not depend on the action taken or the policy being used at that moment. This is because the
policy only influences the queue length in the next time step, not the current one. The infinite horizon
average reward associated with a policy π is denoted by Jπ , and is defined as follows:

Jπ = lim
T→∞

Eπ

[∑T−1
t=0 ∥qt∥1

]
T

(1)

where the expectation is taken with respect to the trajectory generated by Pπ. If the transition kernel
Pπ admits a unique stationary distribution dπ over the state space, then the infinite horizon average
reward can be reformulated as Jπ =

∑
q∈S dπ(q)∥q∥1. If a function Vπ : S → R associated with a

policy π is absolutely integrable, that is it satisfies:∑
q′∈S

Pπ(q
′|q)|Vπ(q

′)| < ∞ (2)

and is a solution to the Poisson’s equation:

Jπ + Vπ(q) = ∥q∥1 +
∑
q′∈S

Pπ(q
′|q)Vπ(q

′), (3)

then Vπ(q) is defined as the relative value function associated with the policy π [GI24]. Since Vπ(q)
is unique upto an additive constant, any function of the form Vπ(q) + C, where C is a constant is
also a solution to the Poisson’s equation. However, the most frequently used representation of the
value function, which is also unique, is given by:

Vπ(q) = Eπ

τπ
0 −1∑
i=0

(∥qi∥1 − Jπ)

∣∣∣∣∣q0 = q

 (4)

where τπ0 represents the first time to hit state 0 starting from any state q under policy π. Hence, from
definition it follows that Vπ(0) = 0. The value function associated with a state q represents the
expected difference between the total cost and the expected total cost obtained under policy π when
starting from state q until state 0 is reached for the first time. The relative state action value function
Qπ(q) is analogously defined as the solution to the following equation:

Jπ +Qπ(q, a) = ∥q∥1 +
∑
q′∈S

P(q′|q, a)Vπ(q
′) (5)

The state action value function Qπ(q, a) has a similar interpretation as state value function Vπ(q)
except the action enacted at time 0 is a and not dictated by the policy π.

The goal of reinforcement learning is to determine the policy π∗ ∈ Π, such that the infinite horizon
average cost is minimized. That is, to solve for

J∗ = min
π∈Π

Jπ (6)

where π∗ = argminπ∈Π Jπ . The focus of this paper is to analyze the performance of Natural Policy
Gradient in determining the optimal policy that minimizes the infinite horizon average reward.
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2.1 Natural Policy Gradient Algorithm

Natural Policy Gradient algorithm is related to the mirror descent algorithm in the context of tabular
policies. The objective of mirror descent involves minimizing the first order approximation of the
average cost with KL regularizer. In the context of tabular policies, the NPG policy update is of the
form below:

πi+1(a|q) ∝ πi(a|q) exp
(
−ηqQ̂πi(q, a)

)
(7)

where ηq > 0 is the state dependent step size. Since in the limit as ηq → ∞, the above update picks
the action with the lowest state action value function, NPG is also considered to be a form of soft
policy iteration. The magnitude of ηq determines the greediness of the policy.

With the state space being infinitely large, a common approach to evaluate value functions is through
linear function approximations. This simplifies the complexity from infinity to the dimension of
the parameter vector, although with some loss in accuracy. A popular method involves using neural
networks, where the weights act as the parameter vector and the network itself serves as the feature
space. For each policy π, the estimate Q̂π of the state-action value function Qπ is then computed
using overparametrized neural networks and samples gathered from trajectories under policy π. For
further details, please see Subsection 4.1.

Algorithm 1: Natural Policy Gradient Algorithm

Require : T , π0 ∈ ∆A
1 for i = 0, 1, 2, 3, · · · , T − 1 do
2 Generate trajectory {q0, a0,q1, a1, . . . ,qn, an} using policy πi. Evaluate Q̂πi

using
neural network linear function approximation.

3 Update policy as:
4

πi+1(a|q) =
πi(a|q) exp

(
−ηqQ̂πi(q, a)

)
∑

a′∈A πi(a′|q) exp
(
−ηqQ̂πi

(q, a′)
) (8)

5 end
6 return πT

To aide our analysis, we make the following assumptions, which are typically met by queuing systems.
The irreducibility of the Markov chain under any policy is a standard assumption in reinforcement
learning. This ensures adequate exploration and visitation of all state-action pairs, which is crucial
for learning policies with reasonable confidence.

Assumption 2.1. For all policies π ∈ Π the induced Markov Chain Pπ is irreducible.

In countable state Markov chains, irreducibility together with positive recurrence ensures the existence
of the stationary distribution which aides in the proof of convergence of NPG. The next assumption
ensures that the underlying Markov chain is positive recurrent (see Lemma A.2.

Assumption 2.2. There exist constants ϵ, c independent of policy π such that for every policy π ∈ Π
the following drift equation is satisfied:

Eπ

[
∥qk+1∥2 − ∥qk∥2|qk = q

]
≤ −ϵ∥q∥1 + c (9)

In addition to ensuring positive recurrence, the drift equation (9) gives a uniform bound on the average
cost of any policy. It turns out that we also need policy independent bounds on the value function,
which is ensured by our next assumption on a finite set of low cost states. More precisely, consider
the finite set B defined as:

B :=

{
q ∈ S : ∥q∥1 ≤ 2c

ϵ

}
. (10)

Clearly, B is a set of low cost states and is finite since c, ϵ are finite quantities.

Assumption 2.3. Structural Assumptions on the underlying Markov Decision Process:
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• We assume that there exist constants xB and pB , independent of policy π, such that

PxB
π (q′|q) ≥ pB ∀q ∈ B, ∀q′ ∈ B, ∀π ∈ Π (11)

where PxB
π is the xB-step probability transition matrix.

• We assume that the number of jobs that can arrive and the number of jobs that can depart in
a single time step are both bounded.

Equation (11) indicates that any state q ∈ B can be reached from any state q′ ∈ B in utmost xB

transitions with atleast pB probability under any policy π ∈ Π.

Bounded arrivals and departures ensures that the length of the queues in a single transition under any
policy π cannot grow unbounded. That is, there exists constants c1, c2 independent of policy π such
that,

Pπ (q
′|q) > 0 =⇒ ∥q′∥2 ≤ c1∥q∥2 + c2 ∀π ∈ Π (12)

3 Main Result and Discussion

We now present the main result, which is the performance of NPG in the context of infinite state
MDPs within the learning framework. We then contextualize Assumptions 2.1, 2.2 and 2.3 and
elaborate on how they can be satisfied in the context of queuing systems.

3.1 Main Result

Theorem 3.1. Consider the sequence of policies π1, π2, . . . , πT obtained from Algorithm 1 with a

state-dependent step size ηq =
√

8 log |A|
T

1
Mq

, where Mq is quadratic in q. Let Jπk
be the average

cost associated with policy πk and let J∗ be the minimum average cost across policy class Π. Let Q̂πk

be an estimate of state action value function Qπk
associated with policy such that with probability at

least 1− δ
2T it is true that,∥∥∥Qπ(q, a)− Q̂π(q, a)

∥∥∥ ≤ κ∥q∥2 ∀q ∈ S, π ∈ Π (13)

Then, under Assumptions 2.1, 2.2 and 2.3, there exist constants c′, c′′ not depending on T or
π1, π2, . . . , πT such that with probability at least 1− δ:

T∑
k=1

(Jπk
− J∗) ≤ c′

√
T + c′′T (14)

where c′ =
(
2κ+ 2c1

ϵ

)
Eq∼dπ∗∥q∥2

√
log |A|

2 +
√

log |A|
2

(
2c2
ϵ + xBc

ϵ

(
1 + 2

pB
+ 1

p2
B
+ 1

p3
B

))
and

c′′ = κEq∼dπ∗∥q∥2.

Proof. The proof is in Appendix A.3. An outline is provided in Section 4.

3.2 Discussion on Assumptions: Applications in Stochastic Networks

Assumptions 2.1 and 2.3 are easily satisfied in queueing systems under mild conditions on the arrival
and service process that are fairly standard in queuing literature [SY13]. For instance, suppose that
the policy class allows for a non-zero probability of both zero job arrivals and zero job departures.
Under such a policy class, it is possible to transition from any state q to the state 0 and from the state
0 to any state q, ensuring irreducibility. Similarly, within a finite set B, it is possible to establish
uniform lower bounds for transitioning from any state to any other state within the set under any
policy, thereby satisfying both assumptions.

In a large class of queueing systems, the MaxWeight policy is known to ensure stability, i.e., positive
recurrence (see Chapter 4, [SY13]). Assumption 2.2 is inspired by the so-called MaxWeight policy,
which is known to satisfy the drift equation below:

EπMW

[
∥qk+1∥2 − ∥qk∥2|qk = q

]
≤ −ϵ∥q∥1 + d1 (15)
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where the expectation is taken with respect to πMW and ϵ, d1 are some positive constants independent
of policy. Assumption 2.2 is designed so that we explore a family of randomized policies that inherit
stability from MaxWeight, while also enabling us to learn policies that outperform MaxWeight.

In particular, we consider policies obtained by using a combination of MaxWeight and arbitrary
randomized acations by transforming the underlying MDP as follows. Let the policies obtained from
update Equation 8 be referred to as πNPG. Modify the underlying MDP such that the probability
transition kernel corresponds to a policy π defined below:

π(a|q) =

πNPG(a|q), w.p. min
(
1, 1

λ∥q∥

)
πMW(a|q), w.p. 1−min

(
1, 1

λ∥q∥

) (16)

where λ > 0 is a fixed parameter with a very small positive value.

As the queue length grows larger, the above transformed MDP enacts the Max-Weight policy with
greater probability at higher queue lengths. The value of λ decides the threshold at which Max-Weight
policy starts influencing the transition dynamics. Once queue lengths exceed 1

λ , this soft thresholding
compromises some optimality to prioritize stability. This differs from the hard thresholding approach
taken in [LXM19].

We will now illustrate that this family of soft-thresholded policies satisfy Assumption 2.2. First note
that from Assumption 2.3 and Equation 12 it is easy to show that πNPG satisfies

EπNPG

[
∥qk+1∥2 − ∥qk∥2|qk = q

]
≤ d2∥q∥1 + d3 (17)

where the expectation is taken with respect to πNPG and d2, d3 are some positive constants independent
of policy. Thus the drift equation corresponding to policy π in Equation 16 is as follows:

Eπ

[
∥qk+1∥2 − ∥qk∥2|qk = q

]
≤{

d2

λ + d3, ∥q∥1 ≤ 1
λ

1
λ∥q∥1

(d2∥q∥1 + d3) +
(
1− 1

λ∥q∥1

)
(−ϵ∥q∥1 + d1) , ∥q∥1 > 1

λ

(18)

Combining the cases in Equations 18, we obtain the following drift relation for policy π for all q ∈ S:

Eπ

[
∥qk+1∥2 − ∥qk∥2|qk = q

]
≤ −ϵ∥q∥1 +D (19)

where D is a constant independent of policy π but is a function of constants d1, d2, d3, ϵ and λ. Note
that the constant ϵ remains the same in both (15) and (19). This constitutes one such class of policies
that satisfies the required the drift equation (9) for our analysis.

4 Proof outline and Key Insights

The difference in average cost associated with a policy π and the optimal average cost is linked to the
Qπ function through the performance difference lemma ([Cao99]) as below:

Jπ − J∗ = Eq∼dπ∗ [Qπ (q, π(q))−Qπ (q, π
∗(q))] . (20)

Hence, the regret in LHS of Equation (14) can be captured in terms of difference in the state action
action Qπ . However, in practise it is not possible to determine Qπ exactly since the model might be
unknown or the state space is infinite. Hence, we incorporate the estimates Q̂π of the value function
Qπ. If the estimates satisfy Equation (13), then from Equation (20) we obtain the following regret
formulation:

T∑
k=1

Jπk
− J∗ ≤ 2κTEq∼dπ∗∥q∥2 + Eq∼dπ∗

[
T∑

k=1

Q̂πk
(q, π∗(q))− Q̂πk

(q, πk(q))

]
︸ ︷︷ ︸

(a)

(21)

The term linear in T , i.e., 2κTEq∼dπ∗∥q∥2 is a consequence of function approximation and is
generally unavoidable [AYBB+19].The primary task is to bound (a) in Equation (21). We approach
this in four steps: (i) examining the link between NPG and prediction through expert advice as
highlighted in prior literature, and identifying challenges specific to our countable state-space model
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and cost structure, (ii) deriving policy-independent bounds on the value functions, i.e., the solution
to Poisson’s Equation (3), (iii) accounting for policy evaluation errors and establishing policy-
independent bounds on the estimates of the value function, and (iv) integrating all these steps to
achieve the final result. We now proceed with the proof outline.

Step 1 (Connection to Weighted Averaging): This step involves connecting learning within Markov
Decision Processes (MDPs) to prediction through expert advice. This connection was initially
identified in [EDKM09] for MDPs and later extended to the learning setting in [AYBB+19]. We now
discuss this connection in some detail and why need our proof techniques to adapt this connection
to the countable state-space setting. In the framework of prediction through expert advice, the
agent selects an action at at time t, and the environment responds with a corresponding loss lt(at).
Concurrently, an expert follows a predetermined strategy, which in our context can be simplified to a
single action a∗ taken at each time step, also experiencing a loss of lt(a∗). The agent’s objective is to
minimize the overall loss by considering all it’s past observations when choosing an action. If the
expert opts for a fixed strategy π∗ over the available actions, the following holds true.

Theorem 4.1. (Section 4.2, Corollary 4.2, [CBL06].) Consider the exponentially weighted average
forecaster problem. Let the set of actions possible at each time step and each instance be denoted by
A := {1, . . . , n}. For a fixed instance s, let lt(s, i) be the loss associated with action i ∈ A at time t
such that for any pair of actions i, i′ ∈ A,

|lt(s, i)− lt(s, i
′)| ≤ M(s) (22)

Consider the action strategy below:

πt(i|s) =
πt−1(i|s) exp (−ηslt−1(s, i))∑n

k=1 πt−1(k|s) exp (−ηslt−1(s, k))
(23)

Then, for any fixed policy π∗, setting ηs =
√

8 logn
T

1
M(s) yields the following overall regret corre-

sponding to instance s.
T∑

k=1

(lk (s, πk(s))− lk (s, π
∗(s))) ≤ M(s)

√
T log n

2
(24)

The NPG algorithm can be interpreted as applying the weighted averaging algorithm to each state q
in the state space, with the goal of learning the optimal policy for each state. In this context, the loss
function associated with an action a in state q at time k is the estimate Q̂πk

(q, a) of the state-action
value function, where the policy in use at time k is πk. However, as indicated by Equation (22), the
loss function—Q̂πk

(q, a)—must be bounded for any given state q. In finite-dimensional MDPs, a
state-independent uniform bound on the state-action value function is typically assumed [AYBB+19].
This is due to the fact that the step-size η is assumed to be independent of s. Note that, compared
to [EDKM09, AYBB+19], we have made a small, but critical, change to the best-experts algorithm
by allowing the step-size η to be a function of s. When the state-space is countable, the state-action
value function Qπ cannot be uniformly bounded and hence, a constant step-size cannot be assumed.
With the introduction of a state-dependent step-size, we can choose a different step-size for each state
using bounds on the solution to Poisson’s equation, i.e., Qπ(s, a), which depends on the state, but is
uniform over all policies. Obtaining such bounds is one of the key contributions of the paper.

Step 2 (Value Function Bounds): To establish bounds on Poisson’s Equation 5, we initially rely on
Assumptions 2.1 and 2.2. In dealing with countable state space MDPs, along with irreducibility, we
require the Markov chain to be positive recurrent for a unique stationary distribution to exist. The
drift equation 9 within Assumption 2.2 ensures the positive recurrence of the underlying Markov
chain. Since Qπ is related to the state value function Vπ(see Equation 5), we initially constrain Vπ

using Assumptions 2.1 and 2.2. This leads to an upper bound on Vπ(q) for all q ∈ Bc, where B is
defined in Equation 10.

Vπ(q) ≤
2

ϵ
∥q∥2 + max

q′∈B
π∈Π

Vπ(q
′)

︸ ︷︷ ︸
(b)

(25)

Recall Equation (22) in the context of weighted expert averaging. The constraint on the loss function’s
bound (M(s)) must be independent of time. When applied to the NPG framework, this implies
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the necessity of a policy-independent upper bound on the state-action function Qπ, which, in turn,
necessitates a policy-independent bound on the state value function Vπ. For (b) to be well-defined,
the drift alone is insufficient, as indicated in previous studies [GI24, GM96]. Addressing this is the
second challenge in our analysis, which we navigate by introducing a mild structural Assumption 2.3
commonly satisfied in queuing systems.

These structural assumptions yield a uniform upper bound on the hitting time of state 0 when starting
from any point within B. This uniform upper bound on hitting time aids in bounding the state value
function Vπ from below since the drift inequality (9) assists in bounding the value function Vπ from
above alone. As a consequence, we obtain the following,

|Qπ(q, a)−Qπ(q, a
′)| ≤ O(∥q∥2) ∀π ∈ Π,∀a, a′ ∈ A and ∀q ∈ S (26)

As a result, we establish policy-independent bounds on the value function Qπ. While the drift
assumption 2.2 played a crucial role in deriving policy-dependent bounds on the value function
Vπ, for the purpose of NPG, we need these bounds to be independent of the policy. The structural
assumption 2.3 eliminates this policy dependence. Consequently, from Equation 5, this translates
into policy-independent bounds on Qπ .

Step 3 (Handling Estimation Errors): Since our loss function in the context of Theorem 4.1 is
Q̂π, we need uniform bounds on Q̂π. We leverage the bounds on Qπ obtained in Equation 26 and
in conjunction with the evaluation error characterized in Subsection 4.1 Equation 34, we obtain the
following: ∣∣∣Q̂π(q, a)− Q̂π(q, a

′)
∣∣∣ ≤ O(∥q∥2) ∀π ∈ Π,∀a, a′ ∈ A and ∀q ∈ S (27)

Adapting Equation 22 to the context of context of infinite state NPG, implies that Mq = O(∥q∥2).

Step 4 (Piecing it all together): The upper bound Mq on Q̂π in Step 3 is utilized to determine the

state dependent step size as ηq =
√

8 log |A|
T

1
Mq

. With bounds over Q̂ quantified in Equation 27, (a)
of Equation (21) is upper bounded by leveraging the connection to the prediction through expert
advice Theorem 4.1. This yields the final result.

The detailed proof of all steps and the main theorem can be found in Appendix.

4.1 Policy Evaluation in Countable State MDPs

It is a well-known fact that neural networks with at least one hidden layer of sufficient width and
a non-linear activation function can approximate any continuous function on a compact domain
arbitrarily well [Cyb89, Fun89, HSW89]. A potential technique to evaluate value functions associated
with infinite state spaces can be through neural network temporal difference learning. In order to do
so, consider the following transformation to compactify the domain of the problem. Let the system
comprise of K queues that is, q ∈ RK

+ , where RK
+ denotes the non-negative subspace of RK . Let

qi represent the number of jobs in the ith queue. Then define a vector x ∈ [0, 1]
K such that the ith

element is xi =
1

1+qi
. Given a policy π, consider a linear function approximation Q̂π(q, a) of the

state-action value function Qπ(q, a) as below:

Q̂π(q, a)

∥q∥2
= θπ

⊤ϕ (x(q), a) (28)

where the feature vector ϕ is defined as below,

ϕ (x(q), a) =

Iw⊤
1 (x(q),a)≥0 (x(q), a)

...
Iw⊤

m(x(q),a)≥0 (x(q), a)

 . (29)

Here, wi ∼ N (0, I) and I ∈ R(K+1)×(K+1) is the identity matrix. This linearized model is
well-studied approximation to a neural network and is called the Neural Tangent kernel (NTK)
approximation; see [JT19], for example. We will not discuss the merits of the NTK approximation
here since that is irrelevant to our analysis, but we only introduce the NTK approximation to discuss

9



we why we chose our model for function approximation. In the NTK approximation, wi ∈ RK+1 is
random initialization which chooses a random set of features. Each feature vector ϕ (x(q), a) is of
length m|A|K, where m represents the width of the hidden layer in the neural network. Finally, θ∗π
represents the optimal parameter vector, i.e., the parameter that best estimates Qπ(q, a).

The state action value function Qπ(q, a) can be approximated arbitrarily well if Qπ is a continuous
function. This is indeed the case for some simple contexts such as the M/M/1 queue, where the value
function is a quadratic function in queue length ([Mey08]). More generally, Equation (26) indicates
that the Qπ(q, a) can be upper bounded by a quadratic function. Therefore, under the assumption
that Qπ is continuous, the learning error due to policy evaluation using the neural network can be
characterized as follows:

∥Qπ(q, a)− Q̂π(q, a)∥ = ∥Qπ(q, a)− θπ
⊤ϕ (x(q), a) ∥q∥2∥ (30)

≤
∥∥∥Qπ(q, a)− θ∗π

⊤ϕ (x(q), a) ∥q∥2
∥∥∥ (31)

+
∥∥∥θ∗π⊤ϕ (x(q), a) ∥q∥2 − θπ

⊤ϕ (x(q), a) ∥q∥2
∥∥∥ (32)

The function approximation error is captured in Equation (31) as follows:∥∥∥Qπ(q, a)− θ∗π
⊤ϕ (x(q), a) ∥q∥2

∥∥∥ =

∥∥∥∥Qπ(q, a)

∥q∥2
− θ∗π

⊤ϕ (x(q), a)

∥∥∥∥ ∥q∥2 ≤ κ1(m)∥q∥2 (33)

where κ(m) is a constant that is independent of the underlying policy but depends on the width of
the hidden layer. In fact, it is shown in [SS21] that when approximating polynomials, as m → ∞,
κ1(m) → 0. The temporal difference (TD) learning error is captured in Equation (32) and is a
function of the number of samples available and can be quantified as κ2∥q∥2 with high probability.
And thus, with high probability, the overall state dependent error can be quantified as follows:

∥Qπ(q, a)− Q̂π(q, a)∥ ≤ κ∥q∥2 (34)

where κ = κ1(m) + κ2.
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A Appendix / supplemental material

The proof of Step 1 can be found in Chapter 4 of [CBL06].

A.1 Proof of Step 2

The following lemmas are a consequence of Assumptions 2.1 and 2.2.

Lemma A.1. Given Assumptions 2.1 and 2.2, there exists a positive constant α such that Eπ[e
α∥q∥] <

∞. Consequently, for any p ≥ 1, there exists a constant βp > 0 such that for all policies π, it is true
that Eπ [∥q∥p] < βp. [Haj82, ES12].

This lemma ensures that for all policies π ∈ Π, all moments of ||q|| exist. The second moment is
particularly important since final regret depends on Eq∼dπ∗

[
∥q∥2

]
.

Lemma A.2. Let Pπ be an irreducible transition matrix on the countable state space S. Suppose
that (9) is satisfied. Then the corresponding homogenous Markov Chain is positive recurrent.
Consequently, the stationary distribution dπ corresponding to Pπ exists and is unique [Bré13].

Lemmas A.1 and A.2 are utilized to establish a policy independent upper bound on the infinite-horizon
average-cost. Such a bound is indicative of stable policies since the negative drift in Equation (9)
prevents the average cost from being unbounded. Thus it is possible to show that all policies that
satisfy the drift equation 9, have an uniform upper bound on the expected total queue length. This is
proven in the Lemma below.

Lemma A.3. Given Assumptions 2.1 and 2.2, for all policies π ∈ Π it is true that,

Jπ ≤ c

ϵ
(35)

where Jπ = Eπ [∥q∥1] is the average cost associated with policy π and constants c, ϵ are the drift
parameters in Equation 9.

Proof. From Assumption 2.2, it follows that for any policy π ∈ Π, the following drift inequality is
satisfied,

Eπ

[
∥qk+1∥2 − ∥qk∥2|qk = q

]
≤ −ϵ∥q∥1 + c. (36)

Recall that dπ represents the stationary measure associated with policy π. Since we assume that all
policies induce irreducible Markov chains and from Lemma A.2, we know that the drift equation (9)
implies positive recurrence of the Markov chain, dπ exists and is unique. Since dπ ≥ 0, consider the
following weighted drift inequality:∑

q∈S
dπ(q)

[
Eπ

[
∥qk+1∥2 − ∥qk∥2|qk = q

]]
≤ −ϵ

∑
q∈S

dπ(q)∥q∥1 + c (37)

From Lemma A.1, recall that the second moment of q is defined and exists for all policies π ∈ Π.
Hence the left hand summation in Equation 37 is well defined. Since the expectation is taken with
respect to Pπ and since dπPπ = dπ , the left hand summation in Equation 37 is 0. Hence the expected
drift in stationarity is zero.

From Lemma A.1, we know that Jπ exists and can be defined as Jπ =
∑

q∈S dπ(q) (∥q∥1). We
thus obtain the following:

0 ≤ −ϵJπ + c (38)

Therefore,

Jπ ≤ c

ϵ
(39)

Equation 39 is true for all policies π. Hence, the average cost is uniformly upper bounded by c
ϵ .

Since Qπ is related to Vπ through Equation (5), in order to bound Qπ, we first bound Vπ. We now
derive an upper bound on the value function Vπ leveraging the drift equation 9 and the uniform upper
bound on Jπ in Equation 39. First we leverage Assumptions 2.1 and 2.2 to establish policy dependent
upper bounds on the value function as elaborated in the following subsection.
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A.1.1 Policy Dependent upper bound on State Value Function

Lemma A.4. Consider a set B defined in Equation 10. Let Vπ(q) represent the state value function
associated with state q ∈ S and policy π ∈ Π. Under Assumptions 2.1 and 2.2, for all q ∈ Bc and
for all policies π ∈ Π, it is true that,

Vπ(q) ≤
2

ϵ
∥q∥2 + max

q′∈B
π∈Π

Vπ(q
′) (40)

Proof. Define the following set:

Aπ :=

{
q ∈ S : ∥q∥1 ≤ 2c

ϵ
− Eπ [∥q∥1]

}
(41)

Since Jπ ≤ c
ϵ , Aπ is a finite non-empty set. Multiplying (36) throughout by 2

ϵ , we obtain the
following:

Eπ

[
2

ϵ
∥qk+1∥2 −

2

ϵ
∥qk∥2

∣∣∣qk = q

]
≤ −2∥q∥1 +

2c

ϵ
(42)

Consider a q ∈ Ac
π. Then, from definition it is true that −∥q∥1 ≤ − 2c

ϵ + Eπ [∥q∥1]. Bounding
−∥q∥1 from above, we obtain,

Eπ

[
2

ϵ
∥qk+1∥2 −

2

ϵ
∥qk∥2

∣∣∣qk = q

]
≤ −∥q∥1 + Eπ [∥q∥1] (43)

Let τAπ be the first time to enter set Aπ starting from state q ∈ Ac
π. Note that τAπ is almost surely

finite, because stability follows from lemma A.1. Let qτAπ
∈ Aπ represent the state first reached

within Aπ. Then, consider the drift equation summed up along the trajectory starting from q till the
first time it enters the set Aπ ,

E

[τAπ−1∑
k=0

∥qk∥1 − Eπ [∥qk∥1]
∣∣∣q0 = q

]
︸ ︷︷ ︸

(a)

≤ −Eπ

[
Eπ

[τAπ−1∑
k=0

2

ϵ
∥qk+1∥2 −

2

ϵ
∥qk∥2

∣∣∣Fk

]]
︸ ︷︷ ︸

(b)

(44)

where Fk = σ ({q0, a0,q1, a1, . . . ,qk, ak}) represents the filtration till time k. Consider the expres-
sion in (b). Since τAπ

is a valid stopping time and since ∥q∥2 is a non-negative random variable,
from discrete Dynkin’s formula [MT92] we have the following:

(b) = −Eπ

[τAπ−1∑
k=0

Eπ

[
2

ϵ
∥qk+1∥2

∣∣∣Fk

]
− 2

ϵ
∥qk∥2

]
(45)

=
2

ϵ
∥q∥2 − Eπ

[
2

ϵ
∥qτAπ

∥2
∣∣∣q0 = q

]
(46)

where ∥qτAπ
∥2 =

∑
q′∈Aπ

Pπ

(
qτAπ

= q′|q0 = q
)
f(q′).

Since ∥qτAπ
∥2 > 0, we obtain the following:

(b) ≤ 2

ϵ
∥q∥2 (47)

Consider the expression in (a). From definition of Aπ in (41), we know that the state corresponding
to zero queue length, that is 0 ∈ Aπ,∀π ∈ Π. Let τπ0 denote the time to hit state 0. Then,

(a) = Eπ

[ τAπ−1∑
k=0

(∥qk∥1 − Eπ [∥qk∥1]) +
τπ
0 −1∑

k=τAπ

(∥qk∥1 − Eπ [∥qk∥1])

∣∣∣∣∣q0 = q

]
(48)

− EΠ

 τπ
0 −1∑

k=τAπ

(∥qk∥1 − Eπ [∥qk∥1])

∣∣∣∣∣q0 = q

 (49)
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Recall the definition of value function Vπ(q) from Equation (4). We thus obtain:

(a) = Vπ(q)− Eπ

 τπ
0 −1∑

k=τAπ

(∥qk∥1 − Eπ [∥qk∥1])
∣∣∣q0 = q

 (50)

Let I denote the indicator function. Since τAπ is the first time to enter set Aπ when starting from
state q,

(a) = Vπ(q)− Eπ

 τπ
0 −1∑

k=τAπ

(∥qk∥1 − Eπ [∥qk∥1])

 ∑
q′∈Aπ

IqτAπ
=q′

∣∣∣∣∣q0 = q

 (51)

= Vπ(q)−
∑

q′∈Aπ

Eπ

 τπ
0 −1∑

k=τAπ

(∥qk∥1 − Eπ [∥qk∥1])

∣∣∣∣∣q0 = q,qτAπ=q′

Pπ

(
qτAπ=q′ |q0 = q

)
(52)

Since τAπ
is the first time to enter set Aπ , it qualifies as a valid stopping time. Hence, from the strong

Markov property we know that:

Eπ

 τπ
0 −1∑

k=τAπ

(∥qk∥1 − Eπ [∥qk∥1])

∣∣∣∣∣q0 = q,qτAπ=q′

 = Eπ

τπ
0 −1∑
k=0

(∥qk∥1 − Eπ [∥qk∥1])

∣∣∣∣∣q0 = q′


(53)

Since, Vπ(q
′) := Eπ

[∑τπ
0 −1

k=0 (∥qk∥1 − Eπ [∥qk∥1])

∣∣∣∣∣q0 = q′

]
,

(a) = Vπ(q)−
∑

q′∈Aπ

Pπ

(
qτAπ=q′ |q0 = q

)
Vπ(q

′) (54)

Combining Equations 44,47 and 54, we obtain the following,

Vπ(q) ≤
2

ϵ
∥q∥2 +

∑
q′∈Aπ

Pπ

(
qτAπ=q′ |q0 = q

)
Vπ(q

′) (55)

Recall the definition of set B in Equation 10

B :=

{
q ∈ S : ∥q∥1 ≤ 2c

ϵ

}
(56)

Since Eπ [∥q∥1] ≥ 0 for all policies π ∈ Π, it is evident from Equation 41 that Aπ ⊂ B. Thus the
following is true:

max
q′∈Aπ
π∈Π

Vπ(q
′) ≤ max

q′∈B
π∈Π

Vπ(q
′) (57)

Hence Equation 55 reduces to,

Vπ(q) ≤
2

ϵ
∥q∥2 +

∑
q′∈Aπ

Pπ

(
qτAπ=q′ |q0 = q

)
max

q′′∈Aπ
π∈Π

Vπ(q
′′)

≤ 2

ϵ
∥q∥2 +

∑
q′∈Aπ

Pπ

(
qτAπ=q′ |q0 = q

)
max
q′′∈B
π∈Π

Vπ(q
′′)

≤ 2

ϵ
∥q∥2 + max

q′∈B
π∈Π

Vπ(q
′) (58)

Recall that Equation 58 holds true for all q ∈ Ac
π. Since Bc ⊂ Ac

π for all policies π ∈ Π, we thus
obtain that for all q ∈ Bc, it is true that,

Vπ(q) ≤
2

ϵ
∥q∥2 + max

q′∈B
π∈Π

Vπ(q
′) (59)

In order to invoke the connection of NPG to prediction through expert advice, we need policy
independent bounds on the estimate Q̂π. As a step towards achieving that, we first need to establish
policy independent bounds on the exact value function Vπ and therefore on Vπ. Since the drift
provides us with a policy dependent upper bound alone, we exploit the structure of queuing systems
in order to obtain a policy independent lower bound and upper bound.
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A.1.2 Policy Independent bounds on the State Value Function

The structural assumption 2.3 aids in obtaining policy independent bounds by providing an uniform
upper bound on the hitting time of state 0 from any state within a finite set B across all policies π.

Lemma A.5. Consider the set B in Equation (10). By definition, the state 0, which represents zero
queue length, is included in the set B, i.e., 0 ∈ B. Let τ bound

B represent the maximum time taken to
hit 0 starting from any state q ∈ B across all policies π ∈ Π. Then under Assumption 2.3, for any
policy π ∈ Π, τ bound

B is bounded from above as follows:

τ bound
B ≤ xB

p2B
+ xB . (60)

Proof. For each state q ∈ B, let tπ,B(q) be the expected amount of time until policy π next reaches
a state q′ ∈ B, starting in state q. Let tmax

π,B be the maximum over q ∈ B of tπ,B(q). Let q∗ be the
state in B which achieves this maximum. By Assumption 2.3, every state q ∈ B has at least pB
probability of moving to state q∗ in the next xB steps, and therefore spending at most xB of the next
tmax
π,B + xB steps inside B.

Let us use a renewal-reward argument, where the renewal moments are steps on which the system
visits state q∗. Let us subdivide this renewal period into three segments:

1. Starting at q∗, the time until a state q ∈ B is next visited.

2. Starting from a state q ∈ B, the next xB steps, during which there is at least a pB probability
of reaching the state q∗.

3. Any time not in either of these two segments, which must be spent outside of B.

From these segments, we can upper-bound the fraction of time during the renewal period that the
system spends in B: The system can only be in B during item 2, and the system can spend at most
1
pB

periods of length at most xB in that segment. The fraction of time spent in B is maximized if no
time is spent in item 3, resulting in the following bound:

P (qt ∈ B) ≤ xB/pB
tmax
π,B + xB/pB

Since the system accrues a cost of atleast 2c
ϵ outside B and a cost of atleast 0 inside B, the average

cost Jπ can be bounded as below:

Jπ ≥
(
2c

ϵ

)(
tmax
π,B

tmax
π,B + xB/pB

)
(61)

However, from Lemma A.3, we know that Jπ ≤ c
ϵ . We can use this fact to bound tmax

π,B as follows:(
2c

ϵ

)(
tmax
π,B

tmax
π,B + xB/pB

)
≤ c

ϵ
(62)

=⇒ tmax
π,B ≤ xB

pB
(63)

Now, we can bound the time until we reach B, starting from q ∈ B. Whenever the system is in a
state in B, there is a pB chance of reaching B in the next xB steps, and a maximum expected time of
tmax
π,B until we next get the opportunity. Let pπ,B(q) be the probability that the system reaches 0 from
q in at most xB steps. Let t′π,B(q) be the expected time until the system re-enters B, conditional on

not reaching 0 in at most xB steps. Note that t′π,B(q) ≤
tπ,B(q)

1−pπ,B(q) , because the probability of the
event of not reaching B in at most xB steps is 1− pπ,B(q).

We can now start to bound τπ(q) as follows:

τπ(q) ≤ pπ,B(q)xB + (1− pπ,B(q))(t
′
π,B(q) + τπ(q

′))
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where q′ is the state at which we re-enter B. Thus,

τπ(q) ≤ pπ,B(q)xB + (1− pπ,B(q))

(
tπ,B(q)

1− pπ,B(q)
+ τπ(q

′)

)
= xB + tπ,B(q) + (1− pπ,B(q))(τπ(q

′)− xB)

In particular, letting τ bound
π be the maximum over q ∈ B of τπ(q), and letting q∗

τ be the state in which
that maximum occurs, we have

τ bound
π ≤ xB + tπ,B(q

∗
τ ) + (1− pπ,B(q

∗
τ ))(τ

bound
π − xB)

τ bound
π ≤ xB +

tπ,B(q
∗
τ )

pπ,B(q∗
τ )

≤ xB +
tmax
π,B

pB

τ bound
π ≤ xB

p2B
+ xB

The uniform hitting bound provides with a uniform lower bound on the value function Vπ. This lower
bound is further leveraged to get a policy independent upper bound on the quantity maxq∈B

π∈Π
Vπ(q).

This leads to the upper bound on the value functions being policy independent.

Lemma A.6. Let xB , pB be policy independent constants that satisfy Assumption 2.3 and c, ϵ be
policy independent constants that satisfy Assumptions 2.1 and 2.2. Then, the following are true.

1. The value function Vπ(q) is lower bounded ∀q ∈ S and for all policies π ∈ Π as follows:

Vπ(q) ≥ −c

ϵ

(
xB

p2B
+ xB

)
(64)

2. For all q ∈ B, where B is a set defined in Equation (10), the value function Vπ(q) is
uniformly bounded from above across all policies π ∈ Π as follows:

max
q∈B
π∈Π

Vπ(q) ≤
c

pBϵ

(
xB

p2B
+ 2xB

)
. (65)

3. The value function Vπ(q) is upper bounded ∀q ∈ S and for all policies π ∈ Π as follows:

Vπ(q) ≤
2

ϵ
∥q∥2 + c

pBϵ

(
xB

p2B
+ 2xB

)
(66)

Proof of Part 1:

Proof. Recall the definition of the state value function Vπ(q) in Equation 4. Consider any state
q ∈ S and policy π ∈ Π, such that τπ0 represents the time to hit state 0 when starting at q. Then,

Vπ(q) = Eπ

τπ
0 −1∑
k=0

∥qk∥1 − Eπ [∥q∥1]
∣∣∣q0 = q

 (67)

= Eπ

τπ
0 −1∑
k=0

c(qk)− Jπ

∣∣∣q0 = q

 (68)

where c(q) is the single step cost associated with state q, particularly the total queue length at that
instant.

Consider the following definitions:

• τ out
π,B is the first time to enter B when starting at q.
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• τ in
π,B is the first time to hit state 0 from the first time to enter state B.

• cout
π be the aggregate average cost obtained till time τ out

π,B .

• cin
π be the aggregate average cost in the next time interval τ in

π,B .

Then the value function Vπ(q) can be decomposed as follows:

Vπ(q) = V out
π (q) + V in

π (q) (69)

When further expanded, we obtain,

Vπ(q) =
(
cout
π − Jπ

)
τ out
π,B +

(
cin
π − Jπ

)
τ in
π,B (70)

From definition ∀q ∈ Bc, ∥q∥1 > 2c
ϵ . Hence the aggregate cost outside B is also greater than 2c

ϵ ,
that is cout

π > 2c
ϵ . Since from Lemma A.3 we know that Jπ ≤ c

ϵ , it is true that (cout
π − Jπ) > 0. Hence,

we obtain,
Vπ(q) ≥

(
cin
π − Jπ

)
τ in
π,B (71)

Since all the costs are non-negative,

Vπ(q) ≥ −Jπτ
in
π,B (72)

Since from Lemma A.3 we know that Jπ ≤ c
ϵ ,

Vπ(q) ≥ −c

ϵ
τ in
π,B (73)

Since τ in
π,B represents the time to reach 0 starting from the first state in B to be reached from q, this

quantity can be bounded from above using Lemma A.5. That is τ in
π,B ≤ τ bound

B . Hence for all q ∈ S,
we obtain the following policy-independent uniform lower bound on the state value function,

Vπ(q) ≥ −c

ϵ

(
xB

p2B
+ xB .

)
(74)

Proof of Part 2:

The proof of part 2 relies on the result in Part 1. Part 2 is essential in establishing policy independent
upper bounds on the value function, and relies on assumptions 2.1,2.2 and 2.3. This analysis is one of
the key contributions of this paper and is presented below.

Proof. Let q0 = 0, i.e., the trajectory is starting from state 0. Let τKπ represent the first time at which
the trajectory hits the state 0 for the K th time. That is,

τKπ = inf
k

{(
k∑

i=1

I(qi = 0)

)
= K

∣∣∣q0 = 0

}
(75)

τKπ represents the minimum time to complete K recurrent cycles with the recurrent state being 0
when starting from 0. Recall xB from Assumption 2.3. Consider the following quantity.

Ñ = min
{
N ∈ N, τNπ ≥ xB

}
(76)

Consider Ṽπ(0) defined below:,

Ṽπ(0) = Eπ

τ Ñ
π −1∑
i=0

∥qi∥1 − Eπ [∥q∥1]
∣∣∣q0 = 0

 (77)

Note that since Ñ is a random quantity, Equation 77 does not correspond to the recurrent state
characterization of the state value function in Equation 4. Hence, we need to consider the following.
The above equation can be decomposed into sum of recurrent cycles as below:

Ṽπ(0) = Eπ

 Ñ∑
i=1

τ i
π−1∑

k=τ i−1
π

∥qi∥1 − Eπ [∥q∥1]
∣∣∣q0 = 0

 (78)
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Since from definition of τ Ñπ in Equation 76 there can be a maximum of xB such recurrent cycles, Ñ
is bounded from above by xB .

Ṽπ(0) = Eπ

 xB∑
i=1

τ i
π−1∑

k=τ i−1
π

(∥qi∥1 − Eπ [∥q∥1]) I
(
Ñ ≥ i

) ∣∣∣q0 = 0

 (79)

=

xB∑
i=1

Eπ

 τ i
π−1∑

k=τ i−1
π

(∥qi∥1 − Eπ [∥q∥1]) I
(
Ñ ≥ i

) ∣∣∣q0 = 0

 (80)

=

xB∑
i=1

Eπ

Eπ

 τ i
π−1∑

k=τ i−1
π

(∥qi∥1 − Eπ [∥q∥1]) I
(
Ñ ≥ i

) ∣∣∣∣∣Fi−1

 (81)

where Fi−1 = σ
({

q0, a0,q1, a1, . . . ,qτ i−1
π

, aτ i−1
π

})
is the filtration till the end of the i− 1th cycle.

Since I
(
Ñ ≥ i

)
is a deterministic function when conditioned on Fi−1, we obtain the following:

Ṽπ(0) =

xB∑
i=1

Eπ

I
(
Ñ ≥ i

)
Eπ

 τ i
π−1∑

k=τ i−1
π

(∥qi∥1 − Eπ [∥q∥1])

∣∣∣∣∣Fi−1


︸ ︷︷ ︸

(a)

 (82)

(a) now corresponds to Vπ(0), which from definition in Equation 4 is 0. Hence,

Ṽπ(0) = 0 (83)

From definition in Equation (76), we can decompose Ṽπ(0) as follows:

Ṽπ(0) = Eπ

[
xB−1∑
k=0

∥qk∥1 − Eπ [∥q∥1]
∣∣∣q0 = 0

]
+
∑
q′∈S

PxB
π (q′|q0 = 0)Vπ(q

′) (84)

where PxB
π is the xB step probability transition matrix under policy π. Let q ∈ B. Since Ṽπ(0) = 0

from Equation 83, we obtain the following,

−Eπ

[
xB−1∑
k=0

∥qk∥1 − Eπ [∥q∥1]
∣∣∣q0 = 0

]
= PxB

π (q|q0 = 0)Vπ(q)+
∑

q′∈S/{q}

PxB
π (q′|q0 = 0)Vπ(q

′)

(85)

PxB
π (q|q0 = 0)Vπ(q) = −Eπ

[
xB−1∑
k=0

∥qk∥1 − Eπ [∥q∥1]
∣∣∣q0 = 0

]
−

∑
q′∈S/{q}

PxB
π (q′|q0 = 0)Vπ(q

′)

(86)
From Part 1 of this lemma, we know that −Vπ(q) ≤ c

ϵ

(
xB

p2
B
+ xB

)
∀q ∈ S.

PxB
π (q|q0 = 0)Vπ(q) ≤ −Eπ

[
xB−1∑
k=0

∥qk∥1 − Eπ [∥q∥1]
∣∣∣q0 = 0

]
(87)

+
∑

q′∈S/{q}

PxB
π (q′|q0 = 0)

c

ϵ

(
xB

p2B
+ xB

)
(88)

≤ Eπ

[
xB−1∑
k=0

Eπ [∥q∥1]
∣∣∣q0 = 0

]
+

c

ϵ

(
xB

p2B
+ xB

)
(89)

≤ xB

(c
ϵ

)
+

c

ϵ

(
xB

p2B
+ xB

)
(90)
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where the last inequality follows from Lemma A.3.

If Vπ(q) is negative, then 0 is an upper bound on Vπ(q). However, if Vπ(q) is positive,

Vπ(q) ≤
1

PxB
π (q|q0 = 0)

c

ϵ

(
xB

p2B
+ 2xB

)
(91)

Recall from Assumption 2.3, since 0,q ∈ B, PxB
π (q|q0 = 0) ≥ pB . That is the probability of

reaching any q ∈ B from 0 in xB steps is at least pB . Hence for all q ∈ B, it is true that,

Vπ(q) ≤
c

pBϵ

(
xB

p2B
+ 2xB

)
(92)

Since the above bound is uniform across all policies π ∈ Π and q ∈ B,

max
q∈B
π∈Π

Vπ(q) ≤
c

pBϵ

(
xB

p2B
+ 2xB

)
(93)

Proof of Part 3:

Proof. Combining Equation (93) from Part 2 and Equation (59) from Lemma A.4 yields the results.
That is ∀q ∈ S and for all π ∈ Π,

Vπ(q) ≤
2

ϵ
∥q∥2 + c

pBϵ

(
xB

p2B
+ 2xB

)
(94)

We thus obtain a policy independent upper bound on the value function for all states in the state
space.

A.1.3 Policy Independent bounds on the State-Action Value Function

In order to obtain policy independent bounds on the estimate Q̂π of the state action value function
associated with some policy π, it is necessary to first obtain bounds on the exact state action value
function Qπ. The following lemma provides with state-dependent, policy-independent bounds on the
state action value function Q.

Lemma A.7. There exists constant c4 > 0, such that under Assumptions 2.1,2.2 and 2.3, the state
action value function Qπ for all policies π ∈ Π and forall q ∈ S satisfies:

|Qπ(q, a)−Qπ(q, a
′)| ≤ 2

ϵ
c1∥q∥2 + c4 a, a′ ∈ A (95)

where ϵ is the drift parameter and c1 is defined in Assumption 2.3.

Proof. Recall the Poisson Equation (5) corresponding to the state action value function Qπ:

Qπ(q, a) = ∥q∥1 + Eq′∼P(·|q,a)Vπ(q
′)− Jπ (96)

For any pair of actions a, a′ ∈ A

Qπ(q, a)−Qπ(q, a
′) = Eq′∼P(·|q,a)Vπ(q

′)− Eq′∼P(·|q,a′)Vπ(q
′)

≤ Eq′∼P(·|q,a)

(
2

ϵ
f(q′) +

c

pBϵ

(
xB

p2B
+ 2xB

))
+ Eq′∼P(·|q,a′)

(
c

ϵ

(
xB

p2B
+ xB .

))
(97)

where the last inequality follows from Lemma A.6. Hence we obtain,

Qπ(q, a)−Qπ(q, a
′) ≤ Eq′∼P(·|q,a)

(
2

ϵ
f(q′)

)
+

c

ϵ

(
xB

p2B
+ xB

)
+

c

pBϵ

(
xB

p2B
+ 2xB

)
(98)
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Let c3 = c
ϵ

(
xB

p2
B
+ xB

)
+ c

pBϵ

(
xB

p2
B
+ 2xB

)
.

We know from Assumption 2.3, that ∀q′ ∈ S such that Pπ(q
′|q, a) > 0 it is true that, ∥q′∥2 ≤

c1∥q∥2 + c2. Since ∥q∥2 = ∥q∥2,,

Qπ(q, a)−Qπ(q, a
′) ≤ 2

ϵ

(
c1∥q∥2 + c2

)
+ c3 (99)

Since the above inequality is true for all a, a′ ∈ A,

|Qπ(q, a)−Qπ(q, a
′)| ≤ 2

ϵ

(
c1∥q∥2 + c2

)
+ c3 (100)

Setting c4 = 2
ϵ c2 + c3 yields the result.

A.2 Proof of Step 3

The previous step provided us with bounds over the exact state action value function. Here we
incorporate the policy evaluation error in Equation 34 to obtain bounds over the state action value
function estimate.

Lemma A.8. There exists a constant c5 such that for all states q ∈ S , all pairs of actions a, a′ ∈ A,
and all policies π, ∣∣∣Q̂π(q, a)− Q̂π(q, a

′)
∣∣∣ ≤ c5∥q∥2 + c4

where Q̂π(q, a) is the estimate of Qπ(q, a) such that
∣∣∣Q̂π(q, a)−Qπ(q, a)

∣∣∣ ≤ κ∥q∥2,∀a ∈ A.

Proof.∣∣∣Q̂π(q, a)− Q̂π(q, a
′)
∣∣∣ = ∣∣∣Q̂π(q, a)−Qπ(q, a) +Qπ(q, a)− Q̂π(q, a

′) +Qπ(q, a
′)−Qπ(q, a

′)
∣∣∣

(101)

≤
∣∣∣Q̂π(q, a)−Qπ(q, a)

∣∣∣+ ∣∣∣Q̂π(q, a
′)−Qπ(q, a

′)
∣∣∣ (102)

+ |Qπ(q, a)−Qπ(q, a
′)| (103)

From Equation 34 and Lemma A.7, it follows that,∣∣∣Q̂π(q, a)− Q̂π(q, a
′)
∣∣∣ ≤ (2κ+

2

ϵ
c1

)
∥q∥2 + c4 (104)

Defining c5 := 2κ+ 2
ϵ c1 yields the result.

A.3 Proof of Main theorem (Step 4)

The proof requires utilizing the performance difference lemma to establish a connection between the
difference in average cost associated with a policy π and the optimal average cost in terms of the
state-action value function Qπ .

Lemma A.9. Let Jπ and Jπ′ be the expected infinite horizon average cost associated with policies
π and π′ respectively. Let dπ be the stationary distribution over state space S associated with Pπ.
Then it is true that,

Jπ − Jπ′ =
∑
q∈S

dπ(q) [Qπ′(q, π(q))−Qπ′(q, π′(q))] (105)

where Qπ′(q, π(q)) =
∑

a∈A π(a|q)Qπ′(q, a) and Qπ′(q, π′(q)) = Vπ′(q).

Proof. The proof can be found in [Cao99].

We restate the theorem for convenience.
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Theorem 3.1. Consider the sequence of policies π1, π2, . . . , πT obtained from Algorithm 1 with a

state-dependent step size ηq =
√

8 log |A|
T

1
Mq

, where Mq is quadratic in q. Let Jπk
be the average

cost associated with policy πk and let J∗ be the minimum average cost across policy class Π. Let Q̂πk

be an estimate of state action value function Qπk
associated with policy such that with probability at

least 1− δ
2T it is true that,∥∥∥Qπ(q, a)− Q̂π(q, a)

∥∥∥ ≤ κ∥q∥2 ∀q ∈ S, π ∈ Π (13)

Then, under Assumptions 2.1, 2.2 and 2.3, there exist constants c′, c′′ not depending on T or
π1, π2, . . . , πT such that with probability at least 1− δ:

T∑
k=1

(Jπk
− J∗) ≤ c′

√
T + c′′T (14)

where c′ =
(
2κ+ 2c1

ϵ

)
Eq∼dπ∗∥q∥2

√
log |A|

2 +
√

log |A|
2

(
2c2
ϵ + xBc

ϵ

(
1 + 2

pB
+ 1

p2
B
+ 1

p3
B

))
and

c′′ = κEq∼dπ∗∥q∥2.

Proof. Let J∗ be the optimal average cost. Let π∗ ∈ Π be the optimal policy. For any policy π ∈ Π,
performance difference lemma provides the following,

Jπ − J∗ = −Eq∼dπ∗ [Qπ (q, π
∗(q))−Qπ (q, π(q))] (106)

= −Eq∼dπ∗

[
Qπ (q, π

∗(q))− Q̂π (q, π
∗(q)) + Q̂π (q, π

∗(q))−Qπ (q, π(q)) (107)

+ Q̂π (q, π(q))− Q̂π (q, π(q))
]

(108)

≤ Eq∼dπ∗

[∣∣∣Qπ (q, π
∗(q))− Q̂π (q, π

∗(q))
∣∣∣]+ Eq∼dπ∗

[∣∣∣Qπ (q, π(q))− Q̂π (q, π(q))
∣∣∣]

(109)

+ Eq∼dπ∗

[
Q̂π (q, π(q))− Q̂π (q, π

∗(q))
]

(110)

From Equation 34, we know that
∣∣∣Qπ (q, a)− Q̂π (q, a)

∣∣∣ ≤ κ∥q∥2 with probability 1− δ
2T . Hence

we obtain the following:

Jπ − J∗ ≤ 2κEq∼dπ∗∥q∥2 + Eq∼dπ∗

[
Q̂π (q, π(q))− Q̂π (q, π

∗(q))
]

(111)

The total regret across time horizon T , with probability 1 − δ, can be expressed by summing the
above inequality as follows,

T∑
k=1

Jπk
− J∗ ≤ 2κTEq∼dπ∗∥q∥2 + Eq∼dπ∗

[
T∑

k=1

(
Q̂πk

(q, πk(q))− Q̂πk
(q, π∗(q))

)]
(112)

where πk are policy iterates obtained through the NPG policy update below:

πk(a|q) =
πk−1(a|q) exp

(
−ηqQ̂πk−1

(q, a)
)

∑
l∈A πk−1(l|q) exp

(
−ηqQ̂πk−1

(q, l)
) (113)

The above update is performed for all q and a ∈ A. Let the update parameter ηq =
√

8 log |A|
T

1
Mq

,
where Mq = c5∥q∥2 + c4. Then from Theorem 4.1, it follows that,

T∑
k=1

Jπk
− J∗ ≤ 2κTEq∼dπ∗∥q∥2 + Eq∼dπ∗

[√
T log |A|

2
Mq

]
(114)

=

(
κT +

√
T log |A|

2
c5

)
Eq∼dπ∗

[
∥q∥2

]
+ c4

√
T log |A|

2
(115)
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From Lemma A.1, it follows that Eq∼dπ∗

[
∥q∥2

]
≤ β2. Hence,with probability 1− δ, we obtain,

T∑
k=1

Jπk
− J∗ ≤ κβ2T +

√
T

(√
log |A|

2
c5β2 +

√
log |A|

2
c4

)
(116)

Setting c′ =

(√
log |A|

2 c5β2 +
√

log |A|
2 c4

)
and c′′ = κβ2 yields the result in the theorem.
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