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Abstract. In queueing systems, effective scheduling algorithms are essential for optimizing per-

formance in a wide range of modern applications. While the theory of optimal M/G/1 scheduling

for mean response time is well established, many modern queueing systems operate with multiple

servers. Recently, optimal scheduling for the M/G/k queue has been explored in the heavy traffic

limit, but much remains unknown about optimal scheduling in the intermediate regime.

In this paper, we give the first framework for proving nontrivial lower bounds on the mean

response time of the M/G/k system under arbitrary scheduling policies. These bounds significantly

improve upon previous naive lower bounds, particularly for moderate loads. Key to our approach

is a new variable-speed queue, which we call the Increasing Speed Queue, which more accurately

captures the work completion behavior of multiserver systems. To analyze the expected work of this

Increasing Speed Queue, we develop the DiffeDrift method, a novel manner of employing the drift

method/BAR approach, by developing test functions via the solutions to a differential equation.

1. Introduction

In queueing systems, effective scheduling algorithms are essential for optimizing performance in a

wide range of modern applications. In the analysis of queueing systems, one of the most important

performance metrics is the mean response time, denoted as E[T ]. An object of particular interest is

the optimal scheduling policy, which minimizes the mean response time among all policies. In the

single-server setting, optimality of scheduling policy is well understood. However, many modern

queueing systems are multiserver systems, such as server farms and cloud computing services. Thus,

a deeper understanding of optimal scheduling in the multiserver setting is required.

In the seminal work of Schrage [29], it is proven that the Shortest Remaining Processing Time

(SRPT) minimizes the mean response time of jobs in an M/G/1 queue. Schrage and Miller [30]

also characterize the mean response time of SRPT exactly. The single-server optimality of SRPT

has been used to prove optimality results in the M/G/k under extreme load conditions. When the

job sizes are known upon arrival, [9] show that the multiserver SRPT is optimal in the heavy-traffic

regime, as the load ρ approaches the capacity of the system. Likewise, when job sizes are unknown,

single-server results have been used to prove multiserver optimality. If the job sizes are unknown

but drawn from a known distribution, the optimal scheduling policy in the M/G/1 is known to

be the Gittins index policy [5]. Correspondingly, [32] show that the multiserver Gittins policy is

optimal in the heavy-traffic regime. At the opposite extreme, in the light traffic limit, it is rare for

nontrivial scheduling options to be available, so the choice of scheduling policy is less important.

However, much less is known about optimal M/G/k scheduling under moderate loads. This

intermediate regime often reflects the conditions faced by many real-world systems. Recently, the
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SEK policy introduced in [8] is empirically observed to beat SRPT-k in the intermediate regime.

The fact that SRPT-k is not optimal raises an important question,

How much improvement beyond SRPT-k is possible under moderate load?

Specifically, we aim to lower bound the mean response time of M/G/k under arbitrary scheduling

policies.

1.1. Challenges in analyzing M/G/k scheduling. The analysis of arbitrary scheduling policies

in M/G/k systems presents substantial challenges compared to the single-server case, and there

have been limited results regarding the mean response time of M/G/k systems under arbitrary

scheduling policies.

The tagged-job method [16] is a classical tool for analyzing single-server queues under many

different scheduling policies, including the broad SOAP class policies [31]. However, the tagged-job

method breaks down in the analysis of multiserver scheduling. Unlike the single-server setting,

the rate at which a multiserver queue completes work varies, making it intractable to quantify the

random amount of work encountered by the tagged job in the system.

Another more flexible tool, the drift method [4], likewise encounters additional challenges when

applied to queues with variable work completion rate, and has not been employed in multiserver

systems with arbitrary scheduling.

As such, many results focus on the heavy-traffic limit, where the work completion behavior of an

M/G/k system is nearly identical to that of a single-server queue, allowing the tagged-job method

to be reintroduced. For example, [9] prove that multiserver SRPT is heavy-traffic optimal using a

multiserver tagged-job method. Unfortunately, such results are not tight when applied scheduling

in the intermediate load regime.

In addition, there have been approximation results for M/G/k systems under specific policies,

such as the First-Come First-Serve (FCFS) policy (see, e.g., [15] and [14]). There have also been

attempts at an exact solution for multiserver queues using matrix analytic methods, but the state

of the art is limited to FCFS scheduling and scheduling policies with no more than two priority

classes [34].

1.2. Our contributions. In this paper, we present the first nontrivial lower bounds on the mean

response time of any M/G/k system. Our bounds hold for any arbitrary scheduling policy and hold

across all system loads. We introduce a novel single-server variable-speed queue, the Increasing

Speed Queue (ISQ-k). ISQ-k allows us to bridge the multiserver and single-server queues in this

challenging intermediate-load environment. Moreover, we develop a novel DiffeDrift extension to

the drift method to analyze variable speed queues, including ISQ-k.

We develop our lower bounds by leveraging the existing Work-Integral Number Equality (WINE)

formula in a novel way [32]. This equality allows us to establish a lower bound on mean response

time by bounding the mean relevant work in the system (see Section 10). The WINE formula

applies to all systems: arbitrary scheduling, any number of servers, and any load.

Our key tool for lower bounding mean relevant work is a novel variable-speed single-server queue

called the Increasing Speed Queue (ISQ-k). We prove that the mean total work of the ISQ-k lower

bounds the mean total work of any M/G/k system under arbitrary scheduling policies and at all
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loads (see Section 6). We build on this result to lower bound the mean relevant work of M/G/k

systems under arbitrary scheduling policies.

Our analysis of the ISQ-k system is based on the drift method, which relies on the careful selection

of test functions [4]. However, most prior applications of drift methods either use standard test

functions that are not customized to the system or employ rescaling techniques to eliminate variable

rates [19, 1]. Neither of these methods can accommodate complex variable work completion rates

and give a tight analysis of the ISQ-k system.

To overcome this limitation, we introduce a novel method of deriving test functions, which we

term the DiffeDrift method. This consist of formulating our test functions as solutions to differential

equations.

We discuss the DiffeDrift method in Section 8. The test functions derived in this manner are

not covered by existing approaches to the drift method, specifically the existing Basic Adjoint

Relationship (BAR) results (see Section 2.3). The standard approach would involve a sequence

of truncations of these test functions, which would be highly complex given their nontrivial form.

Instead, we prove a novel BAR result that accommodates our test functions in Section 5.

Our DiffeDrift method allows us to select the drift first, then come up with the test function. We

use this flexibility to handle the variable work completion rate of the ISQ-k system. We believe the

DiffeDrift method and our BAR extension, Proposition 5.2, have broad applicability to queueing

systems.

Figure 1. M/G/2 mean response time under SRPT-2, compared against naive
lower bounds (M/G/1/SRPT and M/G/∞, and against our lower bounds. See
Section 10 for the definition of WINE 3 and WINE 4 bounds.

1.3. Improvement upon prior results. We now show the massive improvement of our lower

bound over the prior naive lower bounds. In the prior literature, only two lower bounds on mean

response time for the M/G/k queue under arbitrary scheduling policies have appeared. These

bounds are the mean service time and the resource-pooled single-server SRPT response time [9].
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The resource-pooled system is a system which combines all k servers from the M/G/k into one

giant server running at speed 1. Because the resource-pooled M/G/1 can simulate any M/G/k

scheduling policies, resource-pooled SRPT lower bounds the mean response time of the M/G/k

under any scheduling policy. The resource-pooled SRPT lower bound has been used to prove prior

heavy-traffic bounds [9, 12].

As an illustrative example, consider a two-server setting with an exponential job size distribution,

as shown in Figure 1. The blue line represents the mean response time of the resource pooled SRPT

system, and the orange line represents the mean service time bound. The empirical mean response

time of M/G/2-SRPT is given by the dashed green line – while SRPT-2 is known to not be optimal

in this setting [13], it gives a useful sense of where the optimal policy may lie. Both lower bounds

are observed to be loose in the intermediate regime.

The red line, labeled WINE 2, represents the combination of the mean service time bound and

the resource-pooled SRPT bound via the WINE method. This bound significantly improves upon

the naive bounds, particularly in the intermediate regime.

To illustrate the additional benefits of ISQ-k, we plot our best lower bound, which is represented

by the brown line, labeled WINE 4, in Figure 1. With the help of ISQ-k, our lower bound offers

a major improvement over WINE 2, on top of WINE 2’s improvement over the prior bounds.

Collectively, the region where the optimal response might lie has shrunk by more than half across

a wide range of loads, from 0.63 to 0.87, and by substantial margins across a much wider range.

Our results apply to any job size distribution, any number of servers, and any load in the M/G/k

system, as well as any scheduling policy. For ease of exposition, we start by proving lower bounds

in the 2-server setting in Theorem 4.1 before generalizing our results to the k-server setting in

Theorem 4.2.

1.4. Outline of paper. This paper is organized as follows:

• Section 2: We discuss prior work on multiserver SRPT, multiserver FCFS and the drift

method.

• Section 3: We introduce the Increasing Speed Queue (ISQ-k), related auxiliary systems and

notation.

• Section 4: We present our main results and provide a proof sketch.

• Section 5: We introduce the drift method and prove a version of the Basic Adjoint Rela-

tionship (BAR) applicable to our setting.

• Section 6: We prove that the ISQ-k system lower bounds the total work in the M/G/k

system.

• Section 7: We prove our main results in the k = 2 server case, lower bounding the M/G/2

under arbitrary scheduling policies.

• Section 8: We discuss the DiffeDrift method, which we use to derive the ISQ-2 test functions,

and how to generalize them to the k server system.

• Section 9: We prove our main results in the general k case, lower bounding M/G/k mean

response time under arbitrary scheduling policies.

• Section 10: We present a framework for lower bounding the response time of M/G/k based

on WINE.
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• Section 11: We empirically demonstrate the tightness of our bounds via numerical calcula-

tion and simulation.

2. Prior Work

2.1. Shortest-remaining processing time. It is well established that the Shortest-Remaining

Processing Time (SRPT-1) policy is optimal in minimizing the mean response time in M/G/1

queues [29]. Furthermore, [30] characterize the mean response time under SRPT in the M/G/1

exactly.

In a multiserver setting, the SRPT policy, denoted by SRPT-k, has been shown to be heavy-

traffic optimal, a result proven in [9]. This work provides an upper bound on the mean response

time under SRPT-k that is tight at very high loads.

At the opposite extreme, when there are no arrivals, it is well known that the Shortest Job First

(SJF) policy is the optimal nonpreemptive policy. Furthermore, [26] proves that no preemptive

policy can outperform the optimal nonpreemptive policy. Since SRPT reduces to SJF when there

are no arrivals, SRPT is also optimal in that setting.

However, SRPT-k is not always the optimal policy across all load conditions. Notably, the

SEK policy, recently introduced in [8], empirically outperforms the response time of SRPT-k under

certain conditions. This raises the question of how much further improvement beyond SRPT-k is

possible.

The focus of this paper is on establishing lower bounds for the mean response time of M/G/k

systems under arbitrary policies, which has been noted as an open problem [7].

2.2. Multiserver mean response time analysis. The analysis of multiserver FCFS systems,

particularly in the context of M/G/k-FCFS queues, is relatively well understood. Early work by

[23] and [3] provide bounds on the mean response time based on the first two moments of the

job size distribution. [17] conduct an exact analysis of the mean response time in M/Ph/k-FCFS

systems. Since any arbitrary distribution can be closely approximated by a phase-type distribution,

their results offer a useful approximation for mean response time in M/G/k-FCFS systems.

More recently, [14] demonstrate how utilizing the full sequence of moments of the job size dis-

tribution can yield bounds on mean response time. [24] extend Kingman’s bounds [22], to the

multiserver GI/GI/k queue and provide the first simple and explicit bounds for mean waiting time

that scale with 1/(1−ρ). These results allow for bounds on the mean response time inM/G/k-FCFS

queues across all load levels. In contrast, our work considers a more general setting by allowing for

any arbitrary scheduling policies and focuses on establishing lower bounds.

[32] prove that the Gittins-k policy is nearly optimal in the M/G/k under extremely general

conditions. Notably, the Gittins-k policy coincides with SRPT-k when there is perfect information

about job sizes, which is the setting we consider in this paper. A key result of their work is the

introduction of a new formula for calculating the mean response time, known as the Work Integral

Number Equality (WINE). WINE provides a method to translate the exact expected relevant work

into the exact mean response time, and is applicable to any queueing system under any scheduling

policy. Our approach builds on this formula, using WINE as the basis for developing a framework

to establish lower bounds on the mean response time.
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2.3. Basic adjoint relationship (BAR) and drift method. The well known Basic Adjoint

Relationship (BAR) equation states that the stationary distribution π of a continuous-time Markov

chain (Zt)t≥0 with instantaneous generator G satisfies

Eπ[G ◦ g(Z)] = 0, (2.1)

under suitable conditions on the Markov chain Z and the function g [6]. By carefully designing the

test function g, one can solve the BAR equation (2.1) to obtain either exact expressions for the

moments of stationary variables or (asymptotically tight) bounds on these moments, depending on

the system. This method is commonly referred to as the drift method. See, e.g., [4, 25, 11, 18].

We use the drift method to obtain the exact expected total work of the ISQ-k system, and exact

results and bounds for further systems we introduce in Section 3. We use these exact results and

bounds to lower bound mean response time in the M/G/k under an arbitrary scheduling policy.

2.3.1. Choosing test functions. Recent applications of the drift method use simple exponential test

functions of the form etQ, where t is a general constant and Q is the queue length, or etW , where

W is the total work in the system. For example, [1] and [2] use these test functions to prove heavy-

traffic and steady-state approximations in both single-class and multi-class queueing systems. The

use of exponential test functions is also known as the transform method, see, e.g., [19] and [20],

which likewise uses test functions of the form etQ or etW . Other recent works have focused on test

functions of the form Q2 or W 2, [10], which likewise depend on a constant rate of work completion.

However, these methods cannot be directly applied to queues with a variable work completion

rate, as the test functions etQ and etW only yield useful information when the work completion

rate is constant. Some attempts have been made to circumvent this problem by focusing on heavy

traffic settings. For instance, [19] relies heavily on state-space collapse to ensure a constant work

completion rate except when the system is near-empty. As the system is rarely empty in heavy

traffic, this state-space collapse allows the same straightforward test functions to be used, and heavy

traffic results to be obtained.

However, in our intermediate-load setting, the variable work completion rate is fundamental,

and we cannot eliminate that complexity from the problem. Instead, we introduce the DiffeDrift

approach (see Section 8), inventing a new class of test functions which can accommodate the ISQ-k

system’s variable work completion rate.

2.3.2. Sufficient conditions for BAR. Proposition 3 of [6] offers a proof of a set of sufficient con-

ditions for the BAR equation (2.1) to hold. This proposition has been widely applied in many

recent papers in queueing theory. Their result requires the state space to be discrete and certain

regularity conditions to hold on the rate matrix of the Markov jump process and the test function

g. For example, [11] and [18] invoke Proposition 3 of [6] by showing that their respective Markov

chains have uniformly bounded transition rates. However, this result does not directly apply to our

system because our system has a continuous state space.

Theorem 2 of [6] provides another set of sufficient conditions for the BAR equation (2.1) to hold.

This result allows continuous state spaces but requires bounded-drift test functions. However, it is

not directly applicable to our unbounded quadratic test function, which has unbounded drift. For

test functions with unbounded drift, a standard approach in the existing literature is to truncate
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these functions, thereby producing a sequence of bounded test functions that approximate the

original. See, e.g., [1] and [21].

We take an alternative approach, proving a new BAR result for time-homogeneous Markov

processes with unbounded continuous state spaces and unbounded test functions that grow at

most quadratically, see Section 5. We find this approach much easier to apply than the standard

truncation method given the complexity of our test functions arising from the DiffeDrift method.

3. Model

In this section we specify our queueing model and introduce notation in Section 3.1. We introduce

a novel variable-speed queue called the Increasing Speed Queue (ISQ-k) in Section 3.2. Finally, we

introduce two auxiliary queueing systems based on the ISQ-k that we will use to lower bound the

mean relevant work in the M/G/k, in Section 3.3.

3.1. Queueing model and notation. We study lower bounds on the mean response time E[T π]

of the M/G/k queue under an arbitrary Markovian scheduling policy π. Let k denote the number

of servers and λ the arrival rate. A job’s size is the inherent amount of work in the job. Let jobs

have i.i.d. sizes sampled from a job size distribution with probability density function (pdf) fS

and cumulative distribution function (cdf) FS . Let S denote the corresponding random variable for

job size and let S̃ denote the Laplace–Stieltjes transform of S. Note that we assume for simplicity

that the job size distribution is continuous and has a pdf, but our results can be straightforwardly

extended to a more general setting. The service rate of each server is 1/k, and the entire system

has a maximum service rate of 1, when all k servers are occupied. In particular, a job of size s will

require a total service time of ks to complete. We define the load of the system to be the long-term

fraction of servers which are in use. Load is given by ρ = λE[S], and we assume ρ < 1 for stability.

We define a scheduling policy π to map the set of jobs currently in the M/G/k system, as well

as some auxiliary Markovian state, to a choice of at most k jobs to serve. For example, a few

common scheduling policies are First-Come First-Serve (FCFS-k), which serves the k jobs which

arrived longest ago, and Shortest-Remaining-Processing-Time (SRPT-k), which serves the k jobs

of least remaining size.

We say a job is relevant at some threshold x if its remaining size is below x. This may occur if

the job arrives into the system with an initial size < x, or if a job with an initial size > x reaches a

remaining size below x. We refer to the process of a job receiving service and lowering its remaining

size as “aging”.

We use W to denote the total work in the system, namely the sum of the remaining sizes of all

jobs in the system. We use Wx to denote the relevant work, the total remaining size of all relevant

jobs in the system.

Let λx := λFS(x) denote the arrival rate of jobs which are relevant from the moment they enter

the system. Let Sx := [S | S ≤ x] denote the conditional job size distribution, truncated at a

threshold x. The conditional load, ρx, at a threshold x is the average rate at which works with

initial size < x arrives into the system is given by ρx := λxE[Sx] = λE[S1{S≤x}].
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We also define the capped job size distribution, Sx̄ := [min{S, x}], which represents the amount

of relevant work at some threshold x that a random job will contribute over its time in the system.

The capped load, ρx̄, is similarly given by ρx̄ = λE[Sx̄] = λE[min{S, x}].

3.2. Increasing speed queue. The increasing-speed queue (ISQ-k) is a single-server, variable

speed queue. The speed of the ISQ-k system is defined as follows: When the first job arrives to

an empty queue, the server initially runs at speed 1/k. If another job arrives before the system

empties, the server now runs at speed 2/k. With each arrival during a busy period, the server’s

speed increases by 1/k until it reaches the maximum speed of 1. The server maintains the maximum

speed of 1 until the system empties and a busy period ends, resetting the speed to 0. The state of

the ISQ-k system is given by a pair (w, i), where w denotes the work in the system and i denotes the

speed of the system. In particular, i ∈ {0, 1/k, 2/k, · · · , 1}. We write W (t), I(t) to denote the state

of the system at a particular time t, and we write W, I to denote the corresponding (correlated)

stationary random variables.

3.3. Recycling: auxiliary ISQ systems. Recall that we call a job relevant if its remaining size

is less than some threshold x. There are two ways for a job to be relevant: it either enters the

system with size less than x, or it ages down from a size larger than x to a size less than x. We

refer to the latter as recycling, and we call such jobs recycled.

We define two auxiliary systems to help us lower bound the response time of the M/G/k system:

the separate-recycling ISQ-k and the arbitrary-recycling ISQ-k.

The separate-recycling ISQ-k system (Sep-ISQ-k) consists of two subsystems, the truncated-ISQ-

k subsystem and theM/G/∞ subsystem. Jobs arrive to the overall Sep-ISQ-k system with the same

arrival process as the M/G/k, jobs arriving into the system according to a Poisson process with rate

λ and with job size distribution S. Jobs with initial sizes ≤ x are routed to an ISQ-k subsystem,

which we call the truncated-ISQ-k subsystem. Specifically, the truncated-ISQ-k system is an ISQ-k

system characterized by an arrival rate λx = λFS(x), and job size distribution Sx ∼ [S | S ≤ x].

On the other hand, jobs with initial sizes > x are routed to the separate M/G/∞ subsystem,

each server operating at a speed of 1/k. That is, jobs which are not relevant on arrival are served

at a separate subsystem.

The arbitrary-recycling-ISQ-k system (AR-ISQ-k) is an ISQ-k system with two arrival streams,

a Poisson arrival process with a rate of λFS(x) and job size distribution Sx ∼ [S | S ≤ x], and a

general arrival process with rate λ(1−FS(x)) and job sizes exactly x. The general arrival process is

governed by some general Markovian process for which we only require stability and some general

hidden state. The idea behind this general arrival process is that it models the moments at which

jobs recycle in the M/G/k system under a general Markovian scheduling policy. We refer to the

Poisson arrivals as the truncated stream and the general arrival process as the recycling stream.

We will use the triplet (w, i, a) to denote a state of the arbitrary recycling system where w and

i are defined similarly to the states of the full ISQ-k system and a denotes a separate Markovian

state from the recycling stream’s state space, which incorporates additional information about the

recycling stream. As before, A denotes the corresponding stationary random variable.

In Theorem 6.2, we show that the mean relevant work in the Sep-ISQ-k system lower bounds the

mean relevant work in the M/G/k system under arbitrary scheduling policy, for any arrival rate
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λ, job size distribution S, and relevancy cutoff x. We also show that the minimum mean relevant

work in the AR-ISQ-k system over all recycling streams lower bounds the mean relevant work in

the M/G/k system under an arbitrary scheduling policy, see Theorem 6.3.

4. Main Results

In this paper, we give the first nontrivial lower bounds on the expected relevant work of the

M/G/k system under an arbitrary scheduling policy. We derive these bounds by analyzing the

Increasing Speed Queue (ISQ-k). By the WINE formula (Proposition 10.1), this yields the first

non-trivial lower bounds on mean response time of the M/G/k system. We start by lower bounding

the 2-server system before moving on to the k-server system. For the 2-server system, these lower

bounds on relevant work are as follows:

Theorem 4.1. We have the following lower bounds of E[WM/G/2/OPT
x ]:

E[WM/G/2/OPT
x ] ≥ λxE[S2

x]

2(1− ρx)
+

E[Sx]− (1− S̃x(2λx))/2λx

3− S̃x(2λx)
+ (λ− λx)x

2 (4.1)

E[WM/G/2/OPT
x ] ≥ λxE[S2

x]

2(1− ρx)
+

E[Sx]− (1− S̃x(2λx))/2λx

3− S̃x(2λx)
· 1− ρx
1− ρx

+
(λ− λx)x

2

2(1− ρx)
. (4.2)

Theorem 4.1 is proved in Section 7. Equations (4.1) and (4.2) are derived by applying the drift

method to the Sep-ISQ-2 system and AR-ISQ-2 system, respectively. These ISQ-2 variants were

introduced in Section 3.3.

The two lower bounds have different strengths at different relevancy-cutoff levels. For small

values of x, (4.1) is stronger than (4.2). Because the second term in (4.2) is discounted by 1−ρx̄
1−ρx

,

when x is small ρx̄ is significantly larger than ρx, lowering the numerator. When x is large, this

fraction 1−ρx̄
1−ρx

will converge to 1. On the other hand, when x is large, the last term of (4.2) will

scale by 1
2(1−ρx)

, whereas this scaling factor is absent in (4.1).

We now state our analogous result for the more general k-server system, which we prove in

Section 9.

Theorem 4.2. We have the following lower bounds of E[WM/G/k/OPT
x ] with k ≥ 3,

E[WM/G/k/OPT
x ] ≥ λxE[S2

x]

2(1− ρx)
+

λxE[v1(Sx)]

2 + 2λxE[u1(Sx)]
+

k(λ− λx)x
2

2
, (4.3)

E[WM/G/k/OPT
x ] ≥ λxE[S2

x]

2(1− ρx)
+

λxE[v1(Sx)]

2 + 2λxE[u1(Sx)]
· 1− ρx̄
1− ρx

+
(λ− λx)Jx
2(1− ρx)

, (4.4)

where Jx := min
{
x2,mini<1

{
infw∈[0,kix] hk,x(w + x, i+ 1/k)− hk,x(w, i)

}}
.

In the above theorem, u1 and v1 is defined by the following recursive formulas,

uq(w) = e
− kwλx

q

∫ w

0

e
kλxy

q (k − q + kλxE[uq+1(Sx + y)])

q
dy,

vq(w) = e
− kwλx

q

∫ w

0

e
kλxy

q (2ky − 2qy + kλxE[vq+1(Sx + y)])

q
dy,
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with the initial condition uk(w) = 0 and vk(w) = 0. The function hk,x is defined in Definition 9.5.

Equation (4.3) is based on the Sep-ISQ-k system and Equation (4.4) is based on the AR-ISQ-k

system.

Note that u1, v1, and hk,x can all be exactly symbolically derived for any number of servers, see

Appendix C for u1 and v1 under the 3-server case. See Section 10 for how to convert lower bounds

on mean relevant work into lower bounds on mean response time.

4.1. Proof overview. We derive our main results, the lower bounds given in Theorems 4.1 and 4.2,

via two steps: First, we prove that the expected relevant work of each ISQ-k system lower bounds the

optimal expected relevant work in the M/G/k under any scheduling policy. Second, we characterize

the work in the ISQ-k system by applying our novel DiffeDrift method. We now overview the proof

in more detail.

Total work lower bound. Our first step is to prove that the total work in the ISQ-k system lower

bounds M/G/k total work under an arbitrary scheduling policy:

Theorem 4.3. For any job size distribution S and arrival rate λ, the expected total work in the

M/G/k system under any scheduling policy is lower bounded by the expected total work in the ISQ-k

system.

We prove Theorem 4.3 using a sample path coupling argument in Section 6. In fact, we prove a

more general lower bound under an arbitrary arrival sequence.

Relevant work lower bound. Using Theorem 4.3, we prove in Theorems 6.2 and 6.3 that the expected

relevant work of the Sep-ISQ-k system and the AR-ISQ-k system each lower bound the M/G/k

expected relevant work under any scheduling policy for all arrival rates λ.

Characterizing ISQ-k total work. Now that we’ve proven that Sep-ISQ-k and AR-ISQ-k lower bound

mean relevant work in the M/G/k, our remaining goal is to characterize the expected relevant work

of the Sep-ISQ-k and AR-ISQ-k systems. As an intermediate result, a key step is to compute the

expected total work of the ISQ-k system. We analyze the expected total work of the ISQ-k system

using the DiffeDrift method, see Section 8.1.

The expected total work of the ISQ-2 and ISQ-k systems are given by:

E[W ISQ-2] =
λE[S2]

2(1− λE[S])
+

E[S]− (1− S̃(2λ))/2λ

3− S̃(2λ)
, (4.5)

E[W ISQ-k] =
λE[S2]

2(1− λE[S])
+

λE[v1(S)]
2 + 2λE[u1(S)]

. (4.6)

Here v1 and u1 are functions defined as the solutions of differential equations in Definitions 9.1

and 9.2. Equations (4.5) and (4.6) correspond to Propositions 7.3 and 9.3. These results are proved

in Sections 7 and 9.

Sep-ISQ-k and AR-ISQ-k relevant work. Now, it remains to analyze the mean relevant work in

Sep-ISQ-k and AR-ISQ-k. We exactly characterize the relevant work of the Sep-ISQ-k system and

derive a lower bound on the relevant work of the AR-ISQ-k system.
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We characterizing the exact expected relevant work of the Sep-ISQ-k system in Theorems 7.4

and 9.4. As a result, we lower bound the expected relevant work of any M/G/k system under any

scheduling policies. In our main results, Theorems 4.1 and 4.2, our Equations (4.1) and (4.3) are

based on the Sep-ISQ-k results.

For the AR-ISQ-k system, arbitrary recycling presents multiple difficulties. First, the ISQ-k total

work formulas (4.5) and (4.6) cannot be applied directly, so we require specialized test functions,

see Section 8.2. Additionally, the changes in the drift caused by the arbitrary recycling events are

difficult to characterize exactly. Therefore, we uniformly lower bound the jumps of the test function

during these events, allowing us to lower bound the expected relevant work of the AR-ISQ-k system

as proved in Theorems 7.6 and 9.6 respectively. We therefore lower bound the expected relevant work

of any M/G/k system under arbitrary scheduling policies, resulting in Equations (4.2) and (4.4)

in our main results Theorems 4.1 and 4.2. Finally, we can translate lower bounds on the mean

relevant work of the M/G/k system into lower bounds on its mean response time under arbitrary

scheduling policies.

5. Drift Method

In this section, we discuss the drift method/BAR approach, which we will use to analyze the

ISQ-k system. We provide background on the drift method in Section 5.1. We then prove a novel

instance of the BAR, which holds for a class of unbounded test functions and Markov processes

with continuous state spaces in Section 5.2. Finally, we apply the drift method and our BAR result

in particular to the ISQ-k system in Section 5.3.

5.1. Background on drift method. The drift method [4], also known as the BAR [1] or the rate

conservation law [27], states that the average rate of increase and decrease of a random variable

must be equal, for any random variable with finite expectation and satisfying certain regularity

conditions.

To formalize this concept, we make use of the drift of a random variable. The drift is the random

variable’s instantaneous rate of change, taken in expectation over the system’s randomness. Let

G denote the instantaneous generator, which acts as the stochastic counterpart to the derivative

operator. We can also apply G to functions of the system state, which implicitly define random

variables. We call such functions test functions: a function f that maps system states (w, i) to real

values. The instantaneous generator takes f and outputs G ◦ f , the drift of f .

Let G denote the generator operator for the ISQ-k system. Recall that W (t) denotes the work

in the system at time t and I(t) denotes the speed of the system at time t. For any test function

f(w, i),

G ◦ f(w, i) := lim
t→0

1

t
E[f(W (t), I(t))− f(w, i) |W (0) = w, I(0) = i].

We usually do not directly use the above equation to compute the drift of a test function when we

know all the rates at which the system states change. For the ISQ-k system, w increases according

to stochastic jumps of size S, which arrive according to a Poisson Process with rate λ. These jumps

also cause i to increase by 1/k as long as i < 1. When i > 0, w decreases at rate i due to work
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completion. The next lemma is a special case of Section 6.1 in [2], which states that for a piecewise

deterministic Markov process, the drift can be characterized by jumps caused by a Poisson process.

Lemma 5.1. For any real-valued differentiable function g of the state of the ISQ-k system,

G ◦ g(w, i) = λE[g(w + S,min{1, i+ 1/k})− g(w, i)]− d

dw
g(w, i)i. (5.1)

A key fact about drift, known as the Basic Adjoint Relationship (BAR) (2.1), is that in a

stationary system, the expected drift of any random variable or test function is zero, as long as

the random variable or test function has finite expectation in stationarity, and satisfies certainty

regularity conditions.

Existing BAR results unfortunately do not cover the ISQ-k system and the specific test functions

that we will use to characterize mean workload. We therefore prove a novel basic adjoint relationship

in that applies to our system and test functions. Specifically, our new results, Proposition 5.2 and

Lemma 5.4, cover a class of unbounded test functions in our continuous-state setting which were

not previously covered by existing results. An alternative approach would be to truncate the test

functions and take a limit of a series of truncated test functions, but we expect this approach to be

significantly more complicated in our setting.

5.2. BAR for unbounded test functions of continuous Markov processes. We begin by

establishing the general framework that serves as the starting point for our BAR.

Let (Xt)t≥0 be a continuous-time, time-homogeneous Markov process with transition probability

kernel P (t, x, U). We denote the state space as S, and we emphasize that it can be continuous and

unbounded.

We denote the generator as G,

G ◦ g(x) := lim
t→0

1

t

∫
y∈S

(g(y)P (t, x, dy)− g(x)) .

We say that g belongs to the domain of the generator G of the process X and write g ∈ D(G) if

the above limit exists for all x ∈ S. The first piece of our novel BAR result is as follows. We prove

this result in Appendix A,

Proposition 5.2. Suppose that g ∈ D(G) and (Xt)t≥0 has a stationary distribution π, for which

|g| and |G ◦ g| are π-integrable. Moreover, suppose that the following holds for all t and x:

1

t

∫
S
(g(y)P (t, x, dy)− g(x)) = A(t, x) +B(t, x), (5.2)

where limt→0A(t, ·) → G ◦ g(·) uniformly and limt→0

∫
S B(t, x)π(dx) = 0. Then the BAR holds:∫

S
G ◦ g(x)π(dx) = 0. (5.3)

5.3. Applying drift method to ISQ-k for quadratic test functions. Next, we derive the

necessary conditions to apply the drift method and specifically Proposition 5.2, to the ISQ-k system.

Throughout this paper, we will always use test functions with a leading w2 term. Therefore, we

present our result for functions of the form g(w, i) = w2 + c(w, i), where c(w, i) is linear in w. It

is important for our result that the function is at most quadratic in w, and that the largest term
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whose coefficient depends on i is at most linear in w. This is the setting in which we prove our

novel BAR results in Lemma 5.4.

The first lemma provides sufficient conditions for the finiteness of E[W 2], namely that the job

size distribution has a finite third moment. This holds for all phase-type distributions, as well as

for the truncated distributions that arise in our analysis of relevant work. We prove the following

lemma in Appendix A.

Lemma 5.3. If the job size distribution S has a finite third moment, E[S3] < ∞, then E[W 2] < ∞.

Next, we provide sufficient conditions on the test function g to ensure that G ◦ g satisfies Propo-

sition 5.2’s (5.2). This result makes use of the fact that the arrival process is Poisson and we prove

in Appendix A.

Lemma 5.4. Suppose E[S3] < ∞ and g(w, i) = w2 + c(w, i) is a real-valued function of the ISQ-

k system which is twice-differentiable with respect to w for each fixed i. Suppose that |c(w, i)| ≤
C1w + C2 for some constants C1 and C2 and limw→0+ g(w, i) = g(0, 0) for each fixed i. Moreover,

we assume |c′(w, i)| ≤ M1 and |c′′(w, i)| ≤ M2 for some constants M1 and M2. Then

1

t
E[g(W (t), I(t))− g(w, i) |W (0) = w, I(0) = i] = A(t, w, i) +B(t, w, i), (5.4)

where limt→0A(t, ·, ·) → G ◦ g(·, ·) uniformly and limt→0 E[B(t,W, I)] = 0.

Now, we are ready to prove our novel BAR result. Combining Lemmas 5.3 and 5.4 we have

the following BAR (2.1) result which shows that in the ISQ-k system, for test functions g of the

structure described here, the expected value of the G ◦ g in steady state is zero. We prove the

following lemma in Appendix A.

Lemma 5.5. Suppose E[S3] < ∞ and g(w, i) = w2 + c(w, i) is a real-valued function of the ISQ-

k system which is twice-differentiable with respect to w for each fixed i. Suppose that |c(w, i)| ≤
C1w + C2 for some constants C1 and C2 and limw→0+ g(w, i) = g(0, 0) for each fixed i. Moreover,

we assume |c′(w, i)| ≤ M1 and |c′′(w, i)| ≤ M2 for some constants M1 and M2. Then,

E[G ◦ g(W, I)] = 0, (5.5)

where the expectation is taken over the stationary random variables W and I.

We will often apply Lemma 5.5 when the job size distribution follows a truncated distribution

such as Sx and Sx̄, for which the assumption that E[S3] < ∞ is automatically satisfied.

It is straightforward to apply Lemma 5.5 to the Sep-ISQ-k system because each subsystem is

Markovian and independent. For the AR-ISQ-k system, we only apply Lemma 5.5 to the Poisson

arrival stream and deal with the arbitrary recycling stream through a different approach, see [1, 2].

In particular, we specify a version of Lemma 5.1 for the AR-ISQ-k system using the Palm

expectation Er over the moments when jobs recycle, following [1, 2]. Note that the state of the

AR-ISQ-k system is (w, i, a), where w is the work, i is the speed, and a is the hidden arrival state.

In this paper, we only consider test functions which do not depend on a. When it is clear, we write

these test functions as g(w, i). For clarity, we write test functions with three inputs (w, i, a) in the

following lemma:
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Lemma 5.6. For any real-valued differentiable function g of the state of the arbitrary recycling

ISQ-k system which does not depend on the hidden arrival state a,

G ◦ g(w, i, a) = λxE[g(w + S,min{1, i+ 1/k}, ·)− g(w, i, ·)]− d

dw
g(w, i, ·)i+ (λ− λx)Er|w,i,a[J(W, I)],

where J(w, i) = g(w+ x,min{i+ 1/k, 1}, ·)− g(w, i, ·) denotes the increase in the test function due

to the arrival of a size-x job, and Er|w,i,a[·] denotes the conditional expectation of recycling with

respect to the Palm measure in the immediate future of the state (w, i, a) of the AR-ISQ-k system.

6. Increasing Speed Queue

In this section, we prove that the Sep-ISQ-k system and the AR-ISQ-k system lower bound the

relevant work of an M/G/k system under an arbitrary scheduling policy.

We first show that, for any sequence of arrival times and job sizes, the total work in a k-server

system under an arbitrary scheduling policy is lower bounded by the total work in the ISQ-k system,

under the same sequence of arrival times and job sizes.

Proposition 6.1. For an arbitrary sequence of arrival times and job sizes and at any given point

in time t, the total work in a k-server system under an arbitrary scheduling policy is lower bounded

by the total work in an ISQ-k system with the same arrival sequence.

Proof. We will use the index j ∈ J = {1, 2, ...} to denote the busy periods of the ISQ-k system.

Specifically, a busy period begins when a job arrives to an empty system, and ends when the system

is next empty. Let W ISQ-k
j (t) denote the total work in the ISQ-k system consisting of jobs which

arrived during busy period j of the ISQ-k system. Note that at all points in time, W ISQ-k
j (t) is

positive for at most one value of j, namely the current busy period. Similarly, let W k
j (t) denote the

total work remaining in the k-server system consisting of jobs which arrived during busy period i

of the ISQ-k system.

Note that the index j always refers to busy periods of the ISQ-k system – we ignore busy periods

of the k-server system. We will show that W ISQ-k
j (t) ≤ W k

j (t) for all j ∈ J and for all t ≥ 0, which

suffices to bound overall work at time t. Let Aj(t) denote the number of jobs which have arrived

during busy period j by time t. Let Bk
j (t) denote the fraction of servers in the k-server system

which are allocated to jobs which arrived during busy period j.

Because arrivals to both systems are identical, it suffices to show that the rate of completion

of W ISQ-k
j (t) exceeds that of W k

j (t) at all times t at which W ISQ-k
j (t) > 0. Note that the rate

of completion of W k
j (t) is simply Bk

j (t), thanks to our definition that each server in the M/G/k

completes work at rate 1/k. Define BISQ-k
j similarly.

Thus, we want to show that BISQ-k
j (t) is higher than Bk

j (t) whenever W ISQ-k
j > 0 , j must be

the busy period currently active. Note that W ISQ-k
j (t) = W ISQ-k(t), as all of the work in the ISQ-k

must have arrived during its current busy period, as the ISQ-k system ends each busy period by

completing all work. Thus, BISQ-k
j (t) is min{Aj(t)/k, 1}.

Bk
j (t) is bounded above by min{Aj(t)/k, 1}, based on the number of jobs which have arrived

during this busy period, namely Aj(t). This is at most the completion rate in the ISQ-k system,

as desired. This completes the proof.
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An immediate consequence of Proposition 6.1 is Theorem 4.3, which states that for a Poisson

arrival process, the expected work of the ISQ-k system must lower bound that of the M/G/k

system. In Proposition 9.3 of Section 9 we provide an exact formula for the mean relevant work of

the ISQ-k system.

Theorem 4.3. For any job size distribution S and arrival rate λ, the expected total work in the

M/G/k system under any scheduling policy is lower bounded by the expected total work in the ISQ-k

system.

Using Theorem 4.3, we prove Theorem 6.2, which states that the mean work in the Sep-ISQ-k

system lower bounds the mean relevant work of the M/G/k system under an arbitrary scheduling

policy. In Theorem 9.4 of Section 9, we exactly characterize the mean relevant work for the Sep-

ISQ-k system.

Theorem 6.2. For an arbitrary job size distribution S and arrival rate λ, the expected relevant

work in the M/G/k system under an arbitrary scheduling policy is lower bounded by the expected

relevant work in the separate-recycling-ISQ-k system.

Proof. We want to lower bound the relevant work in the M/G/k. We will divide that work into

two categories: Relevant work from jobs with original size ≤ x, and relevant work from jobs with

original size > x. We will show that the truncated-ISQ-k system lower bounds the former category,

and the M/G/∞ with server speed 1/k lower bounds the latter category.

Consider a coupled pair of systems: A truncated M/G/k and the full M/G/k. Whenever a job

arrives to the full M/G/k, if that job has size ≤ x, a job with the same size arrives to the truncated

M/G/k. By Poisson splitting, the arrival process to the truncated M/G/k is the desired process.

To complete the coupling, we need to specify how the scheduling policies in the two systems

relate to each other. Let an arbitrary scheduling policy be used in the full M/G/k. At any given

point in time, we specify that the truncated M/G/k serves each job with original size ≤ x that is

in service in the full M/G/k at that point in time. Note that this policy may waste servers, but it

is an admissible policy.

With this coupling in place, the total work in the truncated-M/G/k system with this scheduling

policy, all of which is relevant, lower bounds the total work from jobs with initial size ≤ x in the

full-M/G/k system at any given time, all of which is similarly relevant.

From Theorem 4.3, we know that the total work in the truncated M/G/k is lower bounded by

the total work in the truncated-ISQ-k system. This completes the bound for jobs with original size

≤ x.

For jobs with initial size > x, the expected relevant work in the separate M/G/∞ system lower

bounds the expected relevant work of jobs with initial size > x in the full-M/G/k system because

the rate of completion in the M/G/∞ system is always at 1/k for each jobs whereas the rate of

completion of each job in the full M/G/k is never more than 1/k.

Thus we see that the expected relevant work in the full-M/G/k system is lower bounded by the

expected relevant work in the separate-recycling-ISQ-k system.
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We now switch our focus to the arbitrary-recycling ISQ-k system. Recall that we define a recycling

to occur when a job of original size greater than x ages down to remaining size of exactly x in the

M/G/k. From the perspective of relevant work, a recycling event looks like a remaining-size-x

job popping into existence, i.e. becoming relevant for the first time. Recyclings happen with rate

λ(1− FS(x)), because every job with original size > x eventually recycles.

In particular, imagine a job of size x arriving into the AR-ISQ-k system whenever a recycling

occurs in the M/G/k system. This arrival sequence has a rate λ(1− FS(x)) and is Markovian.

Theorem 6.3. For an arbitrary job size distribution S and arrival rate λ, and an arbitrary M/G/k

scheduling policy, there exists a Markovian recycling stream such that the expected relevant work in

the M/G/k under the given scheduling policy is lower bounded by the expected relevant work in an

arbitrary-recycling-ISQ-k with the given recycling stream.

Proof. Consider the full M/G/k, and specifically consider the relevant work in the M/G/k.

Consider a specific realization of the Poisson arrival sequence into the full M/G/k under an

arbitrary scheduling policy. For jobs with original size greater than x, there is some time when the

job becomes relevant for the first time. Therefore, from the perspective of the relevant work in the

M/G/k this is equivalent to a job with size exactly x arriving into the system according to some

arbitrary arrival process.

In other words, the relevant work in the full M/G/k matches the total work in a k-server system

with two arrival streams: Poisson arrivals for jobs with size ≤ x, and arbitrary arrivals at rate

λ(1− FS(x)) of size exactly x, with equivalent scheduling policies.

For this specific arbitrary arrival stream, by Proposition 6.1, we have that the relevant work

in the AR-ISQ-k system with the same recycling stream lower bounds the relevant work in the

arbitrary k-server system and thus lower bounds the relevant work in the full M/G/k system.

Therefore, by Theorem 6.3, the minimum possible mean relevant work in the M/G/k system

under an arbitrary scheduling policy is lower bounded by the minimum possible mean work in the

AR-ISQ-k system under an arbitrary recycling stream. We lower bound the mean work in the

AR-ISQ-k system in Theorem 7.6.

7. Bounding Mean Relevant Work in the M/G/2

In this section, we derive explicit lower bounds on mean relevant work in the M/G/2 using the

Sep-ISQ-2 and AR-ISQ-2 systems. We start with the 2-server system because it demonstrates the

core idea of our proof before we move on to the more general results concerning the M/G/k. In

Section 10.1, we numerically compare our novel bounds on mean relevant work to the existing

bounds in the literature.

We will use the following test functions to bound mean relevant work in the Sep-ISQ-2 and

AR-ISQ-2 systems. We explain the intuition behind these test functions in Section 8.

Definition 7.1. We define the ISQ-2 constant-drift test function g2 as follows,

g2(w, 1) = w, g2(0, 0) = 0 and g2(w, 1/2) = w +
1− e−2λw

2λ
. (7.1)
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Definition 7.2. We define the ISQ-2 affine-drift test function h2 as follows,

h2(w, 1) = w2, h2(0, 0) = 0 and h2(w, 1/2) = w2 +
w

λ
− 1− e−2wλ

2λ2
. (7.2)

It is easy to verify that g2 and h2 satisfy the assumptions of Lemma 5.5, our BAR result. We

now characterize the mean work of the ISQ-2 system by applying Lemma 5.5 to the test functions

g2 and h2.

Proposition 7.3. For any job size distribution S such that E[S3] is finite, and any arrival rate λ,

the expected total work in the ISQ-2 system is given by

E[W ISQ-2] =
λE[S2]

2(1− λE[S])
+

E[S]− (1− S̃(2λ))/2λ

3− S̃(2λ)
. (7.3)

Proof. In order to characterize the mean work of the ISQ-k system, we first need to characterize

the fraction of the time that the system is idle, P(I = 0).

To do so, we first consider the constant-drift test function g2, defined in Definition 7.1. We

want to calculate the drift G ◦ g2(w, i) for all possible values of w and i. Recall from Section 6

and Definition 7.1 that the possible values of the speed i are speeds 0, 1/2, and 1. When i = 0, the

work must be 0 by definition, while if i > 0, the work must be positive.

When w > 0 and i = 1, G ◦ g2(w, i) = λE[S] − 1. Arrivals cause a drift of λE[S], while work

completion causes a drift of −1. When w > 0 and i = 1/2, applying Lemma 5.1, we have G ◦
g2(w, i) = λE[S] − 1. The choice of the function g2 ensures this drift property (See Section 8).

When w = 0 and i = 0,

G ◦ g2(0, 0) =
1

2

(
1 + 2λE[S]− S̃(2λ))

)
= λE[S]− 1 +

(
3

2
− 1

2
S̃(2λ))

)
.

Thus, we can summarize the drift over all states as

G ◦ g2(w, i) = λE[S]− 1 +

(
3

2
− 1

2
S̃(2λ))

)
1{i=0}.

Setting the expectation to zero by Lemma 5.5 we have,

P(I = 0) =
2(1− λE[S])
3− S̃(2λ)

. (7.4)

Now we switch our focus to characterizing the mean work of the ISQ-k system. We consider the

affine-drift test function, h2, defined in Definition 7.2. When w > 0 and i = 1 or 1/2,G ◦ h2(w, i) =
λE[S2] + 2w(−1 + λE[S]). When w = 0 we have, G ◦ h2(0, 0) = λE[S2] +E[S] + S̃(2λ))−1

2λ . Together,

we can summarize the drift over all states as

G ◦ h2(w, i) = λE[S2] + 2w(−1 + λE[S]) +

(
E[S] +

S̃(2λ))− 1

2λ

)
1{i=0}.

Therefore, taking expectation of G ◦ h2 and equating to zero using Lemma 5.5, we have

E[W ISQ-2] =
λE[S2]

2(1− λE[S])
+

E[S]− (1− S̃(2λ))/2λ

2(1− λE[S])
· P(I = 0) =

λE[S2]

2(1− λE[S])
+

E[S]− (1− S̃(2λ))/2λ

3− S̃(2λ)
,

where P(I = 0) is given by Equation (7.4).
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Using Proposition 7.3, we can characterize the mean work of the truncated-ISQ-2 system in

the Sep-ISQ-2 system. This provides us an exact mean relevant work formula for the Sep-ISQ-2

system. We therefore lower bound the mean relevant work of an M/G/k system under arbitrary

scheduling policy by Theorem 7.6. This constitutes the first lower bound of Theorem 4.1, namely

Equation (4.1). Our characterization of mean relevant work in the Sep-ISQ-2 system is as follows:

Theorem 7.4. For an arbitrary threshold x, arbitrary job size distribution S, and arbitrary arrival

rate λ, the expected relevant work in the separate-recycling-ISQ-2 system is exactly given by

E[W sep-ISQ
x ] =

λxE[S2
x]

2(1− λxE[Sx])
+

E[Sx]− (1− S̃x(2λx))/2λx

3− S̃x(2λx)
+ λ(1− FS(x))x

2. (7.5)

Proof. The relevant work in the separate-recycling-ISQ-2 system is the sum of the total work in the

truncated-ISQ-2 system and the relevant work in the separate M/G/∞ system. Note that all work

in the truncated-ISQ-2 system is relevant.

First, let us handle the separate M/G/∞ system. The servers at the M/G/∞ system will operate

at a speed of 1/2, and the arrival rate into this system is determined by λ(1 − FS(x)). Thus the

expected relevant work at this separate server is λ(1− FS(x))x
2.

Jobs arrive into the truncated-ISQ-2 with a conditional size Sx, having a density given by

fS(x)/FS(x) and bounded third moment E[S3
x] ≤ x3. The arrival rate is λx := λFS(x). In particular,

E[Sx] =
∫ x
0 sf(s)/FS(x)ds, E[S2

x] =
∫ x
0 s2f(s)/FS(x)ds, and S̃x(2λx) =

∫ x
0 e−2λxsfS(s)/FS(x)ds.

By Proposition 7.3, we have the following formula for expected relevant work formula for the

truncated-ISQ-2 system:

E[W truncated-ISQ
x ] =

λxE[S2
x]

2(1− λxE[Sx])
+

E[Sx]− (1− S̃x(2λx))/2λx

3− S̃x(2λx)
.

Adding the two expected relevant work formulas together we have Equation (7.5).

To derive the ISQ-2 arbitrary-recycling lower bound, we will use the following modified ISQ-2

affine-drift test function h2,x. Note that h2,x is a different function for each value of x, we provide

intuition on how we derive h2,x in Section 8. Again, it is easy to verify that the modified ISQ-2

affine-drift test function satisfies the assumptions of Lemma 5.5.

Definition 7.5. The ISQ-2 modified affine-drift test function h2,x is h2,x(0, 0) = 0,

h2,x(w, 1) = w2 and h2,x(w, 1/2) = w2 +
w

λx
− 1− e−2wλx

2λ2
x

− C2(x, λx)(1− e−2wλx)

λx
, (7.6)

where C2(x, λx) :=
E[Sx]−(1−S̃x(2λx))/2λx

3−S̃x(2λx)
. Here, the first argument of C2 is the relevancy cutoff level

x of the arbitrary-recycling ISQ-2 system.

We are ready to state the main result for our AR-ISQ-2 lower bound, which provides us with

another lower bound in mean relevant work in the M/G/k by Theorem 7.6. This constitutes the

second lower bound of Theorem 4.1, namely Equation (4.2).

Theorem 7.6. For an arbitrary threshold x, job size distribution S, arrival rate λ, and arbitrary

recycling stream, expected relevant work in the arbitrary-recycling-ISQ-2 system is lower bounded



19

by

E[W arb-ISQ
x ] ≥ λxE[S2

x]

2(1− ρx)
+

E[Sx]− (1− S̃x(2λx))/2λx

3− S̃x(2λx)
· 1− ρx
1− ρx

+
(λ− λx)x

2

2(1− ρx)
. (7.7)

Proof. Let Er[·] denote the Palm expectation taken over the moments when the arbitrary arrival

of jobs of size x occur. By Lemma 5.1, the expected drift G ◦ h2,x has two kinds of terms, the

stochastic drift due to Poisson arrivals of rate λx = λFS(x) and the recycling jumps due to the

arbitrary arrivals of jobs of size x with rate λ(1− FS(x)).

Let Jx(w, i) := h2,x(w + x,min(i + 1/2, 1)) − h2,x(w, i) denote the increase in the test function

due to the arrival of a size-x job. Then Er[J(Wx, I)] denotes the mean size of the recycling jump in

stationarity. The expectation Er[·] can be interpreted as the Palm expectation associated with the

random measure that records the cumulative number of recyclings. We define Er|w,i,a[·] to be the

conditional Palm expectation in the immediate future of a specific state of the AR-ISQ-k system.

See, for example, [27], [32] and [2]. We start by applying Lemma 5.6 to find the drift in a specific

state:

G ◦ h2,x(w, i) = λxE[S2
x] + 2w(−1 + λE[Sx]) + 2C2(x, λx)

(
1{i=0} +

1

2
1{i=1/2}

)
+ (λ− λx)Er|w,i,a[Jx(w, i)]

Applying our BAR result Lemma 5.1 to the drift G ◦ h2,x, we find that

0 = E[G ◦ h2,x(Wx, I)] = λxE[S2
x] + 2E[Wx](−1 + λxE[Sx]) + 2C2(x, λ)

(
P(Ir = 0) +

1

2
P(Ir = 1/2)

)
+ (λ− λx)Er[Jx(Wx, I)].

Solving for E[Wx], we get

E[Wx] =
λxE[S2

x]

2(1− ρx)
+

C2(x, λx)

1− ρx

(
P(Ir = 0) +

1

2
P(Ir = 1/2)

)
+

(λ− λx)Er[Jx(Wx, I)]

2(1− ρx)
. (7.8)

In the above equation, P(Ir = 0) and P(Ir = 1/2) are difficult to evaluate. However, we show that

we can relate the two probabilities to the capped load ρx. To do so, we apply Lemma 5.6 to the

test function g(w, i) = w for all (w, i), we have

0 = λxE[Sx]− 1 + P(Ir = 0) +
1

2
P(Ir = 1/2) + (λ− λx)x

Re-arranging, and using the definition that ρx = λxE[Sx] + (λ− λx)x, we get

P(Ir = 0) +
1

2
P(Ir = 1/2) = 1− ρx. (7.9)

Plugging in Equation (7.9) into Equation (7.8) we get

E[Wx] =
λxE[S2

x]

2(1− ρx)
+

C2(x, λx)(1− ρx)

1− ρx
+

(λ− λx)Er[Jx(Wx, I)]

2(1− ρx)
.

Next, we want to lower bound Jx(w, i) over all possible states in which a recycling could occur,

and specifically the three cases i = 1, 1/2, 0, respectively. In particular, we show that Jx(w, i) is

uniformly lower bounded by x2 for any arbitrary job size distribution S and arrival rate λ.

• Jump size Jx(w, i) at speed i = 1 is given by h2,x(w + x, 1)− h2,x(w, 1) = 2wx+ x2 ≥ x2.
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• Jump size Jx(w, i) at speed i = 1/2 is given by

h2,x(w + x, 1)− h2,x(w, 1/2) = 2wx+ x2 − w

λx
+

1− e−2wλx

2λ2
x

+
C2(x, λx)(1− e−2xλx)

λx

≥ 2wx+ x2 − w

λx
+

1− e−2wλx

2λ2
x

.

Let Jlb(w, x) = 2wx+ x2 − w
λx

+ 1−e−2wλx

2λ2
x

denote this lower bound.

We now minimize Jlb over w. To do so, we split into two cases: x > 1
2λx

, and x ≤ 1
2λx

. If

x > 1
2λx

, then Jlb(w, 1/2) is a concave increasing function in w. Thus, the function attains

its minimum when w = 0. Otherwise, Jlb(w, 1/2) is a concave function with a unique

maximum. Because Jlb is a concave function, its minimum must be either w = 0 or w = x.

The following calculation shows that the minimum is always at least x2.

Jlb(x, x) = 3x2 − x

λx
− e−2xλx − 1

2λ2
x

≥ 3x2 − x

λx
− 1− 2xλx + 2x2λ2

x − 1

2λ2
x

= 2x2 ≥ x2

Jlb(0, x) = x2 ≥ x2.

• Jump Jx(w, i) at speed i = 0 is given by x2 + x
λx

− 1−e−2xλx

2λ2
x

− C2(x,λx)(1−e−2xλx )
λx

.

To lower bound Jx(0, 0), we must upper bound C2(x, λx), which is defined in Defini-

tion 7.5. Using the fact that E[Sx] ≤ x and that S̃x(·) ≤ 1, we find that

C2(x, λx) =
E[Sx]− (1− S̃x(2λx))/2λx

3− S̃x(2λx)
≤ x− (1− 1)/2λx

3− 1
=

x

2
.

Now, we want to lower bound Jx(0, 0). Note that C2(x, λx) has a negative coefficient

in the formula for Jx(0, 0), allowing us to apply our upper bound on C2(x, λx) to derive a

lower bound on Jx(0, 0):

Jx(0, 0) = x2 +
x

λx
− 1− e−2xλx

2λ2
x

− C2(x, λx)(1− e−2xλx)

λx
≥ x2 +

x

λx
− 1− e−2xλx

2λ2
x

− x(1− e−2xλx)

2λx
.

Therefore, it remains to show that the last three terms on the RHS of the above equation,

which we define as the function r(x), are nonnegative:

r(x) :=
x

λx
− 1− e−2xλx

2λ2
x

− x(1− e−2xλx)

2λx
=

2xλx − (1− e−2xλx)(1 + xλx)

2λ2
x

.

If we show that r(x) ≥ 0 for all x ≥ 0, then we have shown that J(0, 0) is lower bounded

by x2.

This is equivalent to showing that the numerator of the last term above is nonnegative,

i.e.,

2xλx − (1− e−2xλx)(1 + xλx) = (xλx − 1) + (1 + xλx)e
−2xλx ≥ 0.

Let y := xλx. Note that y > 0. Then the inequality becomes (y − 1) + (1 + y)e−2y ≥
0 ⇐⇒ (1 + y)e−2y ≥ 1− y which is trivially true if y ≥ 1. For y ∈ (0, 1), we show that the

equivalent inequality 1+y
1−y ≥ e2y holds. Because ln(·) is increasing and 1+y

1−y is positive for all

y ∈ (0, 1), we equivalently show that ln 1+y
1−y ≥ 2y.
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We start with the Taylor expansions ln(1 + y) = y − y2/2 + y3/3 − · · · and ln(1 − y) =

−y − y2/2− y3/3− · · · . We therefore have, ln
(
1+y
1−y

)
= ln(1 + y)− ln(1− y) = 2y + 2y3

3 +

2y5

5 + · · · ≥ 2y. Exponentiating both sides, we have 1+y
1−y ≥ e2y for y ∈ (0, 1), so r(x) ≥ 0 for

all x ≥ 0. Thus, J(0, 0) ≥ x2.

Therefore, because Jx(w, i) is lower bounded by x2 for all w, i, we know that Er[Jx(Wx, I)] is

similarly lower bounded by x2. We therefore have our desired lower bound on the mean relevant

work in the arbitrary recycling ISQ-2 system:

E[W arb-ISQ
x ] ≥ λxE[S2

x]

2(1− ρx)
+

C2(x, λ)(1− ρx)

1− ρx
+

(λ− λx)x
2

2(1− ρx)
.

8. Deriving the Test Functions – DiffeDrift

In this section, we present our DiffeDrift method, which builds upon the drift method/BAR

approach from prior literature. In DiffeDrift, we first select the desired drift and then derive the

corresponding test function using differential equations. We focus on the ISQ-2 test functions

introduced in Section 7, as they illustrate the main concept of the method. We generalize these

test functions to the general case in Section 9.

We start by deriving the affine-drift test function (Definition 7.2) in Section 8.1 as well as the

constant-drift test function (Definition 7.1), which we used to characterize the mean total work of an

ISQ-2 system. We then derive the modified affine-drift test function (Definition 7.5) in Section 8.2,

which is a specialized test function for the AR-ISQ-2 system.

8.1. Affine-drift and constant-drift test functions. Recall that the instantaneous drift oper-

ator G is a stochastic version of a derivative operator. To find information about the mean work in

the system, we consider test functions with a leading quadratic term w2. The drift of such a test

function is a linear function of w and by applying Lemma 5.5 we plan to solve for E[W ].

The possible states of the ISQ-2 system are (0, 0), (w, 1/2) and (w, 1). There are three events

in the system that can affect the state: stochastic arrivals, deterministic decrease in w and the

completion of the final job in the system.

Due to arrivals, w increases as stochastic jumps of size S arrive at rate λ. When i > 0, due to

work completion w decreases at rate i. Therefore, using Lemma 5.1 we can write down the drift

for any arbitrary test function h,

G ◦ h(w, i) = λ(E[h(w + S,min{i+ 1/k, 1})− h(w, i)])− h′(w, i) · i.

Note that for h to satisfy the conditions of Lemma 5.5, it must change continuously if no stochastic

events occur. In particular, when a busy period ends it must be that limw→0+ h(w, i) = h(0, 0) := 0

for all i.

To derive the affine-drift test function h2, we start with a simple expression for h2(0, 0) and

h2(w, 1), and solve for the necessary form of h2(w, 1/2). We define h2(w, 0) = 0 as above, and let

h2(w, 1) = w2.



22

Now, our goal is to define h2(w, 1/2) to ensure that the drift at speed 1/2 matches the drift

at speed 1. This allows us to isolate the complexity of the drift function to the case i = 0 when

applying Lemma 5.5.

We calculate the drift at speed 1,

G ◦ h2(w, 1) = λ(E[h2(w + S, 1)]− E[h2(w + S, 1)])− h′2(w, 1) = λE[S2] + 2λwE[S]− 2w.

We can also write down the drift at speed 1/2,

G ◦ h2(w, 1/2) = λ(E[h2(w + S, 1)− h2(w, 1/2)])− h′2(w, 1/2) ·
1

2

= λE[S2] + λw2 + 2λwE[S]− λh2(w, 1/2)−
h′2(w, 1/2)

2
.

By comparing G ◦ h2(w, 1) with G ◦ h2(w, 1/2), we see that the two drifts match if and only if

h2(w, 1/2) solves the following differential equation,

λw2 + 2w − λh2(w, 1/2)−
h′2(w, 1/2)

2
= 0, h2(0, 1/2) = 0,

which has a unique solution given by h2(w, 1/2) = w2 − 1−e−2wλ

2λ2 + w
λ . Ssolving this differential

equation is the essence of our Diffedrift method. More complex in general k case. This defines the

affine-drift test function h2(w, i) over the three possible states (0, 0), (w, 1/2) and (w, 1), as given

in Definition 7.2.

In the proof of Proposition 7.3, we see that the affine-drift test function h2 alone is insufficient to

derive E[W ], we also need to determine P(I = 0). Since w has a constant drift, we can characterize

P(I = 0) using a test function with a leading linear term in w. By following similar differential-

equation-based steps, one can derive the constant-drift test function g2 defined in Definition 7.1. We

generalize the affine-drift test function to the setting of a general number of servers k in Lemma B.4.

8.2. Modified affine-drift test function. The affine-drift and constant-drift test functions are

sufficient to determine the mean work in the ISQ-2 system. They also suffice to determine the

mean relevant work in the Sep-ISQ-2 system, in the AR-ISQ-2 system an recycling stream with

jobs of size x arrives into the same system as the truncated stream. Therefore, P(I = 0) is no

longer given by the expression derived in the proof of Proposition 7.3 and we cannot apply the

result of Proposition 7.3 in determining the changes in the drift of the AR-ISQ-2 system due to the

truncated stream. Letting Ir denote the speed distribution in P(Ir = 0), which now depends on

the specific recycling stream, which is difficult to characterize exactly.

However, note that the load of the system in equilibrium does not depend on the recycling stream.

Using the test function g(w, i) = w for all (w, i), we find that

1− ρx̄ = P(Ir = 0) +
1

2
P(Ir = 1/2). (8.1)

This is a characterization of the unused capacity in the AR-ISQ-2 system, which is unaffected by

the details of recycling stream. Therefore, our plan is to modify the affine-drift test function h2

so that we get an unused-load term matching (8.1). Additionally, we use Lemma 5.6 instead of
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Lemma 5.5 because it supports recyclings. We start with the following test functions:

h2,x(w, 1) = w2, h2,x(0, 0) = 0 and h2,x(w, 1/2) = w2 + ℓ1(w),

for a function ℓ1 to be determined.

We do not want to match the drift at speed 1/2 with the drift at speed 1 which would results in

a P(Ir = 0) term. Instead, to obtain an unused-load term we want to choose ℓ1(w) to ensure that

G ◦ h2,x(w, 1/2)−G ◦ h2,x(w, 1) =
1

2

(
G ◦ h2,x(0, 0)− ( lim

w→0+
G ◦ h2,x(w, 1))

)
=: C2(x, λx). (8.2)

In particular, we want to ensure that (8.2) is a constant not depending on w. By doing so, we

will create a term matching the unused-load (8.1), allowing us to effectively bound the AR-ISQ-2

system. We call this constant C2(x, λx), though we do not yet know its exact value. The drift at

speed 1/2 is given by,

G ◦ h2,x(w, 1/2) = λx(E[h2,x(w + Sx, 1)− h2,x(w, 1/2)])−
1

2
(h2,x(w, 1/2))

′

= λxE[S2
x] + 2w(λxE[Sx]− 1) + w − λxℓ1(w)−

ℓ′1(w)

2
.

Note that G ◦ h2,x(w, 1/2)−G ◦ h2,x(w, 1) = w− λxℓ1(w)−
ℓ′1(w)

2 . Our goal is to choose ℓ1(w) to

ensure that this quantity is a constant, which moreover matches 1
2 (G ◦ h2,x(0, 0)−G ◦ h2,x(0, 1)).

This is the heart of the DiffeDrift method.

Solving the differential equation w − λxℓ1(w)−
ℓ′1(w)

2 = C2(x, λx) with ℓ1(0) = 0, we find that,

ℓ1(w) =
w

λx
− 1− e−2wλx

2λ2
x

− C2(x, λx)(1− e−2wλx)

λx
.

Now, we can solve for C2(x, λ) as follows: By definition, we have G ◦ h2,x(0, 0) = λxE[S2
x] +

λxE[ℓ1(Sx)] and limw→0+ G ◦ h2,x(w, 1) = λxE[S2
x]. Therefore,

2C2(x, λx) = λxE[ℓ1(Sx)] =⇒ C2(x, λx) =
E[Sx]− (1− S̃x(2λx))/2λx

3− S̃x(2λx)
.

Now, we can exactly derive the expected value of the drift due to the truncated stream:

E[G ◦ h2,x(Wx, I)] = λxE[S2
x] + 2E[Wx](−1 + λxE[Sx]) + 2C2(x, λx)

(
P(Ir = 0) +

1

2
P(Ir = 1/2)

)
= λxE[S2

x] + 2E[Wx](−1 + λxE[Sx]) + 2C2(x, λx)(1− ρx̄).

We were able to apply the unused capacity formula (8.1) because our test function satisfied (8.2).

This is key to the strength of our AR-ISQ-2 bound Theorem 7.6.

We generalize the affine-drift test function to the setting of a general number of servers k in

Lemma B.6, using the same differential-equation structure for the DiffeDrift method.

9. Bounding Mean Relevant Work in the M/G/k

In this section, we extend the results in Section 7 for the ISQ-2 system to the general ISQ-k

system. The derivation of the test functions follow the same ideas outlined in Section 8. We start

by deriving our test functions using the DiffeDrift method. We first define the ISQ-k constant-drift

test function.
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Definition 9.1. We define the ISQ-k constant-drift test function gk as follows:

gk(w, 0/k) = 0, gk(w, 1/k) = w + u1(w), · · · , gk(w,
k − 1

k
) = w + uk−1(w), gk(w, k/k) = w,

where for each q ∈ {k − 1, · · · , 1}, we define uq(w) by the following recursive formula,

uq(w) = e
− kwλ

q

∫ w

0

e
kλy
q (k − q + kλE[uq+1(S + y)])

q
dy, (9.1)

where uk(w) = 0.

Note that for k = 2 this simplifies to the g2 expression defined in Definition 7.1. Next, we define

the ISQ-k affine-drift test function.

Definition 9.2. We define the ISQ-k affine-drift test function as follows,

hk(w, 0/k) = 0, hk(w, 1/k) = w2 + v1(w), · · · , hk(w,
k − 1

k
) = w2 + vk−1(w), hk(w, k/k) = w2.

For each q ∈ {k − 1, · · · , 1}, we define vq(w) by the following recursive formula,

vq(w) = e
− kwλ

q

∫ w

0

e
kλy
q (2ky − 2qy + kλE[vq+1(S + y)])

q
dy, (9.2)

where vk(w) = 0.

Note that for k = 2 this simplifies to the h2 expression defined in Definition 7.2 and that the

vq(w) formulas have a similar recursive structure as uq(w), but with an additional y coefficient in

the numerator of the integrand fraction. Equations (9.1) and (9.2) can be explicitly solved for any

k, see Appendix C for the three server case. In Lemmas B.1 and B.3 of Appendix B we prove the

validity of these test functions.

Proceeding similarly as in the proof of Proposition 7.3, we compute the mean work of the ISQ-k.

Proposition 9.3. For an arbitrary job size distribution S such that E[S3] is finite and arrival rate

λ. The expected total work in an ISQ-k system is given by

E[W ISQ-k] =
λE[S2]

2(1− λE[S])
+

λE[v1(S)]
2 + 2λE[u1(S)]

. (9.3)

Proof. By Lemma B.2 and Lemma B.4 in Appendix B the drifts of the constant and affine test

functions at speed 0 are given by G ◦ gk(0, 0) = λE[S + u1(S)] and G ◦ hk(0, 0) = λE[S2 + v1(S)]

respectively. At all other speeds i ≥ 1/k, the drift of the constant-drift test function is given by

G ◦ gk(w, i) = λE[S] − 1 and the drift of the affine-drift test function is given by G ◦ hk(w, i) =

λE[S2] + 2w(λE[S]− 1).

The rest of the proof can be completed in a similar fashion as in the proof of Proposition 7.3.

Summarizing the drift of gk over all states, we get, G◦gk(w, i) = λE[S]−1+(1+λE[u1(S)]) ·1{i=0}.

By Lemma B.2 the constant-drift test function gk satisfies the assumption of Lemma 5.5. Thus,

we have E[G ◦ gk(W, I)] = 0 and solving for E[1{i=0}] = P(I = 0) we get the probability that the

system is in speed 0,

P(I = 0) =
1− λE[S]

1 + λE[u1(S)]
. (9.4)
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Similarly, we can summarize the drift of hk as

G ◦ hk(w, i) = λE[S2] + 2w(λE[S]− 1) + λE[v1(S)] · 1{i=0}.

By Lemma B.4 in Appendix B the affine-drift test function hk satisfies the assumption of Lemma 5.5.

Thus, we have E[G ◦ hk(W, I)] = 0. Solving for E[W ] we get,

E[W ISQ-k] =
λE[S2]

2(1− λE[S])
+

λE[v1(S)]
λE[S]

· P(I = 0) =
λE[S2]

2(1− λE[S])
+

λE[v1(S)]
2(1 + λE[u1(S)])

where P(I = 0) is given by Equation (9.4).

Next, using Proposition 9.3 we give the exact mean relevant work in the Sep-ISQ-k system. This

constitutes the first lower bound of Theorem 4.2.

Theorem 9.4. For an arbitrary job size distribution S and arrival rate λ. The expected relevant

work in the separate-recycling-ISQ-k system is given by,

E[W sep-ISQ
x ] =

λxE[S2
x]

2(1− λxE[Sx])
+

λxE[v1(Sx)]

2 + 2λxE[u1(Sx)]
+

kλ(1− FS(x))x
2

2
, (9.5)

where v1 and u1 are defined in Equations (9.1) and (9.2).

Proof. The relevant work in the separate-recycling-ISQ-k system is the sum of the total work in the

truncated-ISQ-k and the relevant work in the separate M/G/∞ system.

The derivation for the relevant work in the truncated-ISQ-k system is exactly the same as in the

proof of Theorem 7.4 which makes up the first two terms on the RHS of Equation (9.5).

For the separate M/G/∞ system, the servers will now operate at a speed of 1/k, and the arrival

rate into this system is λ(1 − FS(x)). Thus the mean relevant work at this separate server is
kλ(1−FS(x))x

2

2 .

For the last part of this section, we derive the AR-ISQ-k lower bound. We start with the ISQ-k

modified affine-test function, denoted by hk,x.

Definition 9.5. We define the ISQ-k modified affine-drift test function hk,x as follows:

hk,x(w, 0/k) = 0, hk,x(w, 1/k) = w2 + ℓ1(w), · · · , hk,x(w,
k − 1

k
) = w2 + ℓk−1(w), hk,x(w, k/k) = w2.

For each q ∈ {k− 1, · · · , 1}, we define ℓq(w) in terms of ℓq+1(w) by the following recursive formula,

ℓq(w) = e
− kwλx

q

∫ w

0

e
kλxy

q (k(q − k)Ck(x, λx) + 2(k − q)y + kλxE[ℓq+1(Sx + y)])

q
dy (9.6)

where ℓk(w) = 0 and

Ck(x, λx) =
2

k
· λxE[v1(Sx)]

2 + 2λxE[u1(Sx)]
≥ 0, (9.7)

where v1 and u1 are defined by Equations (9.1) and (9.2).

The next theorem constitutes the second lower bound of Theorem 4.2 and is based on the modified

affine-drift test function. We prove this theorem in Appendix B.
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Theorem 9.6. For an arbitrary job size distribution S and arrival rate λ. A lower bound on

expected relevant work in the arbitrary-recycling-ISQ-k system is given by,

E[W arb-ISQ
x ] ≥ λxE[S2

x]

2(1− λxE[Sx])
+

λxE[v1(Sx)]

2 + 2λxE[u1(Sx)]
· 1− ρx̄
1− ρx

+
(λ− λx)Jx
2(1− ρx)

. (9.8)

Here Jx is the smallest jump size incurred by the recycling stream, i.e.,

Jx := min

{
x2,min

i<1

{
inf

w∈[0,kix]
hk,x(w + x, i+ 1/k)− hk,x(w, i)

}}
.

We believe that Jx = x2 for all thresholds x, numbers of servers k, and job size distributions S.

We proved in Theorem 7.6 that Jx = x2 whenever k = 2. However, formal proof of this assertion

for k ≥ 3 remains elusive, so we leave this as an open problem. We have empirically verified that

this is true for the 3-server setting with exponential job sizes.

For theoretical evidence, one can also observe that each term in Jx is of the form

x2 + 2wx+ E[lk(x+ S)]− lk−1(x),

and the contribution of x2 + 2wx should dominate the residual E[lk(x + S)] − lk−1(x) across all

x ≥ 0, because the residual grows at most linearly, by Lemma B.5 in Appendix B. Therefore we

propose the following conjecture:

Conjecture 9.7. For any job size distribution S and any number of servers k ≥ 2, Jx = x2.

10. WINE Bounds

To translate lower bounds on the mean relevant work of the M/G/k system into lower bounds

on its mean response time under arbitrary scheduling policies, we use the Work Integral Number

Equality (WINE) introduced in Theorem 6.3 of [32]. WINE allows us to characterize the mean

response time of a generic queueing system under a generic scheduling policy in terms of the mean

relevant work for each relevancy-cutoff level x.

Proposition 10.1 (WINE Identity). For an arbitrary scheduling policy π, in an arbitrary system,

E[T π] =
1

λ
E[Nπ] =

1

λ

∫ ∞

0

E[W π
x ]

x2
dx. (10.1)

WINE has been used to upper bound mean response time under complex scheduling policies in

the M/G/1 [33] as well as in multiserver systems ([32] and [12]).

We use Proposition 10.1 in a novel fashion: rather than upper bounding relevant work for a

specific policy to upper bound response time for that policy, we instead lower bound mean relevant

work over all policies to lower bound mean response time over all policies. In particular, if we can

prove relevant work lower bounds at different relevancy cutoffs x using different proof methods, we

can combine them by taking the strongest bound for every x and integrating with Proposition 10.1.

This will provide a stronger bound than any prior individual response time lower bound.

Previously, only two naive lower bounds on the mean response time and mean relevant work of

the M/G/k under arbitrary scheduling policies have appeared in the literature.

The first lower bound is the resource-pooled M/G/1 queue under the single-server-optimal SRPT

policy. The optimal policy in the resource-pooled M/G/1 must lower bound the optimal policy in
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the M/G/k, as the resource-pooled M/G/1 is strictly more flexible, and could emulate the M/G/k

policy if desired. [29] shows that SRPT is optimal for M/G/1, so it must lower bound the mean

response time of the M/G/k system. [9] proves that this bound is tight at high load, but it is

empirically loose at medium and low load (see Figure 1).

[30] characterizes the mean relevant work in the SRPT-1 system:

E[WM/G/k
x ] ≥ E[WM/G/1-SRPT

x ] =
λ

2

E[S2
x̄]

1− ρx
. (10.2)

The second bound is the mean service time bound. To compute the mean relevant work, we

imagine jobs arriving into an M/G/∞ queue, whose servers run at the same speed as the M/G/k

servers. Each job of initial size s will spend kmin{s, x} amount of time as a relevant job, as its

size shrinks linearly down to 0. The job thus contribute k
2 min{s, x}2 amount of relevant work.

Therefore,

E[WM/G/k
x ] ≥ E[WM/G/∞

x ] =
kλ

2
E[S2

x̄]. (10.3)

The above bound is tight at low load but loose at medium and high load, see Figure 1.

Taking the maximum of these two bounds for each x and integrating using WINE (Proposi-

tion 10.1) gives us our first improved lower bound on the mean response time of the M/G/k under

an arbitrary scheduling policy, which we call the WINE-2 bound.

We further improve upon WINE-2 by incorporating the exact mean relevant work of the Sep-

ISQ-k system, giving an improved lower bound on mean relevant work in the M/G/k, namely

Equation (4.3). Combining these bounds with WINE results in a new lower bound which we call

WINE-3. Finally, WINE-3 is augmented with a lower bound on the mean relevant work of the

AR-ISQ-k system, giving a final lower bound on the M/G/k, namely Equation (4.4), resulting in

the final WINE-4 bound.

10.1. Numerical Comparison of Bounds. We illustrate the impact of each of these new lower

bounds (Equations (4.1) and (4.2) of Theorem 4.1) in our WINE lower bounding framework at

different thresholds x in Figure 2. Specifically, we show the weighted expected relevant work

E[Wx]/x
2 for each lower bound in an M/G/2 with exponential job size distribution setting. We

plot the weighted expected relevant work lower bounds given by (4.1) and (4.2) against the M/G/∞
and resource-pooled M/G/1/SRPT queues. The job size distribution is S ∼ Exp(1) and the arrival

rate is λ = 0.9.

We observe that E[WM/G/∞
x ] and E[W sep−ISQ

x ] are almost identical for small values of x, but as x

increases, E[W sep−ISQ
x ] eventually overtakes E[WM/G/∞

x ]. Then, for large values of x, E[W arb−ISQ
x ]

surpasses all of the other bounds. This occurs because, as x increases, the factor 1−ρx
1−ρx

in the second

term of (4.2) approaches 1, while the last term scales with the inverse of 1 − ρx. This contrasts

with (4.1), where such scaling behavior is missing.

11. Empirical and Numerical Results

In this section, we illustrate the effectiveness of our method by presenting empirical and numerical

results on our novel lower bounds on the mean response time in the M/G/k system under an

arbitrary scheduling policy, based on the ISQ-k system.
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Figure 2. E[Wx]/x
2 for four lower bounds on mean relevant work in the M/G/2

with S ∼ Exp(1) job size distribution and arrival rate λ = 0.9. The blue and orange
curves are our novel lover bounds while the dashed red and green curves are naive
lower bounds.

11.1. Total work. Recall that we exactly characterize total mean work in the ISQ-2 system in

Proposition 7.3. We prove in Theorem 4.3 that mean work in the ISQ-2 lower bounds mean work

in the M/G/2 system under an arbitrary scheduling policy. Here, we numerically and empirically

verify this result for several scheduling policies.

Figure 3 plots the ratios between the empirical mean total work of an M/G/2 system under

several scheduling policies, as compared to the exact mean work in the matching ISQ-2 system. We

numerically and empirically evaluate these policies under an exponential job size distribution. For

FCFS-2 scheduling, the exact mean total work of an M/G/2 with exponential job size distribution

is known. For SRPT-2 and Longest Remaining Processing Time (LRPT-2) scheduling, we evaluate

the policies empirically.

Figure 3 shows that the total mean work of the ISQ-2 system serves as a lower bound for the total

work of the M/G/2 system under the FCFS, SRPT, and LRPT policies, confirming our result. In

our exploration, it appears that the LRPT policy minimizes the total work of an M/G/2 system,

across all scheduling policies, making this lower bound especially important.

We also compare the ISQ-2 lower bound to the prior resource-pooled M/G/1 lower bound, note

that in an M/G/1, scheduling policy does not affect mean work. We see that the total work of

ISQ-2 is significantly larger than the total work of the resource-pooled M/G/1 system, particularly

for low to medium load, indicating that it is a much stronger bound.

11.2. Response time bounds. We now illustrate the quality of the lower bounds on mean re-

sponse time achievable by adding our lower bounds on mean response time under arbitrary sched-

uling policies, namely Theorem 9.4 and 9.6 into our WINE framework (see Section 10). In Figure 4,

we plot the ratios of the WINE-2, WINE-3, and WINE-4 bounds defined in Section 10 compared

to the previous naive lower bounds, namely the resource-pooled SRPT-1 and the mean service time

bounds. We consider two servers and an exponential job size distribution.
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Figure 3. Ratios of the expected total work of M/G/2 under different scheduling
policies compared to ISQ-2 and resource-pooled M/G/1.

We observe that the WINE-2 bound, which combines naive lower bounds with our WINE frame-

work significantly improves upon the existing naive response time lower bounds, achieving over a

20% improvement for certain loads. By incorporating the ISQ-k lower bounds, the WINE-3 and

WINE-4 bounds offer an even larger improvement. They begin to outperform the baseline bound

at much smaller loads, around ρ = 0.3, and reach improvements of over 25%.

Figure 4. Ratios of WINE bounds over naive lower bounds for M/G/2 under
arbitrary scheduling. “Baseline” is the maximum of E[TSRPT -1] and 2E[S].

To more precisely measure the degree of improvement of our ISQ-based lower bounds beyond

what we already achieved with WINE-2, in Figure 5 we plot the improvements of WINE-3 and

WINE-4 over WINE-2 for two different job size distributions with differing variability. In Figure 5a,

we have a low-variability distribution, an Erlang-3 job size distribution with a squared coefficient

of variation C2 = Var(S)/E[S]2 = 1/3. In Figure 5b, we have a high-variability distribution, a

2-branch hyperexponential job size distribution, with C2 = 5.

Two important observations become apparent: First, for the lower variability distribution in

Figure 5a, the greater the improvement of the ISQ-k based lower bounds over WINE-2, reaching
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(a) Erlang-3, C2 = 1/3. (b) Hyperexponential, C2 = 5.

Figure 5. Ratios of improvement of the WINE 3 and WINE 4 lower bounds over
the baseline WINE-2 lower bound for various job size distributions and k = 2 servers.

over 8% for the Erlang-3 distribution. One intuitive explanation for this phenomenon is that the

ISQ-k system takes an optimistic view of work completion, focusing on the case where all jobs finish

at the same time, so no servers are wasted prematurely. This optimistic view is most accurate

when jobs have similar sizes, as in a low variability setting. Secondly, for the high variability

job size distributions Figure 5b, the AR-ISQ-2 based WINE-4 bound which incorporates recycling

information offers a much greater improvement over WINE-2 than WINE-3 alone, justifying the

need for Theorem 7.6. This makes sense, as the larger, recycled jobs make up more of the load at

intermediate thresholds under job size distributions with high variability.

12. Conclusion

We present the first nontrivial lower bounds on the mean response time of the M/G/k system

under arbitrary scheduling policies. We introduce the novel ISQ-k queue which bridges the mul-

tiserver and single-server queues and helps us lower bound the mean relevant work of an M/G/k

system under arbitrary scheduling policies.

We introduce the novel DiffeDrift extension to the drift method to characterize the work of the

increasing speed queue, introducing a new technique where we derive test functions via solutions

of differential equations. Empirically, our lower bounds improve upon previous naive lower bounds

for a wide range of loads, with the most significant improvement observed under moderate load

conditions.

One direction for future work lies in proving Conjecture 9.7 on jumps due to recycling for k > 2

servers. More ambitiously, one could try to derive similar lower bounds on the mean response

time for the G/G/k queue. While this paper relies on the Poisson arrival process, the underlying

ISQ-k system and the DiffeDrift method have the potential to be more broadly applicable. A final

potential direction is to prove even tighter bounds by first proving that the LRPT scheduling policy

minimizes remaining total work in the M/G/k.
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Appendix A. Proofs for Section 5

Proposition 5.2. Suppose that g ∈ D(G) and (Xt)t≥0 has a stationary distribution π, for which

|g| and |G ◦ g| are π-integrable. Moreover, suppose that the following holds for all t and x:

1

t

∫
S
(g(y)P (t, x, dy)− g(x)) = A(t, x) +B(t, x), (5.2)

where limt→0A(t, ·) → G ◦ g(·) uniformly and limt→0

∫
S B(t, x)π(dx) = 0. Then the BAR holds:∫

S
G ◦ g(x)π(dx) = 0. (5.3)

Proof. We have
∫
S g(x)π(dx) =

∫
S
∫
S g(y)P (t, x, dy)π(dx). This equality holds because π is a sta-

tionary distribution, so
∫
S P (t, x, U)π(dx) = π(U) for any measurable set U . Subtracting the LHS,

dividing both sides by t, and introducing a limit,

0 =
1

t

∫
S

(∫
S
g(y)P (t, x, dy)− g(x)

)
π(dx) = lim

t→0

∫
S

1

t

(∫
S
g(y)P (t, x, dy)− g(x)

)
π(dx).

Therefore,

0 = lim
t→0

∫
S
A(t, x)π(dx) + lim

t→0

∫
S
B(t, x)π(dx) (A.1)

For the first term on the RHS, we invoke the dominated convergence theorem (DCT) in order to

take the limit under the integral. The assumption of the DCT is satisfied by the assumption that

limt→0A(t, ·) → G ◦ g(·) uniformly, so there exists some t small enough such that the integrand can

be bounded by, e.g., 2|G ◦ g(x)| for all x ∈ S, which is π-integrable by assumption.

The second term also vanishes by assumption. Therefore, (A.1) is equivalent to the following:

0 =

∫
S
lim
t→0

A(t, x)π(dx) + 0 =

∫
S
G ◦ g(x)π(dx),

giving us the desired result.

Lemma 5.3. If the job size distribution S has a finite third moment, E[S3] < ∞, then E[W 2] < ∞.

Proof. Imagine an M/G/1 queue such that after each busy period, the servers stops working until

the system accumulates k jobs, then restarts and starts processing jobs at a rate of 1. We call this

system an M/G/1 queue with server activation threshold. Then the expected work of an ISQ-k

queue will be bounded above by this M/G/1 queue with a server activation threshold. The expected

work in this M/G/1 queue with a server activation threshold is equivalent to the expected waiting

time of an M/G/1-FCFS queue with rest periods drawn from a distribution T0, where T0 is the

sum of k exponential random variables, and T0 is coupled to the arrival process.

M/G/1 queues with rest periods are studied in [28]. Equation 15 of [28] characterizes the

expected second moment of waiting time of an M/G/1 queue with rest periods. In particular, this

expectation is finite if E[S3] < ∞ and E[T 3
0 ] < ∞. Note that the sum of k exponential distributions

has finite moments of all orders, so the lemma holds by our assumption that E[S3] < ∞. Note

that [28] assumes that T0 is independent of the arrival process, which is not the case in our setting.
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However the proof of Equation 15 proceeds by first characterizing the number of arrivals during the

rest period, before proceeding with the rest of the proof. In our system, that number of arrivals

always k, simplifying Equation 7 of [28], and remainder of the proof holds unchanged.

Lemma 5.4. Suppose E[S3] < ∞ and g(w, i) = w2 + c(w, i) is a real-valued function of the ISQ-

k system which is twice-differentiable with respect to w for each fixed i. Suppose that |c(w, i)| ≤
C1w + C2 for some constants C1 and C2 and limw→0+ g(w, i) = g(0, 0) for each fixed i. Moreover,

we assume |c′(w, i)| ≤ M1 and |c′′(w, i)| ≤ M2 for some constants M1 and M2. Then

1

t
E[g(W (t), I(t))− g(w, i) |W (0) = w, I(0) = i] = A(t, w, i) +B(t, w, i), (5.4)

where limt→0A(t, ·, ·) → G ◦ g(·, ·) uniformly and limt→0 E[B(t,W, I)] = 0.

Proof. To illustrate the high-level idea, we first consider the case where the speed i is 1. By the

definition of the Poisson arrival process, for t < w,

1

t
E[g(W (t), 1)− g(w, 1) |W (0) = w, I(0) = 1]

= P(Nt = 0)g(w − t, 1) + P(Nt = 1)E[g(w − t+ S, 1)] + P(Nt > 1)E[g(w − t+NtS, 1) | Nt > 1]

=
1

t
(1− λt)g(w − t, 1) +

o(t)

t
g(w − t, 1) +

1

t
λtE[g(w − t+ S, 1)] +

o(t)

t
E[g(w − t+ S, 1)]

+
o(t)

t
E[g(w − t+Nt · S, 1) | Nt > 1]

= −g(w, 1)

t
+

g(w − t, 1)

t
+ λE[g(S + w − t, 1)]− λg(w − t, 1)︸ ︷︷ ︸

A(t,w,1)

+B(t, w, 1) (A.2)

Before we continue, note that to ensure uniform convergence, we must also consider the case that

t > w, for w close to 0. In this case, the only significant change is the at the Nt = 0 term results

in a state after time t of (0, 0), rather than (w− t, 1). By assumption, limw→0+ g(w, 1) = g(0, 0), so

the proof proceeds unchanged.

Returning to (A.2), note that the A(t, w, 1) term contains the terms corresponding to the scenario

where there is only one arrival during the period of length t and the scenario where there is no

arrival during the same period. B(t, w, 1) corresponds to the remaining negligible terms:

B(t, w, 1) =
o(t)

t
g(w − t, 1) +

o(t)

t
E[g(w − t+ S, 1)] +

o(t)

t
E[g(w − t+Nt · S, 1) | Nt > 1].

By the independence of S and Nt, it is easy to check that E[g(w − t + Nt · S, 1) |Nt > 1] < ∞
given the assumption that g(w, i) = w2 + c(w, i) where |c(w, i)| ≤ C1w + C2. Therefore, we have,

limt→0 E[B(t,W, 1)] = 0. We now want to show that A(t, ·, 1) converges uniformly to some limit

as t → 0, namely, G ◦ g. We first consider the term −g(w, 1)/t + g(w − t, 1)/t. Since g is twice-

differentiable for all w ∈ R+, by Taylor expansion,

g(w, 1)− g(w − t, 1) = g′(w, 1)t−R1(w, t) = g′(w, 1)t− g′′(c, 1)
t2

2
(A.3)

Recall that by our assumption, c(w, i) has a bounded second derivative and g(w, i) also has a

bounded second derivative. Therefore,
1

t
(−g(w, 1) + g(w− t, 1)) = −g′(w, 1) + g′′(c,1)

2 t → −g′(w, 1)

uniformly for all w. Next, we want to show that λE[g(S+w−t)]−λg(w−t) → λE[g(S+w)]−λg(w)
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uniformly. Let ĝ(w− t, 1) be defined as this difference, namely E[g(S+w− t, 1)]−g(w− t, 1). Then

again since ĝ is smooth, we have by Taylor’s theorem

|ĝ(w − t, 1)− ĝ(w, 1)| = | − ĝ′(w, 1)t+R1(w, t)| ≤ |ĝ′(w, 1)|t+M2
t2

2
,

where R1(w, t) is the remainder term of the Taylor expansion, for the second-order and higher

terms. Therefore the convergence is uniform if |ĝ′(w, 1)| is bounded. We have

E[g(S + w − t, 1)− g(w − t, 1)] = E[S2]− 2E[S]t+ 2E[S]w + ĉ(w, t), (A.4)

where ĉ(w, t) is defined analogously to ĝ. By our assumption that |c′(w, i)| ≤ M1, the RHS has a

bounded derivative, thus establishing the uniform convergence.

When the speed of the system is less than 1, the only necessary changes lie in Equations (A.3)

and (A.4). Eq. (A.3) becomes g(w, i/k) − g(w − it/k, i/k) = g′(w, i/k)it/k − R̄1(w, t), for some

remainder term R̄1. We now invoke our bounded second derivative assumption to bound R̄1(w, t)

in the same manner as R1(w, t) above. Dividing by t and taking the limit as t → 0 yields the

desired limit g′(w, i/k) ik . Similarly, Equation (A.4) can now be written as,

E[g(S + w − t, (i+ 1/k))− g(w − t, i/k)] = E[S2]− 2E[S ]̄it/k + 2E[S]w + c̄(w, t),

using Taylor’s theorem and the intermediate value theorem, for some value ī ∈ [i, i + 1] and some

function c̄(w, t) defined analogously to ĉ with a bounded first derivative by our assumption. There-

fore as t → 0, E[g(S+w−t, (i+1/k))−g(w−t, i/k)] converges uniformly to some limit, establishing

uniform convergence.

Appendix B. Proofs for Section 9

In this appendix, we provide proofs of lemmas needed in Section 9 and Theorem 9.6.

Lemma B.1. gk(·, ·) defined by Equation (9.1) satisfies the assumptions of Proposition 5.2 and

Lemma 5.4. In particular, limw+→0 gk(w, i) = 0. Note also that gk(·, ·) ≥ 0.

Proof. By Equation (9.1) we see that uq(0) = 0. Moreover, as we are integrating a non-negative

function recursively starting from uk(·) = 0, each of uq(·) must be non-negative, i.e., uq(·) ≥ 0 for

all q ∈ {1, ..., k}.
Moreover, one can see that from the form of Equation (9.1) that each uq is a sum of linear and

negative exponential terms in w. In particular, in the integrand, E[uq+1(S + y)] preserves this

structure during each recursive step, see, e.g., the ISQ-3 test functions (C.1) and (C.2) given in

Appendix C. Therefore, uq must satisfy the assumptions of Proposition 5.2 and Lemma 5.4.

Applying Lemma 5.5 to Equation (9.1) we have,

Lemma B.2. For any arbitrary job size distribution S such that E[S3] is finite, the drift at speed 0 is

G◦gk(0, 0) = λE[S+u1(S)] and the drift at all other speeds i ≥ 1/k is given by G◦gk(w, i) = λE[S]−1

for all i ≥ 1/k.
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Proof. Clearly, the drift at speed 1 is given by G ◦ gk(w, 1) = λE[S]− 1 and the drift at speed 0 is

given by G ◦ gk(0, 0) = λE[S + u1(S)]. For all other speed q/k, the drift is given by,

G ◦ gk(w, q/k) = λ ((w + E[S] + E[uq+1(w + S)])− (w + uq(w)))− (w + uq(w))
′ · q

k

= λE[S]− 1 + 1− q

k
− λuq(w) + λE[uq+1(w + S)]−

qu′q(w)

k
.

We want to show that the above is equal to λE[S] − 1. Therefore, we want prove that the set of

uq(w) functions collectively solve the following first order linear ordinary differential equations:

1− q

k
− λuq(w) + λE[uq+1(w + S)]−

q · u′q(w)
k

= 0,

with initial condition uq(0) = 0. Solving this differential equation with uk(w) = 0 yields the formula

for uk−1(w) in Definition 9.1, and solving for decreasing q yields all of the functions uq(w).

Note that the differential equations used to define the constant-drift and affine-drift test functions

gk and hk are generalizations of the differential equations used to define the constant and affine-drift

test functions g2 and h2 for the 2-server case in Section 8.1.

Via the same argument Lemma B.1, we prove the following lemma, which allows us to apply

Lemma 5.5.

Lemma B.3. hk(·, ·) defined by Equation (9.2) satisfies the assumptions of Proposition 5.2 and

Lemma 5.4. In particular, limw→0+ hk(w, i) = 0. Note also that hk(·, ·) ≥ 0.

Now, we examine the drift of the test function hk.

Lemma B.4. For any arbitrary job size distribution S such that E[S3] is finite, the drift at speed

0 is given by G ◦ hk(0, 0) = λE[S2 + v1(S)] and the drift at all other speed ≥ 1/k is given by

G ◦ hk(w, i) = λE[S2] + 2w(λE[S]− 1).

Proof. Clearly, the drift at speed 1 is given by G ◦ hk(w, 1) = λE[S2] + 2w(λE[S]− 1) and the drift

at speed 0 is given by G ◦ hk(0, 0) = λE[S2 + v1(S)]. For all other speed q/k, the drift is given by,

G ◦ hk(w, q/k) = λ
(
((w + E[S])2 + E[vq+1(w + S)])− (w2 + vq(w))

)
−
(
w2 + vq(w)

)′ · q
k

= λE[S2] + 2w(λE[S]− 1) + 2w − 2qw

k
− λvq(w) + λE[vq+1(S + w)]−

qv′q(w)

k
.

We want to show that the above is equal to λE[S2] + 2w(λE[S] − 1). Therefore, we want prove

that the set of vq(w) functions collectively solve the first order linear ordinary differential equations

2w − 2qw
k − λvq(w) + λE[vq+1(S + w)] − qv′q(w)

k = 0, with initial condition vq(0) = 0. Solving this

differential equation with vk(w) = 0 yields the formula for vk−1(w) in Definition 9.2, and solving

for decreasing q yields all of the functions vq(w).

The next set of lemmas concerns the modified affine-drift test function defined in Definition 9.5.

By the same reasoning as Lemma B.1 we have the following lemma.
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Lemma B.5. hk,x(·, ·) defined by Equation (9.6) satisfies the assumptions of Proposition 5.2 and

Lemma 5.4.

The above lemma allows us to apply Lemma 5.5 to Equation (9.6).

Lemma B.6. For any arbitrary truncated job size distribution Sx and arrival rate λx, the drift is

given by

G ◦ hk,x(w, 1) = λxE[S2
x] + 2w(λxE[Sx]− 1)

∀0 < i < 1, G ◦ hk,x(w, i) = λxE[S2
x] + 2w(λxE[Sx]− 1) +

k − i

k
Ck(x, λx)

G ◦ hk,x(0, 0) = λx(E[S2
x] + E[ℓ1(Sx)]).

Proof. Clearly, the drift at speed 1 is given by G ◦ hk,x(w, 1) = λxE[S2
x] + 2w(λxE[Sx]− 1) and the

drift at speed 0 is given by G ◦ hk,x(0, 0) = λxE[S2
x + ℓ1(Sx)]. For all other speeds i = q/k, the drift

is,

G ◦ hk,x(w, q/k) = λx

(
((w + E[Sx])

2 + E[ℓq+1(w + Sx)])− (w2 + ℓq(w))
)
−
(
w2 + ℓq(w)

)′ · q
k

= λxE[S2
x] + 2w(λxE[Sx]− 1) + 2w − 2qw

k
− λxℓq(w) + λxE[ℓq+1(Sx + w)]−

qℓ′q(w)

k
.

We want to show that the above is equal to λxE[S2
x]+2w(λxE[Sx]−1)+(k−q)Ck(x, λx). Therefore,

we want to prove that the set of ℓq(w) functions collectively solve the following differential equations:

2w − 2qw

k
− λxℓq(w) + λxE[ℓq+1(Sx + w)]−

qℓ′q(w)

k
= (k − q)Ck(x, λx),

with initial condition ℓq(0) = 0. Solving this differential equation with ℓk(w) = 0 yields the formula

for ℓk−1(w) in Definition 9.5, and solving for decreasing q yields all of the functions lq(w).

In the above lemma, the drift at speed 0 is given by λx(E[S2
x]+E[ℓ1(Sx)]). However, because the

recursive nature of ℓq makes ℓ1 very hard to work with, we now prove a lemma which gives us an

alternative expression for E[ℓ1(Sx)].

Lemma B.7. Ck(x, λx) defined by Equation (9.7) solves the following equation λxE[ℓ1(Sx)] =

kCk(x, λx).

Proof. By Lemma B.6, the drift of hk,x at speed i > 0 is given by G ◦ hk,x(w, i) = λxE[S2
x] +

2w (ρx − 1)+Ck(x, λx)
k−i
k and the drift at speed 0 is given by G◦hk,x(0, 0) = λxE[S2

x]+λxE[ℓ1(Sx)].

Therefore, taking expectation over Wx and I, we have,

E[G ◦ hk,x(Wx, I)] = λE[S2
x] + 2E[Wx] (ρx − 1) + kCk(x)

k∑
i=1

k − i

k
P(I = i/k) + λE[ℓ1(Sx)]P(I = 0/k)

= λE[S2
x] + 2E[Wx] (ρx − 1) + kCk(x)

k∑
i=0

k − i

k
P(I = i/k) + (λE[ℓ1(Sx)]− kCk(x, λ))P(I = 0/k).
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To simplify the above above equation, we apply Lemma 5.5 to the test function g(w, i) = w for all

(w, i). We have, 1− ρx =
∑k

i=0
k−i
k P(I = i/k). Therefore,

E[G ◦ hk,x(W, I)] = λE[S2
x] + 2E[Wx] (ρx − 1) + kCk(x)(1− ρx) + (λE[ℓ1(Sx)]− kCk(x, λ))P(I = 0/k)

By Lemma B.5, the ISQ-k modified affine-drift test function defined in Definition 9.5 satisfies

the assumption of Lemma 5.5. We have E[G ◦ hk(Wx, I)] = 0. Solving for E[Wx] we get,

E[Wx] =
λxE[S2

x]

2(1− λxE[Sx])
+

k

2
· Ck(x, λx) +

(λxE[ℓ1(Sx)]− kCk(x, λx))P(I = 0/k)

2(1− ρx)
. (B.1)

Recall that Ck(x, λx) is defined to be Ck(x, λx) = 2
k · λxE[v1(Sx)]

2+2λxE[u1(Sx)]
. Recall also that by Proposi-

tion 9.3, we have the following alternative expression for mean relevant work for the same arrival

rate λx and truncated job size distribution Sx:

E[Wx] =
λxE[S2

x]

2(1− λxE[Sx])
+

λxE[v1(Sx)]

2 + 2λxE[u1(Sx)]
=

λxE[S2
x]

2(1− λxE[Sx])
+

k

2
· Ck(x, λx) (B.2)

Thus, taking the difference of these two expressions for E[Wx], we find that the third term of (B.1)

is zero:

0 =
(λxE[ℓ1(Sx)]− kCk(x, λx))P(I = 0/k)

2(1− ρx)

Note that P(I = 0/k) is positive, by Equation (9.4). Thus solving 0 = λE[ℓ1(Sx)] − kCk(x, λx)

we get λxE[ℓ1(Sx)] = kCk(x, λx) as desired.

Therefore, we can write the drift at speed 0 as G◦hk,x(0, 0) = λxE[S2
x]+kCk(x, λx). We are now

ready to state the general version of the AR-ISQ-k lower bound. This is the second lower bound of

Theorem 4.2.

Theorem 9.6. For an arbitrary job size distribution S and arrival rate λ. A lower bound on

expected relevant work in the arbitrary-recycling-ISQ-k system is given by,

E[W arb-ISQ
x ] ≥ λxE[S2

x]

2(1− λxE[Sx])
+

λxE[v1(Sx)]

2 + 2λxE[u1(Sx)]
· 1− ρx̄
1− ρx

+
(λ− λx)Jx
2(1− ρx)

. (9.8)

Here Jx is the smallest jump size incurred by the recycling stream, i.e.,

Jx := min

{
x2,min

i<1

{
inf

w∈[0,kix]
hk,x(w + x, i+ 1/k)− hk,x(w, i)

}}
.

Proof. The proof of this theorem follows the same argument as the proof of Theorem 7.6. Let Er[·]
denote the Palm expectation taken over the moments when the arbitrary arrival of jobs of size x

occur.

Let Jx(w, i) := hk,x(w + x,min(i + 1/k, 1)) − hk,x(w, i) denote the increase in the test function

due to the arrival of a size-x job. Then Er[Jx(Wx, I)] denotes the mean size of the recycling jump in

stationarity. Thus, by Lemma 5.6,E[G ◦ hk,x(Wx, I)] = E[stochastic drift] + (λ− λx)Er[Jx(Wx, I)].
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By Lemma B.7 we can write the expected stochastic drift as,

E[stochastic drift] = λxE[S2
x] + 2E[Wx](−1 + ρx) + kCk(x, λ)

k∑
i=0

k − i

k
P(Ir = i/k)

= λxE[S2
x] + 2E[Wx](−1 + ρx) + kCk(x, λ)(1− ρx̄).

In the second equality, we used the fact that 1 − ρx =
∑k

i=0
k−i
k P(Ir = i/k), a result that can be

derived similarly to Equation (7.9) by applying Lemma 5.6 to the test function g(w, i) = w for all

(w, i).

Therefore, substituting the above into E[G ◦ hk,x(Wx, I)] = 0 and solving for E[Wx], we have

E[W arb-ISQ
x ] =

λxE[S2
x]

2(1− ρx)
+

kCk(x, λx)(1− ρx)

2(1− ρx)
+

(λx − λx)Er[Jx(Wx, I)]

2(1− ρx)

=
λxE[S2

x]

2(1− λxE[Sx])
+

λxE[v1(Sx)]

2 + 2λxE[u1(Sx)]
· 1− ρx̄
1− ρx

+
(λ− λx)Er[Jx(Wx, I)]

2(1− ρx)
,

where we use the definition of Ck(x, λ) in the second equality. Recall the definition of an increasing

speed queue. The current speed i bounds the number of jobs in the system, which in turn bounds

the total work, which consists of at most ki jobs, each with size at most x. Therefore, for 0 < i < 1,

the system can only visit states (w, i) where w ≤ kix.

Jx(w, i) = hk,x(w + x, i+ 1/k)− hk,x(w, i/k) ≥ inf
w∈[0,kix]

hk,x(w + x, i+ 1/k)− hk,x(w, i/k),

along with Jx(0, 0) = hk,x(x, 1/k) and Jx(w + x, 1) ≥ x2, we have Er[Jx(Wx, I)] ≥ Jx.

Appendix C. Specific Results for the ISQ-3 System

For the ISQ-3 system, the constant-drift test function g3 defined in Definition 9.1 is

g3(0, 0) = 0, g3(w, 1) = w, g3(w, 2/3) = w +
1

3λ
(1− e−

3
2
wλ), (C.1)

g3(w, 1/3) = w +
1

λ
+

(2S̃(32λ)− 3)e−3wλ

3λ
−

2S̃(32λ)e
− 3

2
wλ

3λ
.

The affine-drift test function h3 defined in Definition 9.2 is

h3(0, 0) = 0, h3(w, 1) = w2, h3(w, 2/3) = w2 +
1

9λ2
(6wλ+ 4e−

3
2
wλ − 4), (C.2)

h3(w, 1/3) = w2 +
1

9λ2

(
−10 + 10e−3wλ − 8S̃(32λ)e

−3wλ + 8S̃(32λ)e
− 3

2
wλ
)
+

1

3λ

(
2E[S]− 2e−3wλE[S] + 6w

)
.
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