# Analyzing Queues with Markovian Arrivals and Markovian Service

**Isaac Grosof (Izzy)** (UIUC -> Northwestern IEMS)

Designed with Mor Harchol-Balter (CMU)

## Collaborators: Thank You!



Mor Harchol-



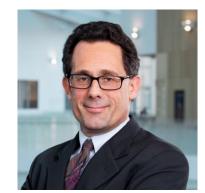
Cameron Curtis



Yige Hong



Seyed Irvani



Alan Scheller-Wolf



Ziyuan Wang



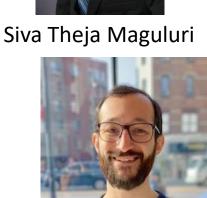
R. Srikant



Hayriye Ayhan



kant Siva Tl



Ben Berg



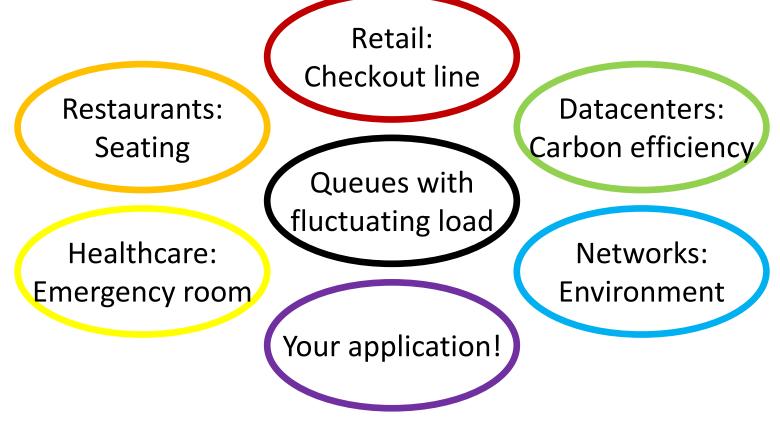
Daniela Hurtado-Lange



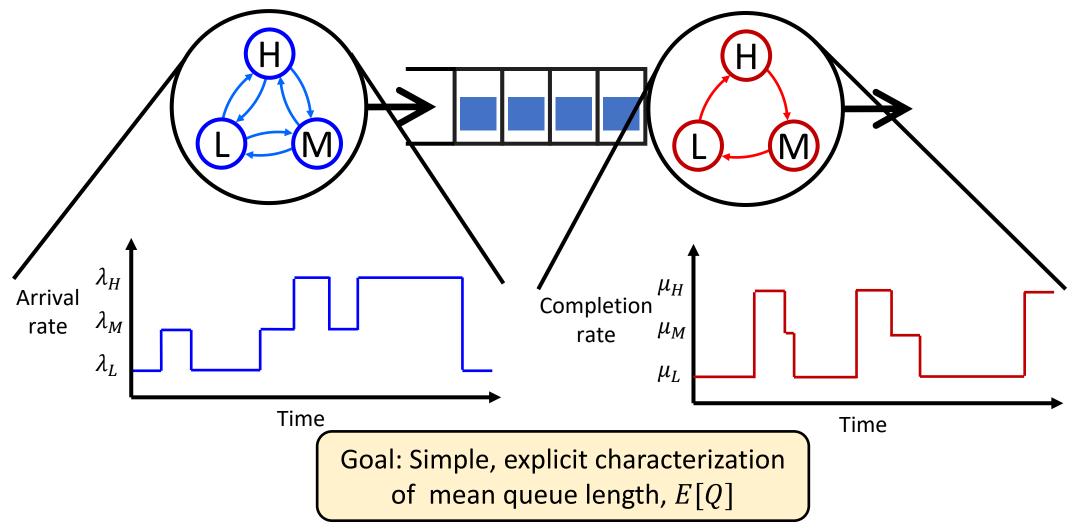
Zhongrui Chen

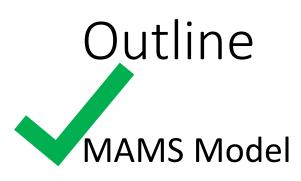
# Fluctuating Load

Vast majority of queueing theory: i.i.d. arrivals, i.i.d. service, fixed load. Reality: correlated arrivals, correlated service, fluctuating load.



### Model: Markovian Arrivals & Markovian Service





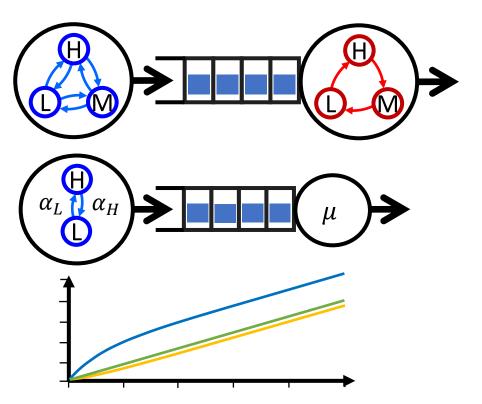
Simple MAMS: 2-level Arrivals

**Drift Method** 

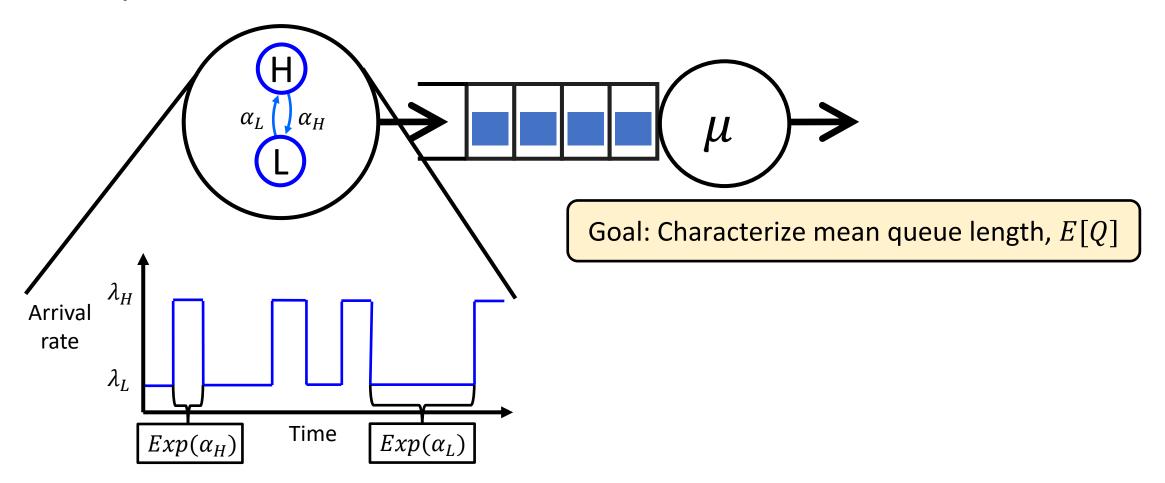
**Relative Arrivals** 

2-level results

 $\leftarrow \leftarrow \leftarrow$  Break time  $\rightarrow \rightarrow \rightarrow$ Generalizing to Full MAMS Applications!



### Simple MAMS: 2-level arrivals



### Prior work on Markov-modulated arrivals

### **Computational**

<u>Methods</u> Generating functions [Yechiali & Naor '71], [Gupta et al. '06]

Matrix analytic methods [Neuts '78], [Ramaswami '80], [Latouche & Ramaswami '99], ... Symbolic Results

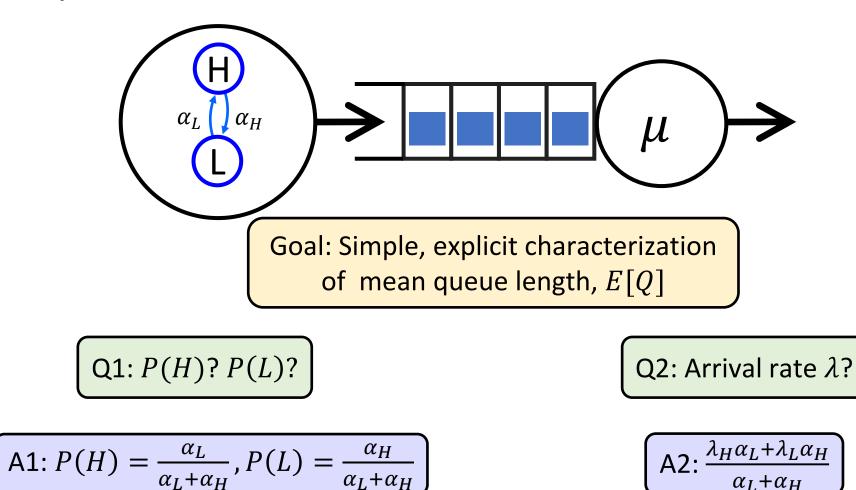
*m*-step drift Heavy-traffic, semi-closed form [Mou & Maguluri '20]

Structural, monotonicity, convexity results [Gupta et al. '06], [Vesilo, Harchol-Balter, Scheller-Wolf'21] Simple formula for E[Q]

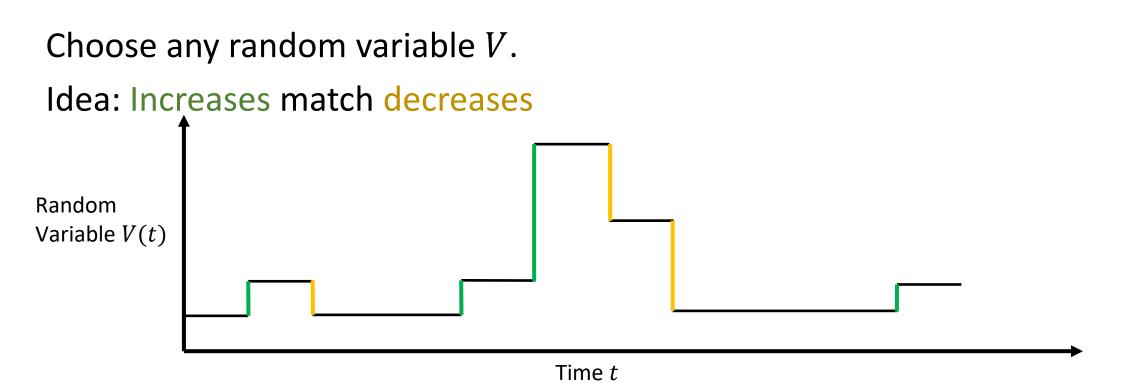
No prior results

Today: Relative arrivals + Drift [GHH'24] Results in half of a tutorial!

### Simple MAMS: 2-level arrivals

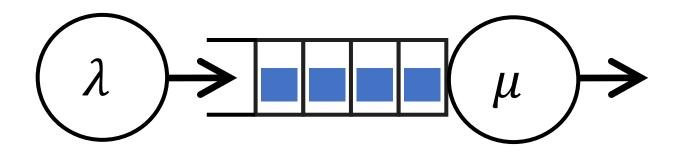


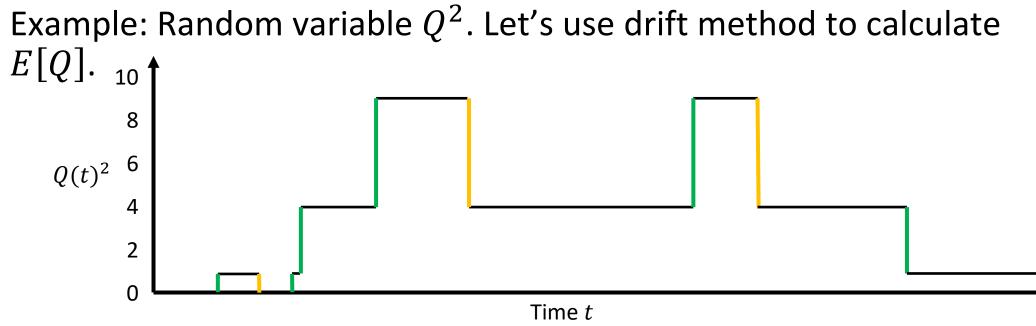
# Drift Method: Background

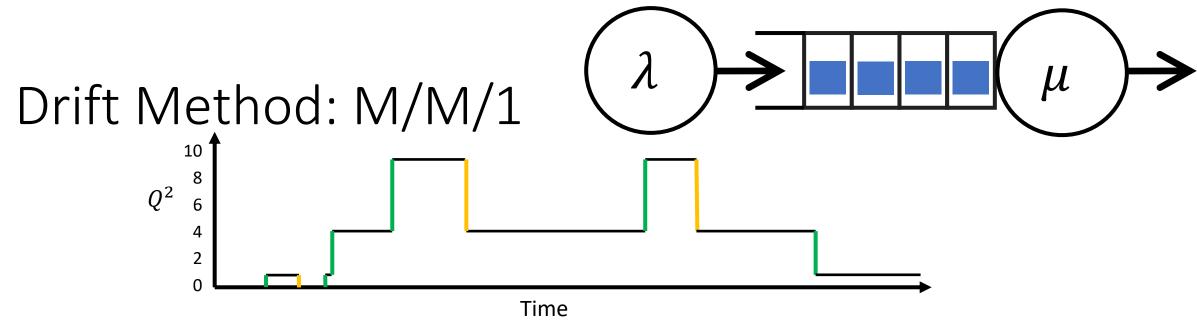


Thm: In stationarity, expected increase matches expected decrease

# Drift Method: M/M/1







Suppose Q(t) = q. What rates of change of  $Q^2$ ? What amounts of change?

#### Increases: Arrivals

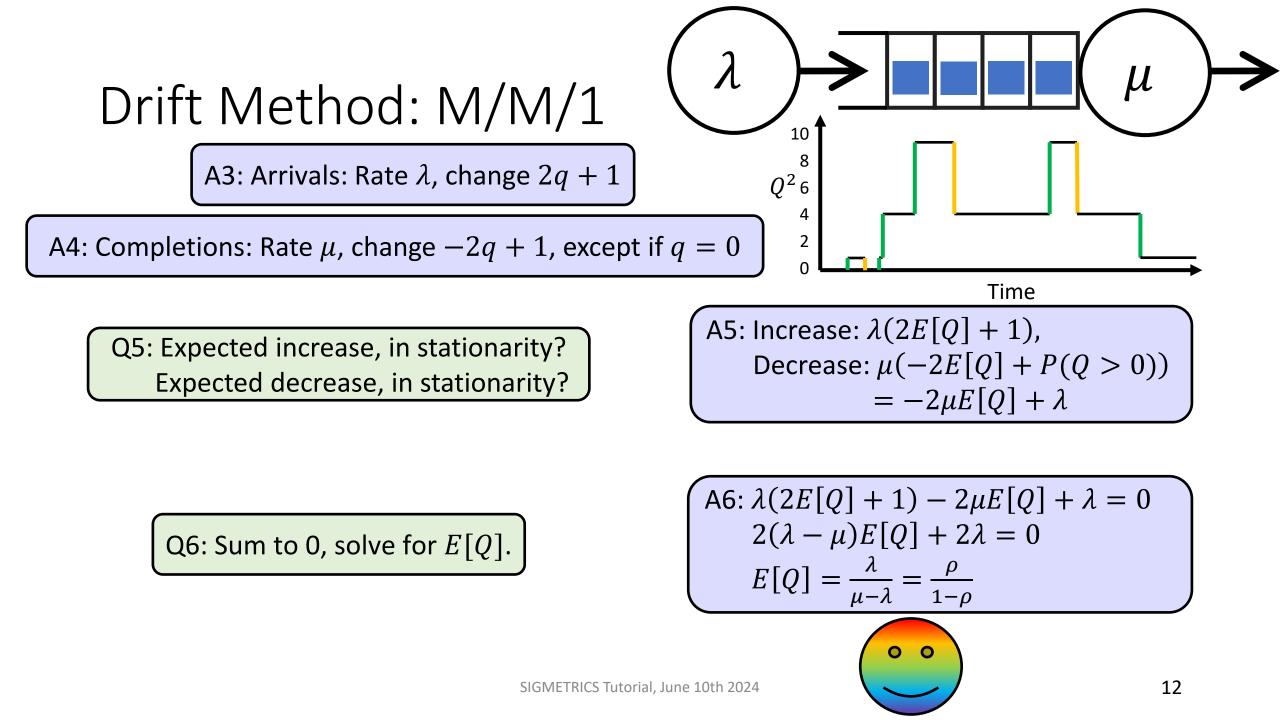
Q3: Rate of arrivals? Change in  $Q^2$ ?

A3: Rate  $\lambda$ , change 2q + 1

**Decreases:** Completions

Q4: Rate of completions? Change in  $Q^2$ ?

A4: Rate  $\mu$ , change -2q + 1, 0 except if q = 0



# Drift Method: Formalize

Formalize random variable with test function!

Function f mapping system states to real values.  $f(q) = q^2$ .

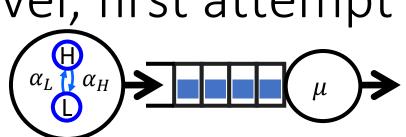
Formalize "increases and decreases": Instantaneous generator!

$$G \circ f(q) = \lim_{t \to 0} \frac{1}{t} E[f(Q(t)) - f(q)|Q(0) = q]$$

For countable-state CTMC: Just rate of change times amount of change! Formalize drift theorem:

Thm: For any f such that  $E[f(Q)] < \infty$ , the stationary drift is zero:  $E[G \circ f(Q)] = 0.$  Drift Method: 2-level, first attempt

Same random variable:  $Q^2$ 



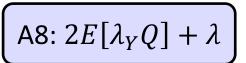
Four ingredients to drift: Rate of arrivals, change due to arrivals, rate of completions, change due to completions.

Q7: What's different between the M/M/1 and the 2-level?

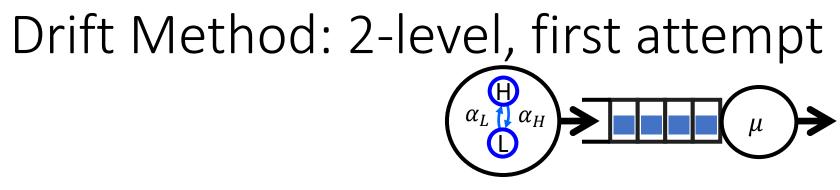
A7: Rate of arrivals is now state dependent!

Let Y(t) = y denote the arrival state. Y in stationarity. State Q(t) = q, Y(t) = H: Drift due to arrivals is  $\lambda_H(2q + 1)$ State Q(t) = q, Y(t) = L: Drift due to arrivals is  $\lambda_L(2q + 1)$ 

Q8: Expected drift due to arrivals, in stationarity?







Apply key theorem  $(E[G \circ Q^2] = 0)$ :

$$2E[\lambda_Y Q] + \lambda - 2\mu E[Q] + \lambda = 0$$
$$E[\lambda_Y Q] - \mu E[Q] + \lambda = 0$$

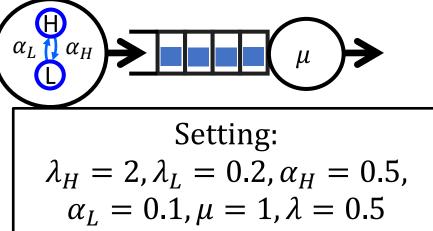
•••

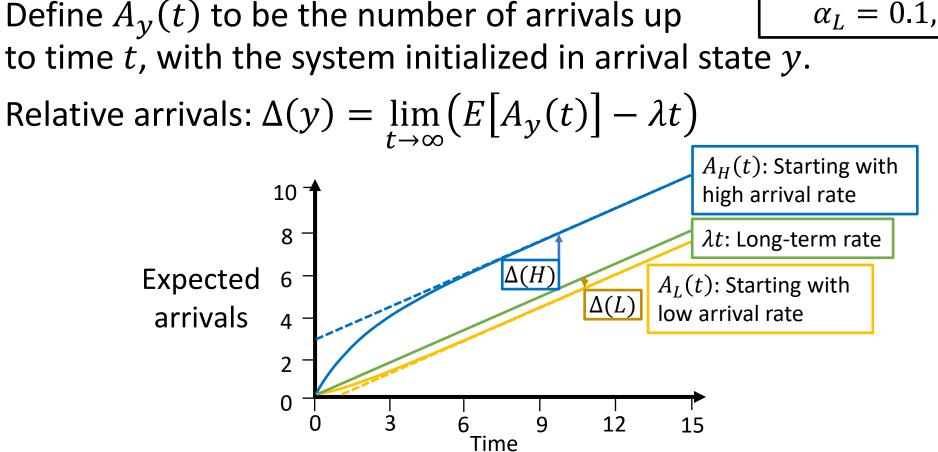
Conclusion:  $Q^2$  doesn't work for the 2-level system.

Key idea of drift method: Find the right random variable/test function for your system.

We need to smooth out the arrival rates, get an E[Q] drift term.

### New idea: Relative arrivals

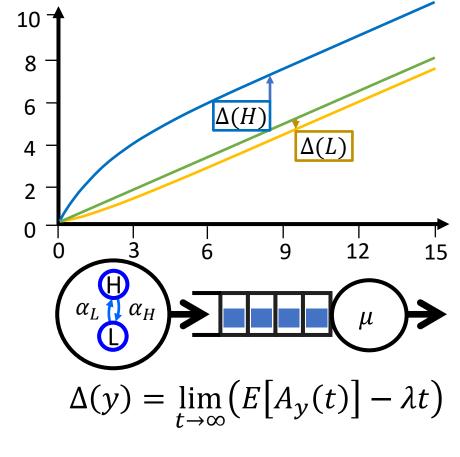




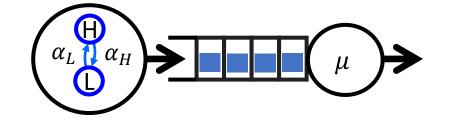
### Relative Arrivals: Calculate

Equivalently,  $\Delta(y)$  is the relative value of a Markov Reward Process with reward  $\lambda_y$ . Can calculate  $\Delta(y)$  using Poisson Equation:

 $\Delta(H) = \frac{\lambda_H - \lambda}{\alpha_H} + \Delta(L)$ Another key fact:  $E[\Delta(Y)] = 0$ .



$$\Delta(L) = \frac{\lambda - \lambda_H}{\alpha_L + \alpha_H} \frac{\alpha_L}{\alpha_H}, \quad \Delta(H) = \frac{\lambda - \lambda_L}{\alpha_L + \alpha_H} \frac{\alpha_H}{\alpha_L}$$



# Drift of Relative Arrivals

What is the drift of 
$$\Delta(y)$$
? Recall:  $\Delta(H) = \frac{\lambda_H - \lambda}{\alpha_H} + \Delta(L)$ 

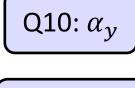
Q9: What makes *y* change?

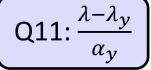
Q10: At what rate does it change?

Q11: By how much does  $\Delta(y)$  change?

Q12: What is the drift,  $G \circ \Delta(y)$ ?

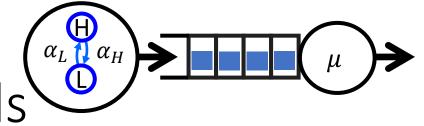
Q9: Changing between H and L





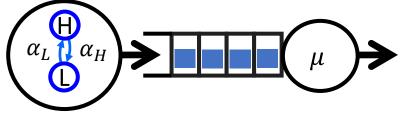
Q12: 
$$\lambda - \lambda_y$$

Alternate definition of  $\Delta(y)$ : "the test function with drift  $G \circ \Delta(y) = \lambda - \lambda_y$ "

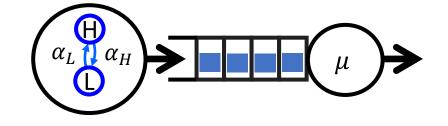


# Drift Method + Relative Arrivals

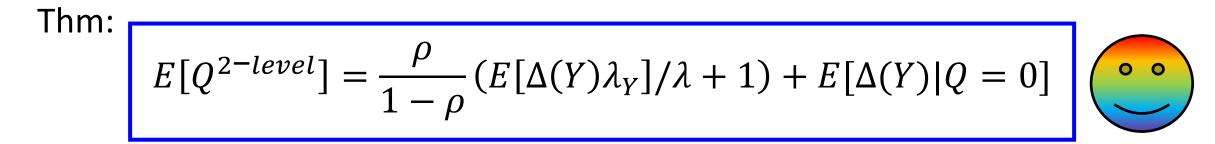
Queue length: 
$$G \circ q = \lambda_y - \mu + \mu 1\{q = 0\}$$
  
Relative arrivals:  $G \circ \Delta(y) = \lambda - \lambda_y$   
Constant drift:  $G \circ (q + \Delta(y)) = \lambda - \mu + \mu 1\{q = 0\}$   
If we can get constant drift, we can get linear drift, we can get  $E[Q]$ .  
Magic test function/random variable:  $q^2 + 2q\Delta(y)$   
 $G \circ (q^2 + 2q\Delta(y)) = G \circ q^2 + 2q(G \circ \Delta(y)) + 2\Delta(y)(G \circ q)$   
 $= 2q(\lambda - \mu) + 2\Delta(y)(\lambda_y - \mu + \mu 1\{q = 0\}) + \lambda_y + \mu - \mu 1\{q = 0\}$   
Linear!  
Bounded!



# 2-level result $G \circ (q^2 + 2q\Delta(y)) = 2q(\lambda - \mu) + 2\Delta(y)(\lambda_y - \mu + \mu 1\{q = 0\})$ Linear! $+\lambda_y + \mu - \mu 1\{q = 0\}$ Bounded! Fundamental drift theorem: $E[G \circ (Q^2 + 2Q\Delta(Y))] = 0.$ $0 = 2E[Q](\lambda - \mu) + 2E[\Delta(Y)\lambda_Y] + 2\mu E[\Delta(Y)1\{Q = 0\}] + 2\lambda$ Thm: $E[Q^{2-level}] = \frac{\rho}{1-\rho} (E[\Delta(Y)\lambda_Y]/\lambda + 1) + E[\Delta(Y)|Q = 0]$

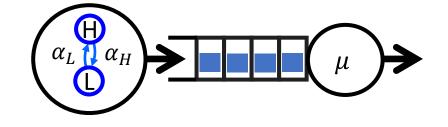


# Explicit result

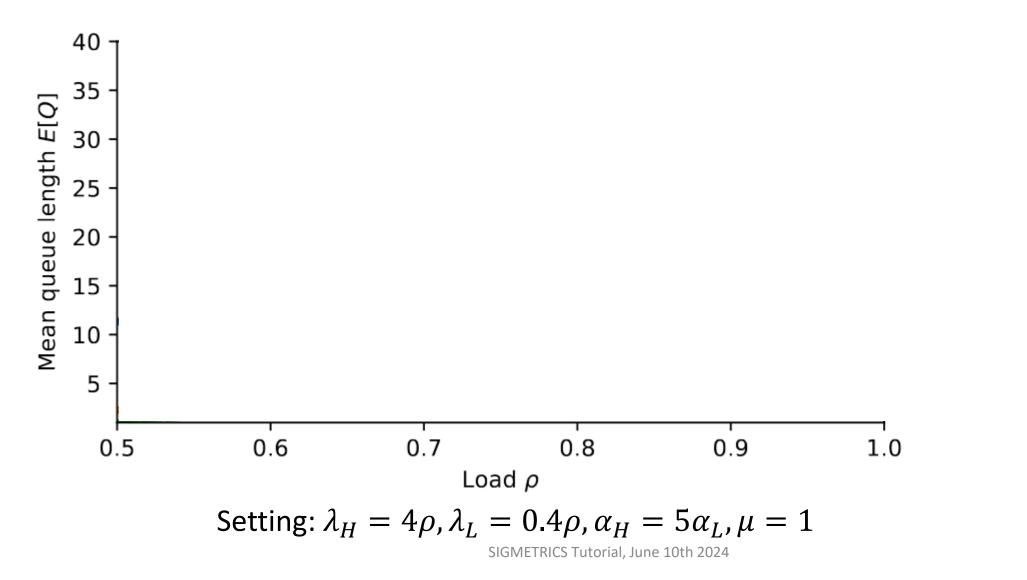


$$E[\Delta(Y)\lambda_Y] = \frac{(\lambda_H - \lambda)(\lambda - \lambda_L)}{\alpha_H + \alpha_L}$$
$$E[\Delta(Y)|Q = 0] = \frac{\lambda_H - \lambda}{\alpha_H} \left( P(Y = H|Q = 0) - \frac{\alpha_L}{\alpha_L + \alpha_H} \right)$$

Tight bounds, even just from  $0 \le P(Y = H | Q = 0) \le 1!$ "Analysis of Markovian Arrivals and Service with Applications to Intermittent Overload". Grosof, Hong, Harchol-Balter.



### Compare to simulation



22

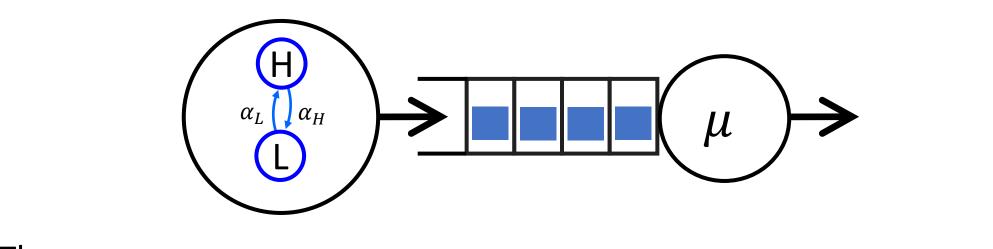
Design a random variable/test function to have just the right drift for what we want.

Separate the q part of the drift from the y part of the drift.

$$G \circ (q^{2} + 2q\Delta(y)) = 2q(\lambda - \mu) + 2\Delta(y)(\lambda_{y} - \mu + \mu 1\{q = 0\})$$
  
Linear! 
$$+\lambda_{y} + \mu - \mu 1\{q = 0\}$$
  
Bounded!

Very widely-applicable idea!





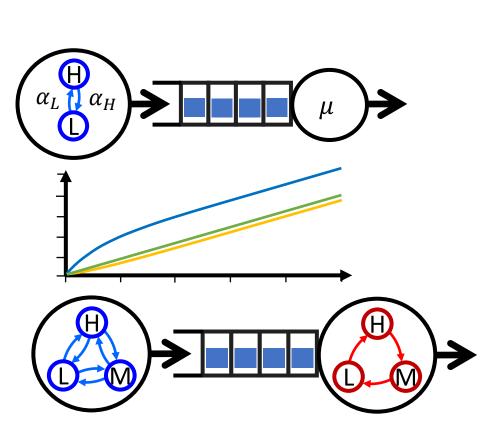
Thm:

$$E[Q^{2-level}] = \frac{\rho}{1-\rho} (E[\Delta(Y)\lambda_Y]/\lambda + 1) + E[\Delta(Y)|Q = 0]$$

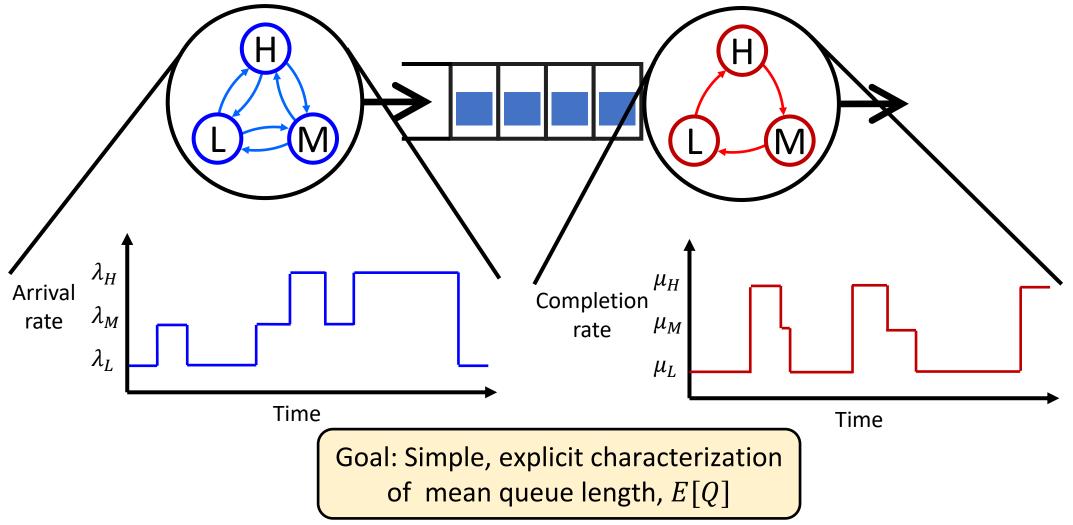


Outline mple MAMS: 2-level Arrivals Drift Method + Relative Arrivals  $\leftarrow \leftarrow \leftarrow$  Break time  $\rightarrow \rightarrow \rightarrow$ **Generalizing to Full MAMS Applications: Fluctuating Load Multiserver Jobs** 

Networks with Abandonment (e.g. Quantum switching network)



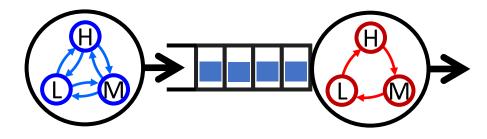
### General Markovian Arrivals & Markovian Service



### Generalizing: Relative Arrivals & Completions

Relative Arrivals: Same definition:  $\Delta_A(y_A) = \lim_{t \to \infty} (E[A_{y_A}(t)] - \lambda t)$ Relative Completions: Same idea:  $\Delta_C(y_C) = \lim_{t \to \infty} (E[C_{y_C}(t)] - \lambda t)$  $E[A_{y_A}(t)]$ : Starting with  $y_{C}$ general arrival state  $y_A$  $E[C_{y_c}(t)]$ : Starting with 10 general completions state  $y_C$  $\Delta_A(y_A)$ 8 8  $\lambda t$ : Long-term rate  $\Delta_{C}(y_{C})$ Expected Expected <sub>6</sub> 6 completions<sub>4</sub> arrivals  $\lambda t$ : Long-term rate 4 2 2 0 0 0 12 15 9 15 27 12 n Q Time Time SIGMETRICS Tutorial, June 10th 2024

## Drift for MAMS



Queue length:  $G \circ q = \lambda_{\gamma_A} - \mu_{\gamma_C} + \mu_{\gamma_C} 1\{q = 0\}$ Relative arrivals:  $G \circ \Delta_A(y_A) = \lambda - \lambda_{\gamma_A}$ Same drift as before! Relative completions:  $G \circ \Delta_C(y_C) = \mu - \mu_{y_C}$ Constant drift:  $G \circ (q + \Delta_A(y_A) - \Delta_C(y_C)) = \lambda - \mu + \mu_{y_C} \mathbb{1}\{q = 0\}$ If we can get constant drift, we can get linear drift, we can get E[Q]. Magic test function/random variable:  $q^2 + 2q\Delta_A(y_A) - 2q\Delta_C(y_C)$  $G \circ (q^2 + 2q\Delta_A(y_A) - 2q\Delta_C(y_C)) = 2q(\lambda - \mu) + f(y_A, y_C, 1\{q = 0\})$ Linear! Bounded!

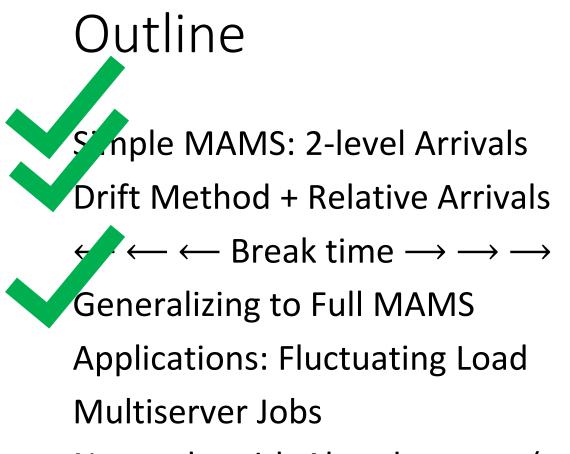
# General MAMS Result

Thm:  

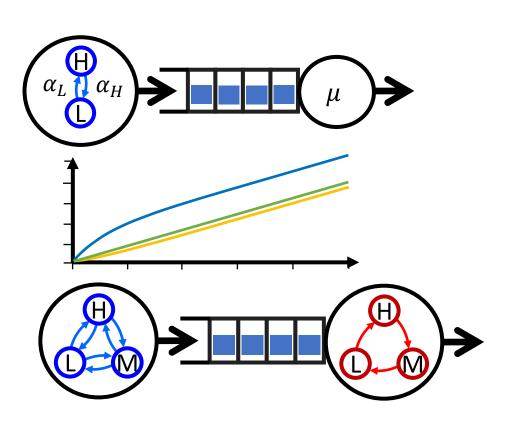
$$E[Q^{MAMS}] = \frac{E[\Delta_A(Y_A)\lambda_{Y_A}]/\mu + E[\Delta_C(Y_C)\mu_{Y_C}]/\mu + \rho}{1-\rho} + E_U[\Delta_A(Y_A) - \Delta_C(Y_C)]$$

 $E_U[\cdot]$ : Expectation over moments of unused service.

Tight bounds, even just from  $E_{U}[\Delta_{A}(Y_{A}) - \Delta_{C}(Y_{C})] \in [\Delta_{A}^{\min} - \Delta_{C}^{\max}, \Delta_{A}^{\max} - \Delta_{C}^{\min}]$ 

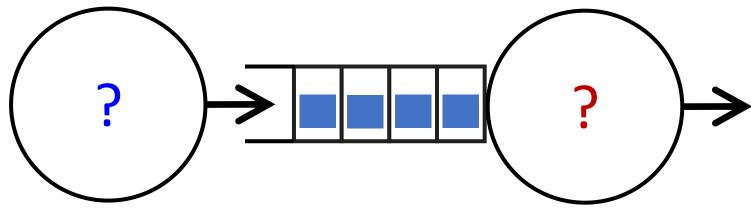


Networks with Abandonment (e.g. Quantum switching network)



# Applications: Fluctuating Load

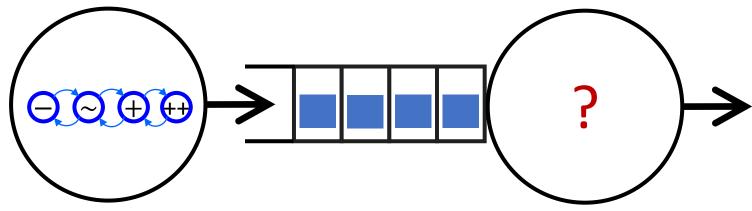
Example: Datacenter



Arrivals: Normal load ( $\sim$ ), off hours (–), peak load (+), rare event (+ +)

# Applications: Fluctuating Load

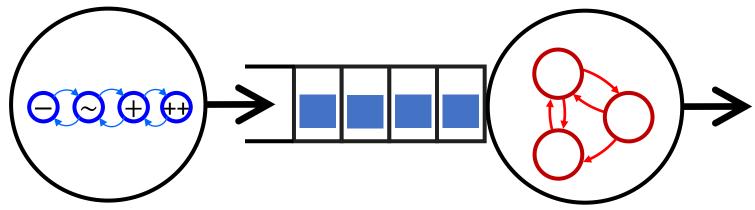
Example: Datacenter



Arrivals: Normal load (~), off hours (–), peak load (+), rare event (+ +) Service: Full operation (( $\mathfrak{S}$ ), maintenance ( $\mathfrak{K}$ ), outage (**X**)

# Applications: Fluctuating Load

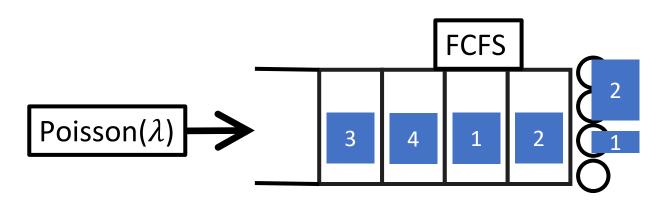
Example: Datacenter



Arrivals: Normal load (~), off hours (–), peak load (+), rare event (+ +) Service: Full operation ((S), maintenance (K), outage ( $\bigstar$ ) MAMS Model: Performance characterization from relative arrivals and

relative completions.

# Application: Multiserver-job Model

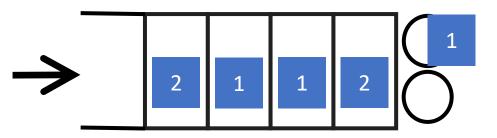


Job: (duration, server need)

Sampled i.i.d. from joint distribution, phase-type job durations

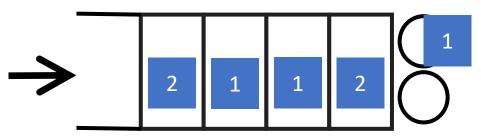
Simple example: 2 servers.

Distribution:  $(Exp(\mu_1), 1) \& (Exp(\mu_2), 2)$ 



Goal: Simple, explicit characterization of mean queue length, E[Q]

# Applications: Multiserver Jobs

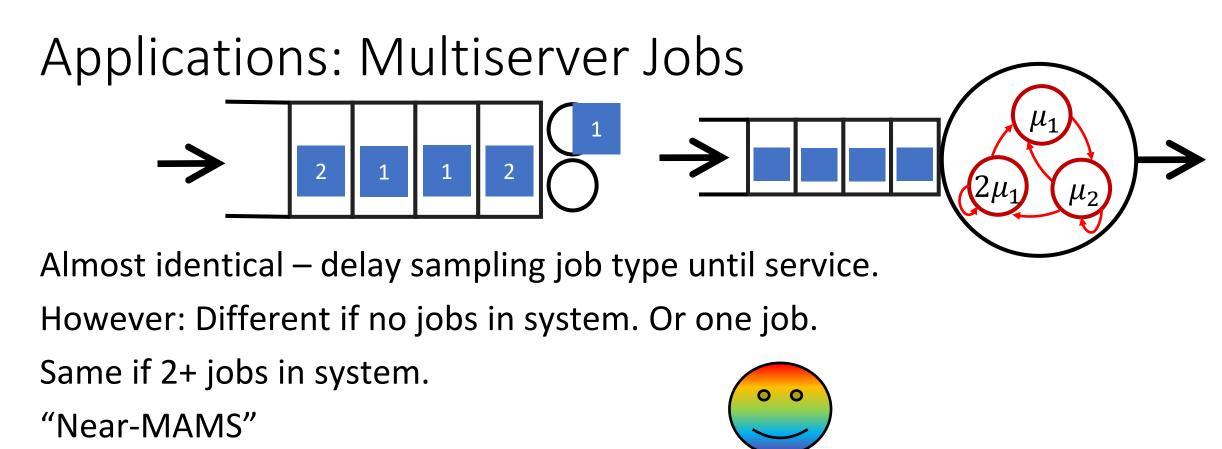


Jobs:  $(Exp(\mu_1), 1), (Exp(\mu_2), 2)$ 

Service rate fluctuations!

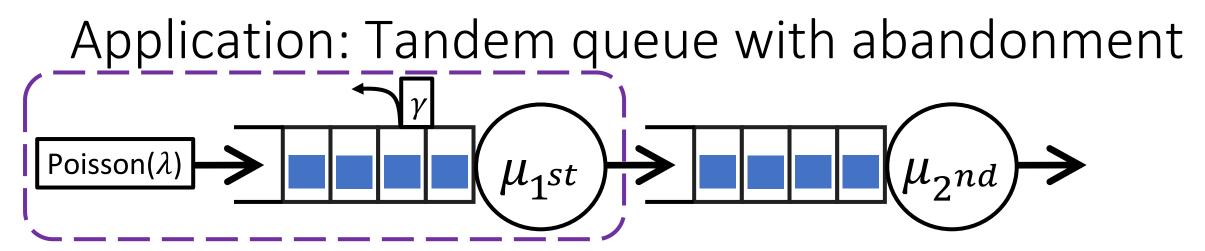
Internal fluctuation, not external. - Use MAMS anyways! Q13: What service rates are possible?

- Use MAMS anyways! Compare with MAMS:  $(\mu_1, \mu_2, \mu_2, \mu_2)$ 



Thm (RESET):  $E[Q^{Near-MAMS}] = E[Q^{MAMS}] + O_{\rho}(1)$ 

The RESET and MARC Techniques, with Application to Multiserver-Job Analysis. [GHHS '23]

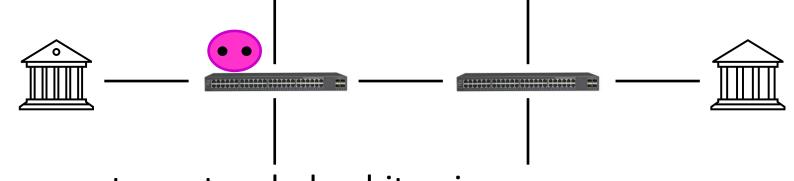


Coffeeshop: First, customers queue to order and pay. May abandon. Second, customers queue to pick up their drinks. No abandonment.

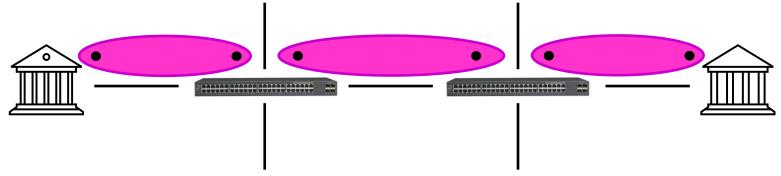
Idea: First queue as Markovian Arrival process!

Q14: Draw Markov Chain of arrival rates to second queue

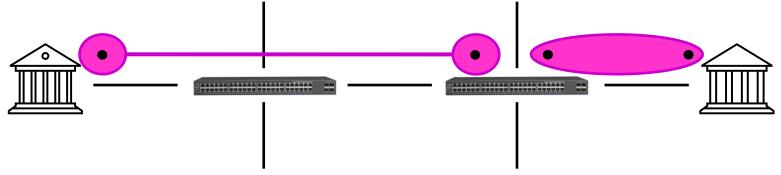




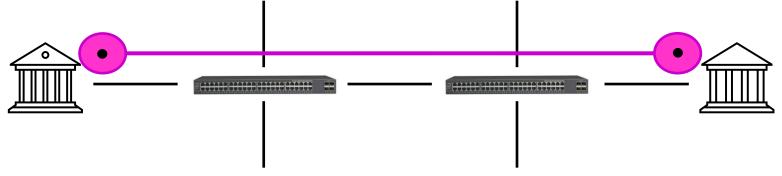
1. Switch generates entangled qubit-pairs



- 1. Switch generates entangled qubit-pairs
- 2. Switch transmits half of entangled pair



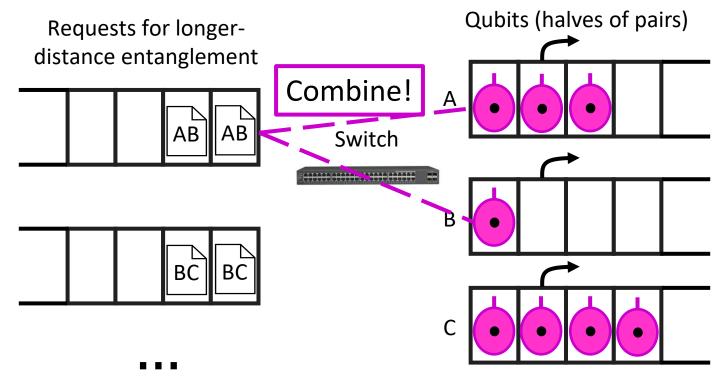
- 1. Switch generates entangled qubit-pairs
- 2. Switch transmits half of entangled pair
- 3. Switch combines two entangled pairs to make longer-distance pair



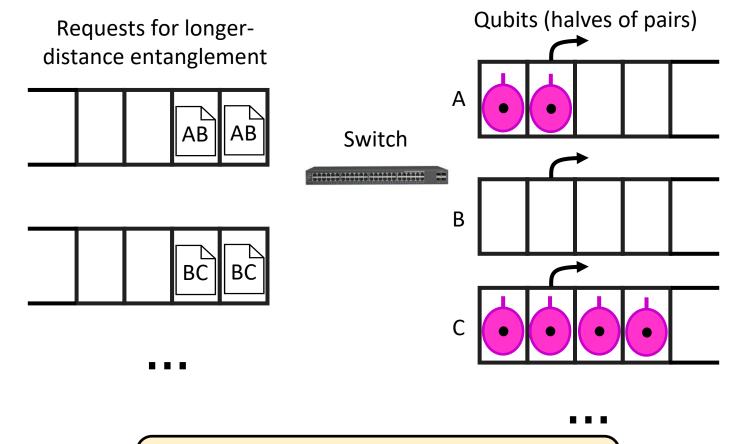
- 1. Switch generates entangled qubit-pairs
- 2. Switch transmits half of entangled pair
- 3. Switch combines two entangled pairs to make longer-distance pair

"Matching Queues with Abandonments in Quantum Switches: Stability and Throughput Analysis" [ZJM]

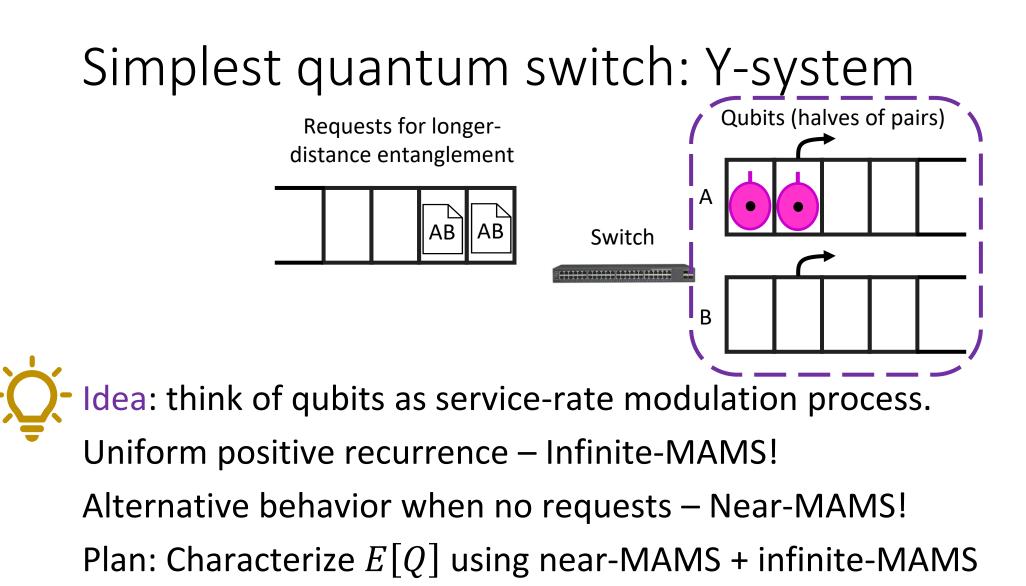
# Quantum switching: Switch perspective



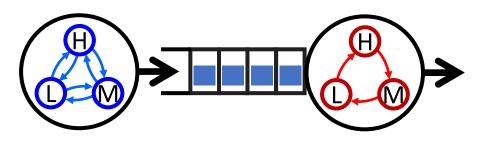
# Quantum switching: Switch perspective



Goal: Simple, explicit characterization of mean queue length, E[Q]

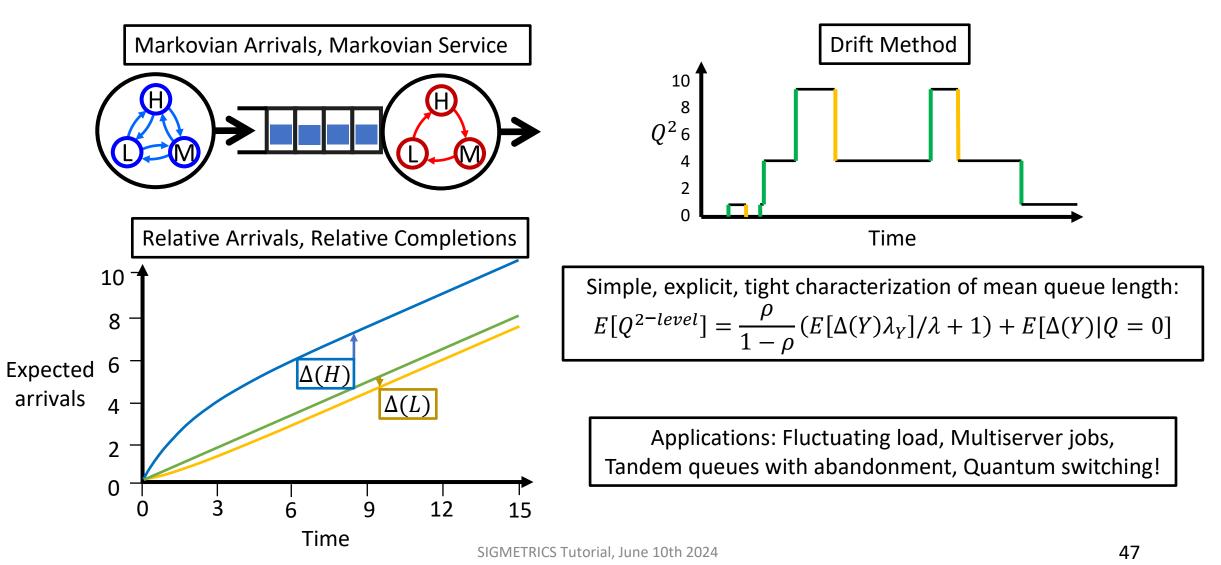


# **Further Directions**



- Tail performance:  $E[e^{-sQ}]$ ?  $E[e^{-s(1-\rho)Q}]$ ?
- MAMS-work: Jobs have sizes, modulate work completion rate
- MAMS & drift concepts for scheduling
- Two MAMA papers on Friday:
  - 2:15pm: "Bounds on M/G/k Scheduling Under Moderate Load" [G., Wang]
  - 2:45pm: "Simple Policies for Multiresource Job Scheduling" [Chen, G., Berg]
- Your application/model/setting!

#### Conclusion



#### Bonus: MAMS Plot!

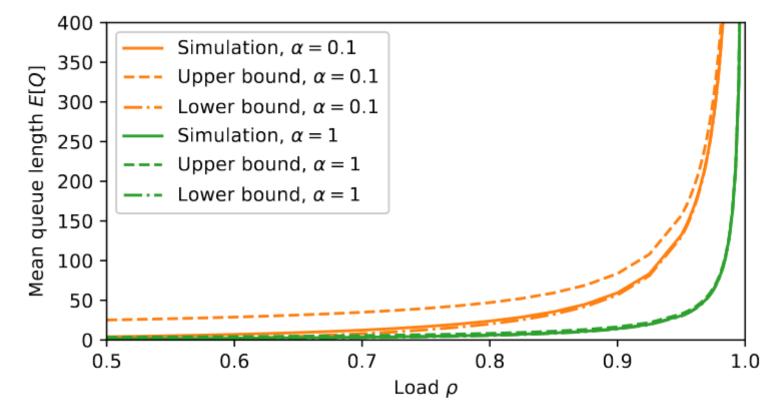


Figure 6: Setting: MAMS queue with three arrivals levels:  $[0.3\rho, 2\rho, 2.2\rho]$ , and three completions levels: [0.5, 1.0, 3.0]. The system remains in each arrival state and each service state for time  $Exp(\alpha)$ , then moves cyclically to the next rate in the list, wrapping around. Bounds given in Corollary 5.1. Simulated 10<sup>9</sup> arrivals.