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Abstract
Scheduling theory is a key tool for reducing latency (i.e. response time) in queue-

ing systems. Scheduling, i.e. choosing the order in which to serve jobs, can reduce
response time by an order of magnitude with no additional resources. Scheduling
theory is well-developed in single-server systems, where one job is processed at a
time. However, little is known about scheduling in multiserver systems, where many
jobs are processed at once. Results are especially limited in stochastic multiserver
scheduling theory. Today’s datacenters have thousands of servers, and scheduling
theory is unable to analyze such systems.

This thesis proves the first optimality results and first closed-form bounds on
mean response time for scheduling policies in stochastic multiserver models which
reflect the behavior of modern computing systems. The thesis explores three themes:

1. I start by studying one-server-per-job multiserver models, and prove the first
results on optimal scheduling in that setting. Optimality results are proven for
both a central-queue model and a dispatching model. I invent a novel class of
dispatching policies, guardrails, to achieve these results.

2. Next, I study the multiserver-job (MSJ) model, where different jobs require
different amounts of resources to be served. I prove the first characterization
of mean response time for any scheduling policy in the MSJ model, as well as
the first optimality results. I invent novel scheduling policies, ServerFilling and
ServerFilling-SRPT, to achieve these results.

3. Finally, I study the effects of scheduling on the tail of response time, rather than
mean response time. The prior state-of-the-art for scheduling for the tail was
First-Come First-Served, which was conjectured to achieve optimal asymptotic
tail of response time. I invent a novel scheduling policy, Nudge, which I prove
to be the first policy to outperform FCFS’s asymptotic tail of response time.
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Chapter 1

Introduction

1.1 Introduction to This Thesis

Queueing theory Queueing theory is an excellent tool for modeling and analyzing computing
systems. It has been used to model webservers, operating systems, databases, datacenters, su-
percomputers, networks, and a variety of other computing systems. Queueing theory provides
simple mathematical models to capture the essence of these complex systems. Within these sim-
ple models, we can theoretically analyze the performance of these systems through performance
metrics such as mean response time1.

Single-server vs. Multiserver Unfortunately, almost all of queueing theory centers on the
single-server queue [40]. Here “server” is an abstraction referring to a unit of computing power
that can process one job at a time, such as a CPU core, a GPU, a network switch, etc. By contrast,
computing systems are almost all multiserver systems. Computing clusters contain thousands of
machines, operating systems and databases manage multiple cores, and networks have hundreds
of interlinked switches.

Tractability Single-server queueing systems are studied because they are tractable. A
wide variety of techniques have been developed to deeply understand the behavior and perfor-
mance of single-server queueing models. By contrast, multiserver queueing systems require
high-dimensional state spaces, making them far more difficult to understand. Multiserver queue-
ing systems are not well-understood except for a limited class of settings.

Dichotomy in scheduling Nowhere is the dichotomy between single-server and multiserver
research more apparent than in scheduling: deciding in which order to serve the jobs. While
scheduling in the single-server setting is well understood, scheduling in multiserver settings is
poorly understood.

Scheduling theory Scheduling theory studies the order in which jobs are served, and
how this decision impacts performance. Common scheduling policies include First-Come First-
Served (FCFS), which serves jobs in the order they arrive, Shortest Job First (SJF), which pri-
oritizes the job of least duration, and Shortest Remaining Processing Time (SRPT), which goes
even further than SJF by allowing the preemption of an ongoing job in order to switch to a newly

1The response time of a job is the duration from the job’s arrival to its completion. Response time is also known
as sojourn time. “Mean” refers to the average across all jobs.
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Figure 1.1: The First-Come First-Served (FCFS) and Shortest Remaining Processing Time
(SRPT) scheduling policies, in the single-server setting. FCFS orders jobs in arrival order, while
SRPT orders jobs by remaining size (remaining service duration).
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Figure 1.2: Mean response time under the FCFS, SJF, and SRPT scheduling policies in the
M/G/1. Job size distribution S is a hyperexponential distribution with squared coefficient of
variation C2 = 10, a relatively high-variability workload, mimicking real computing systems.
Load ρ = λE[S] denotes the fraction of time for which the single server is active. For each of
these policies, mean response time has been theoretically characterized in the M/G/1 [104, 196].

arrived job of lesser duration. When a job is preempted, it is returned to the queue, where it can
be resumed later with no loss of progress. By contrast, SJF does not preempt jobs. To illustrate
the FCFS and SRPT scheduling policies, we depict each system in Fig. 1.1.

Single-server scheduling In the single-server setting, the performance of a wide variety
of policies has been exactly characterized, and that performance can be highly differentiated,
especially in high-variance workloads common in computing settings [42, 101, 218]. Fig. 1.2
demonstrates the power of favoring short jobs over long jobs when trying to minimize mean re-
sponse time. The setting of Fig. 1.2 is a stochastic model called the M/G/1, a single-server model
where jobs arrive according to a Poisson process with fixed rate, and job sizes (i.e. durations)
are sampled i.i.d. from a general job size distribution. By “stochastic”, we mean that the model
involves a sequence of random events happening over time. Note that in Fig. 1.2, the SRPT
scheduling policy achieves the least mean response time, and therefore best mean response time.
In fact, SRPT, the policy which most dramatically favors short jobs, is known to achieve optimal
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Figure 1.3: The FCFS and SRPT scheduling policies in the multiserver setting. Each policy
serves the k “best” jobs according to its ordering. For FCFS, the k best jobs are the k oldest jobs,
while for SRPT, the k best jobs are the k jobs with smallest remaining size.

mean response time in the single-server setting [194].
Modern single-server scheduling Even today, there are new research breakthroughs being

proven on scheduling in the single-server queue. For instance, the recent SOAP technique mas-
sively generalizes the class of policies whose response time can be analyzed in the single-server
queue, and specifically in the M/G/1 [201]. This technique enables the analysis of a variety of
important scheduling policies in the M/G/1, including Shortest Expected Remaining Processing
Time (SERPT) and the Gittins Index policy [73]. Both SERPT and Gittins focus on the setting of
unknown job sizes, with Gittins being the optimal scheduling policy in the M/G/1 in that setting
[72, 73, 199].

Multiserver scheduling But what about scheduling in a multiserver queue, as depicted in
Fig. 1.3? What if we want to understand the benefit of SRPT in a 2-server system? Or a k-server
system? A natural model for multiserver settings is the M/G/k model, where jobs are held in a
central queue, and the scheduling policy selects which k jobs receive service at a given point in
time. The arrival process is the same “M/G” process as the M/G/1: Poisson arrivals, i.i.d. sizes
from a general distribution. Natural questions about the M/G/k include: Can we analyze the
mean response time of M/G/k scheduling policies? Is the SRPT policy optimal, as it is known to
be optimal in the M/G/1? Sadly, almost nothing is known about M/G/k scheduling, even when k
is only 2 servers.

Worst-case multiserver scheduling One area of multiserver scheduling in which notable
results have been proven is worst-case multiserver scheduling, in contrast to the stochastic set-
tings that this thesis focuses on. Worst-case analysis focuses on comparing an online scheduling
policy, which must react to jobs as they arrive, to the optimal offline policy, which has access to
the entire arrival sequence in advance. This comparison is captured by the competitive ratio of
a scheduling policy, which is the worst possible ratio of performance (e.g. mean response time)
between the online and offline policies, over all possible arrival sequences. The lower this worst
possible ratio, the better the policy. Some scheduling policies are better than others, under this
metric, but it has been proven that none can achieve a constant competitive ratio [135, 136]. The
best possible competitive ratio is logarithmic in the ratio of largest to smallest job size, which is
achieved by multiserver SRPT [135, 136]. This is where the worst-case results end: For every
online scheduling policy, there is some arrival sequence for which it performs arbitrarily worse
than the optimal offline policy.
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Real world is stochastic However, real world computing workloads are far more reminis-
cent of stochastic models, not worst-case models. The worst-case workloads require precisely
timed arrivals of precisely determined sizes, in exact synchrony for huge numbers of arrivals.
This is simply not what we see in real workloads. Real-world experimental work has instead
shown that large-scale computing workloads are well approximated by stochastic queueing mod-
els [9, 56].

Real workloads typically consist of a variety of unrelated sources of arrivals, interspersed in
an essentially uncorrelated fashion. This mixture of flows naturally gives rise to uncorrelated ar-
rival times, modeled by a Poisson process, by the Palm–Kintchine Theorem [122, Page 221-228].
It also gives rise to uncorrelated job sizes, modeled by i.i.d. samples from a size distribution. This
real-world pattern is the impetus for the M/G models which are the focus of this paper.

Structure of this thesis This thesis consists of 3 themes: stochastic multiserver scheduling,
multiserver-job scheduling, and scheduling for advanced performance metrics which focus on
the tail of response time. In the remainder of this chapter, we introduce each of these themes.

Theme 1: Stochastic multiserver scheduling In Section 1.2, we introduce the first theme,
stochastic multiserver scheduling. Prior analysis of stochastic scheduling has primarily focused
on single-server models. Prior analysis of multiserver scheduling has primarily focused on worst-
case models. In reality, scheduling is vital for large computing systems, which require stochastic
multiserver models. In this thesis, we give the first closed-form analytical bounds and optimality
results for stochastic multiserver scheduling.

Theme 2: Multiserver-job scheduling In Section 1.3, we introduce the second theme,
multiserver-job scheduling. Standard multiserver models, such as the M/G/k, model each job as
requiring one server in order to run. In the real world, different jobs typically require different
amounts of resources: cores, GPUs, memory, bandwidth, etc. We model these differing resources
as jobs requiring different numbers of servers, which we call the “multiserver-job” model. In
this thesis, we give the first closed-form analytical bounds on mean response time for stochastic
multiserver-job scheduling.

Theme 3: Advanced performance metrics: Tail metrics In Section 1.4, we introduce
the third theme, scheduling for performance metrics which capture the tail of response time.
Standard queueing analysis focuses on mean response time as the primary performance metric.
The primary reason for this focus is convenience, rather than importance. Many key queueing
techniques, such as Little’s law, can only be used to analyze mean response time [104]. However,
in practical systems, the most important metrics are often tail metrics, such as the probability that
a job’s response time exceeds some threshold, or the 99th percentile of response time. While tail
metrics are far more important than mean response time, much less is known about them. In
particular, while it is known that SRPT scheduling optimizes mean response time, essentially
nothing is known about scheduling to optimize the tail of response time. In this thesis, we prove
the first results on optimizing tail metrics using stochastic scheduling.

1.2 Theme 1: Stochastic Multiserver Scheduling
Large-scale computing We need to understand large-scale computing systems, whose behavior
is best captured by stochastic multiserver models. Based on our experience with single-server
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(a) M/G/1 (b) M/G/k (c) Dispatching M/G/k

Figure 1.4: Standard queueing models: In each case, jobs arrive according to a Poisson process,
and have i.i.d. sizes. In the M/G/1, the scheduling policy can choose any single job to serve.
In the M/G/k, the scheduling policy can choose any k jobs to serve at a time, at equal rates. In
the dispatching M/G/k, the dispatching policy assigns each job to a server upon arrival, and the
scheduling policy at each server can choose any single job to serve at that server.

models, we have the potential to dramatically improve performance if we can find the right
scheduling policies. We need to understand how scheduling decisions affect the performance of
stochastic multiserver models.

1.2.1 Topic and goals
Topic: Multiserver scheduling This theme focuses on how scheduling affects the performance
of systems with more than one server. We consider scheduling in two models, both of which
involve scheduling across many servers. We depict these two models in Fig. 1.4, as well as a
one-server model for comparison.

Central queue: In the central-queue model, depicted in Fig. 1.4b, jobs arrive to a single queue,
and the scheduling policy determines which k jobs are served at a given point in time,
where k is the number of servers. A common central-queue model is the M/G/k model. The
key question in this model is how the scheduling policy affects the system’s performance.

Dispatching: In the dispatching model, depicted in Fig. 1.4c, each job arrives to a front-end
dispatcher. Based on the dispatching policy the job is sent to one of the servers, where it
waits in the queue. Then, the scheduling policy determines which of the jobs in a particular
server’s queue is served by that server. Notably, jobs cannot migrate between servers in
this setting. In the dispatching setting, we ask how both the dispatching and scheduling
policies affect the system’s performance.

Goals: Analysis Our first goal is to analyze the performance, specifically the mean response
time, of scheduling (and dispatching) policies. In queueing theory, to “analyze” a model’s mean
response time means to derive a mathematical formula to calculate the mean response time as a
function of the model parameters, which in this case are the arrival rate and job size distribution.
The best possible analysis would be exact analysis, where the exact mean response time is de-
rived, but even closed-form bounds or asymptotic limits would be an important breakthrough in
analyzing stochastic multiserver models. We are interested in analyzing both existing scheduling
policies, such as SRPT in the central-queue setting, as well as newly-invented policies.

Goals: Optimality Our second, more ambitious goal is to find or invent scheduling policies
which achieve optimal mean response time. Finding the exact optimal policy may be overly am-
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bitious, due to negative worst-case results [135], so a more feasible goal is to find asymptotically
optimal scheduling policies. A natural asymptotic limit is the “heavy traffic” limit, the limit as
the load approaches the capacity of the system. In this limit, the number of jobs increases and
scheduling becomes more and more important. Because there are many jobs to choose from, the
scheduling policy has many options and more potential for improvement over a naive scheduling
policy. Our goal is to find scheduling policies which are asymptotically optimal in the heavy
traffic limit.

1.2.2 State of the art
We now discuss prior work on analyzing mean response time in stochastic multiserver models.

FCFS analysis FCFS is the simplest central-queue scheduling policy, and the policy for
which the most analysis is known. Note that when no scheduling policy is specified for the
M/G/k, FCFS scheduling is assumed by default. Some of this analysis takes the form of approx-
imations [134, 230]. These approximations are not accurate under all conditions [97], but they
are tight in the heavy traffic limit. Upper and lower bounds are known, but they are not tight in
general [44, 92, 93, 127].

Scheduling analysis Other than FCFS scheduling, there are no closed-form provable bounds
on mean response time for scheduling policies in the general central-queue M/G/k.

There do exist non-closed-form characterizations of mean response time, using computa-
tional methods such the matrix-analytic approach. For instance, such methods have been used to
analyze the such as the 2-server, 2-branch hyperexponential setting [207]. These computational
methods can only handle a restricted set of scheduling policies in restricted workload settings.

There also exist results on approximations of mean response time. For instance, the “busy
period transitions” technique has been used to approximate the mean response time of a variety of
task-assignment-based multiserver scheduling policies [100, 174, 175]. Similarly, the Recursive
Dimensionality Reduction technique has been used to approximate the mean response time of
a preemptive-priority multiserver scheduling policy [111]. The approximations can be made
increasingly accurate with increased computational power, but the approximations are not closed-
form bounds.

Provable closed-form bounds on mean response time for general scheduling policies, and for
general workloads, are open. Optimal scheduling is completely open.

Dispatching analysis More is known about the analysis of dispatching policies, especially
when paired with FCFS scheduling. Many dispatching policies have been analyzed, includ-
ing Join the Shortest Queue (JSQ) [64], Least Work Left [104], Size Interval Task Assignment
(SITA) [108], and many variants of each of these policies. However, because FCFS scheduling
is a suboptimal scheduling policy, the overall performance of each of these systems is likewise
suboptimal. Essentially nothing is known about dispatching in concert with high-performance
scheduling policies, such as SRPT, nor about achieving optimal mean response time in dispatch-
ing settings.

Scaling models The focus of this thesis, as well as of the above results, is on settings with
a fixed number of servers: The 2-server setting, the 3-server setting, or in general the k-server
setting for some fixed k. There has also been considerable work on scaling settings, where the
number of servers k grows in synchrony with the load ρ, according to some joint asymptotic
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growth function. Most scaling research focuses on FCFS scheduling, both in the central-queue
and dispatching settings [57, 99].

1.2.3 Why it’s hard

There are many reasons why very little is known about mean response time in stochastic multi-
server scheduling settings, some of which we explore here.

Tagged-job method: Single-server A vital tool for single-server scheduling analysis is the
tagged-job method. The tagged job method involves tagging a generic job as the job of interest,
and focusing on its progression through the system. One quantifies the random amount of work
the tagged job encounters in the system on arrival, the time the job waits to reach service, and
ultimately its overall response time. Here “work” refers to the total size of all of the jobs in the
system that the tagged job must wait behind, at a given moment in time. In the single-server
setting, each of the random variables can be exactly quantified for many scheduling policies
[195, 196]. Because the tagged job is generic, its response time captures the overall response
time distribution of the system.

Tagged-job method fails Unfortunately, the tagged-job method does not generalize to the
multiserver setting. Key to the tagged-job method is the fact that in the single-server setting,
the server completes work at a constant rate, until it empties the system completely. This fact
allows exact quantification of the distribution of work in the system. In the multiserver system,
a variable number of servers may be active at a time, causing a variable rate of work completion,
and hence preventing us from quantifying the work in the system. Without the ability to quantify
the amount of work in the system, the tagged-job method cannot proceed.

Lindley recursion The Lindley recursion is a simple equation of random variables whose
fixed point gives the steady state amount of work in the system [141]. For the M/G/1 with
FCFS scheduling, these random variables are real-valued, and the recursion is relatively simple
to solve. In the M/G/k, the random variable becomes a correlated random vector, namely the
Kiefer-Wolfowitz workload vector, and the analysis becomes far more difficult [124]. Adding
scheduling to that complexity is currently intractable.

Lack of decomposition In single-server settings, a scheduling policy orders the jobs, and
service is clean and straightforward: The job with highest priority is served, and all other jobs
must wait. This strict prioritization gives rise to decomposition results that allows us to analyze a
single priority level at a time. In the multiserver setting, there is not a clean separation by priority:
Jobs of a range of priorities are served at the same time, preventing any such decomposition
results.

Dispatching: Disrupted arrival processes In the dispatching setting, if the dispatching
policy is a static policy, such as the SITA policy [108], or an oblivious randomized policy, each
server experiences a Poisson arrival process, allowing one to use well-understood single-server
analysis techniques. However, to approach optimality, we want to spread the jobs out across
the servers when dispatching. This gives rise to lower-variance arrival processes, which are
beneficial for performance, but harder to analysis. Arrivals to a server are correlated with the set
of jobs at that server, which cannot be handled by existing single-server analysis.
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1.2.4 Our results

We give the first closed-form analytical bounds and optimality results for stochastic multiserver
scheduling.

M/G/k/SRPT analysis & optimality In Chapter 2, we give the first closed-form analysis of
SRPT in the M/G/k, which we refer to as SRPT-k. In particular, we prove the first closed-form
bounds on the mean response time of SRPT-k. These bounds become tight in the heavy-traffic
limit, as load approaches capacity. Moreover, we prove that SRPT-k yields asymptotically opti-
mal mean response time in the heavy-traffic limit. This is the first closed-form analytical bound
on any M/G/k scheduling policy, and the first scheduling optimality result in the M/G/k. In
addition to SRPT-k, we also analyze and prove optimality for several more scheduling policies
in the M/G/k, including PSJF-k and FB-k, the latter under a restricted class of job size distri-
butions. Preemptive-Shortest-Job-First (PSJF) preemptively prioritizes the job of least original
size, while Foreground-Background (FB) preemptively prioritizes the job of least age, namely
the least service received so far.

Dispatching M/G/k: Guardrails In Chapter 3, we devise a novel class of dispatching
policies for the dispatching M/G/k, which we analyze in concert with SRPT scheduling. In
doing so, we give the first analysis of any nontrivial dispatching policy combined with SRPT
scheduling. We prove bounds on the mean response time of the combined guardrails/SRPT
policy, which become tight in the heavy-traffic limit, as load approaches capacity. We prove that
guardrails/SRPT yields asymptotically optimal mean response time in the heavy-traffic limit.
This is the first optimality result in the dispatching M/G/k setting.

1.2.5 New analysis techniques

The results in Section 1.2.4 require inventing new analytic techniques, which have been important
in subsequent problems. We describe these techniques below.

Resource-pooled SRPT-1 Our first key technique is the resource-pooled SRPT-1 system,
which is lower bound that we compare against to prove our optimality results. The resource
pooled M/G/1 is a system with the same overall capacity as the M/G/k or dispatching M/G/k
systems, but which can put all of that capacity into running a single job. Concretely, in the
resource-pooled system, 1 job is run at a time instead of k jobs, but that 1 job is run k times
faster than in the M/G/k. In the single-server system, it is well known that SRPT scheduling is
the optimal policy for minimizing mean response time [194], and its mean response time analysis
is also well known [196]. We refer to the resource-pooled M/G/1 with SRPT scheduling as the
SRPT-1 system.

SRPT-1 lower bound The resource-pooled single-server system can be thought of as strictly
more flexible than the multiserver system. By time-sharing one server between k jobs, a k-
server policy can be emulated, and the single-server system has far more options. Thus, the
mean response time of SRPT-1 is a lower bound on the optimal multiserver response time, in
any multiserver setting. To prove optimality, it therefore suffices to show that our multiserver
policies have asymptotically identical mean response time to SRPT-1.

Worst-case and stochastic fusion To analyze and bound the mean response time of SRPT-k
and guardrails/SRPT, we analyze the policies relative to SRPT-1. In particular, we prove worst-
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case bounds on the gap between the multiserver policies and SRPT-1, in terms of the amount
of work in the system, in terms of the wasted capacity that a given job can encounter, and in
terms of the server imbalance under the guardrails/SRPT policy. These worst-case bounds, when
combined with our exact stochastic understanding of the SRPT-1 system, allow us to prove tight
bounds on the multiserver policies. These bounds decompose into a asymptotically dominant
term, matching the SRPT-1 system, and asymptotically negligible term, arising out of these
worst-case bounds.

1.2.6 Potential impact

Immediate, real-world application Based on our results, the SRPT-k and guardrails/SRPT
policies have the potential to dramatically improve performance in a variety of large-scale com-
puting systems. Many large-scale computing systems, such as datacenters, cloud-computing
services, and web server-farms, closely resemble the multiserver models considered in this sec-
tion. Moreover, the sizes of the jobs encountered by these systems are extremely variable [101].
These systems typically do not heavily incorporate size information into their scheduling deci-
sions. Our research shows that the performance of these systems could be dramatically improved
by making use of that information.

Hurdles The road from theoretical results to real-world adoption requires overcoming a
variety of hurdles. We explore some of these hurdles in the remainder of this section. We discuss
these hurdles and provide ideas for overcoming them in Sections 2.10.4, 3.10.3 and 8.2.1.

Extensions of our work Our work makes some assumptions. First, we assume that job
sizes are known, which is required for the SRPT scheduling policy. Second, we assume that all
jobs are equally important. It is possible to generalize our results to remove these assumptions,
thereby increasing the real-world applicability of our results.

In real-world settings, it is rare to know the exact size of a job before it is run. More common
is some kind of estimate or partial information. It has long been known that the optimal way to
make use of this partial information is via the Gittins index scheduling policy [72, 73, 199]. In
subsequent work to this thesis, we gave the first analysis of Gittins-k, and proved its asymptotic
optimality for mean response time [202]. The Gittins scheduling policy can be thought of as a
generalization to the SRPT scheduling policy: In the limit as estimates become perfectly accu-
rate, the Gittins policy simplifies to SRPT. The Gittins-k result can therefore be thought of as a
follow-up to this result, increasing its practical impact.

In real-world settings, different jobs often have different importances: some are extremely
time-sensitive, while others are more flexible. To theoretically model, it is convenient to give
each job a priority, representing the cost incurred for each second waited by the job, and seek to
minimize the mean cost. In the single-server system, the well-known cµ-rule generalizes SRPT
to achieve optimal mean response time. The cµ-rule prioritizes jobs by their ratio of cost per
second to remaining size. Using essentially the same analysis as in Chapters 2 and 3, one can
show that the cµ-k policy achieves optimal mean weighted response time, assuming that the
range of possible cost-per-second values is bounded. Our subsequent work on the Gittins policy
generalizes that result to arbitrary cost-per-second distributions [199].
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Figure 1.5: Multiserver-job model. Each job has a duration and server need. The duration is
the time in service it requires, and the server need is the number of servers it requires in order
to run. Visually, a job is represented by a rectangle, the job’s duration is its vertical height, and
the number inside the rectangle is its server need. For the job in service requiring 3 servers, the
thicker rectangle’s height represents its duration, while the skinny arms coming off indicate the 3
servers it is occupying. Duration and server need are sampled i.i.d. from some joint distribution,
and arrivals are sampled according to a Poisson process.

1.3 Theme 2: Multiserver jobs
Multiserver-jobs in the world In the real world, jobs in large-scale computing systems have
a huge spread of resource requirements. For instance, in Google’s recently-published trace of
their Borg computing-cluster scheduling system, the jobs’ CPU requirements vary by a factor of
105 [218]. Moreover, some jobs require a large fraction of the entire system’s resources, such as
large machine-learning training jobs. As a result, it is vitally important to pack the jobs onto the
servers in an efficient manner. Poor packing can lead to poor utilization: Only a small fraction
of system resources are used. In practice, utilization is often poor [60, 120]. Scheduling has the
opportunity to improve utilization, and by extension overall performance.

1.3.1 Topic and goals
Topic: Multiserver-job scheduling This theme focuses on scheduling in systems where dif-
ferent jobs require different amounts of resources. To model varying resource requirements, we
consider the multiserver-job (MSJ) model, in which each job requires some number of servers,
its server need. Each job is specified by the pair (server need, duration). The MSJ model is
depicted in Fig. 1.5. The concept of “servers” can represent CPUs, GPUs, memory bandwidth,
disk IO, network bandwidth, or any other resource that can constrain service. In the MSJ model,
each job requires a fixed number of servers throughout its time in service, and any combination
of jobs with total server need at most k can be served.
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Goals: Analysis Our first goal is to analyze the mean response time of MSJ scheduling
policies. As is the case throughout this thesis, exact analysis may be intractable, so characterizing
bounds and asymptotic limits are our goals. Closed-form analysis of mean response time is
unknown for all MSJ policies, so either analyzing existing scheduling policies, such as MSJ
FCFS, or analyzing newly-invented policies, would constitute major breakthroughs.

Goals: Optimize Our second goal is to invent scheduling policies which achieve optimal
mean response time. As is the case throughout this thesis, exact optimality is typically intractable,
so we focus on finding asymptotically optimal scheduling policies. To understand asymptotic
optimality, one must first consider the range of arrival rates which the system can tolerate. This
ties into the notion of “stability”, which we discuss in Section 1.3.2.

1.3.2 State of the art: Stability

Most prior work on the MSJ model focuses on characterizing its stability region: the range of
arrival rates for which the number of jobs in the system does not diverge to infinity. In the MSJ
model, unlike the M/G/k, the stability region depends on the scheduling policy, because servers
may be left idle even though many jobs are present.

FCFS stability Much of the prior work focuses on the stability region of FCFS scheduling
in particular [83, 186–188]. While FCFS stability is well-understood in several special cases, it
is still an open problem in general.

Optimal stability Rather than concentrating on the stability region of FCFS, much prior
work focuses on finding a scheduling policy with optimal stability region. Under some MSJ
workloads, a policy can achieve full stability, which means that all servers are occupied all of
the time in the limit as the arrival rate approaches the boundary of the stability region. Under
other workloads, full stability is unachievable, but there is still some optimal stability threshold,
the best possible over all policies. Several scheduling policies have been proven to achieve this
optimal stability region:
MaxWeight: Under the MaxWeight policy, the scheduler considers all possible configurations

of jobs that can fit on the k servers, and selects the configuration which maximizes a
weighting function. The weight on each type of job is equal to the number of jobs of that
type present in the system. The MaxWeight policy is proven to achieve the optimal stability
region for all MSJ workloads [147, 148]. The MaxWeight policy can be defined for a wide
variety of queueing settings, such as the generalized switch, where it is known to achieve
even more advantageous properties [212]. No mean response time analysis is known for
MaxWeight, owing to the complexity of selecting amongst all possible job configurations.

Randomized Timers: Randomized Timers is a scheduling policy that was invented to achieve
optimal MSJ stability region without preemption. MaxWeight preempts jobs constantly,
taking them out of service while partially complete and putting them back in the queue.
In contrast, Randomized Timers never preempts jobs. Instead, Randomized Timers waits
until a job completes. If another job of the same type is available, that job enters service
to replace it. Otherwise, Randomized Timers randomly selects between placing a new job
into service that fits on the available servers, or leaving the servers empty to free up more
servers for other jobs to run. If these probabilities and timers are selected appropriately,
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this policy achieves optimal stability region [71, 180, 181]. Again, no mean response time
analysis is known, and the empirical mean response time is quite poor, as the policy relies
heavily on having many jobs of the same type present.

Notably, both MaxWeight and Randomized Timers achieve the optimal stability region, regard-
less of whether full stability is achievable or not.

1.3.3 State of the art: Response Time
Little is understood regarding mean response time in MSJ settings.

2-server setting The only MSJ setting where mean response time has been analyzed in
closed-form is in the special case of k = 2 servers, FCFS scheduling, and a workload in which
jobs require an exponential service duration, independent of server need, which can be either 1
or 2 servers. In this setting, the exact z-transform of the steady-state number of jobs in system
has been derived and independently rediscovered [31, 63]. Unfortunately, this transform is ex-
tremely unwieldy, requiring root-finding from a quartic equation. While analytically derivable,
this obstructs analytical understanding.

Scaling models The focus of this thesis, as well as of the above results, is on settings with a
fixed number of servers. There has also been recent work on scaling settings, where the number
of servers k, the server need distribution, and the arrival rate all grow in synchrony, according
to some joint asymptotic growth function. There has been some analysis of mean response time
and some optimality results in this setting [113, 115, 226].

1.3.4 Why it’s hard
The are many reasons why very little is known about mean response time in MSJ settings, some
of which we explore here.

Defining work In the MSJ model, it is not even clear how to define the inherent work of
a job. In single-server and one-server-per-job settings, the inherent work of a job, its size, is
defined based solely on the job’s service duration. In the MSJ system, the best definition of work
is much less obvious. Within the MSJ model, we define a job’s size to be the product of its server
need and its duration. By doing so, we ensure that the rate at which work leaves the systems is
proportional to the number of servers which are active, just as in the one-server-per-job setting.
Just realizing that this is the important property to maintain from prior settings is already highly
nontrivial.

Scheduling affects work completion Unlike simpler settings, the number of servers which
are active, and hence the rate of work completion, is dependent on the scheduling policy in use.
Under some scheduling policies, the jobs might pack poorly, and leave some servers unoccupied.
Moreover, the number of servers left unoccupied can vary in hard-to-predict ways, as jobs arrive
and complete. These issues make work-based analysis challenging, or even intractable.

Optimization-based policies are inherently complex Optimization-based policies such as
MaxWeight are inherently resistant to analysis, when compared to index-based policies such as
SRPT. With an index-based policy, from the perspective of a given job, all other jobs are either
higher or lower priority, making it possible to quantify which jobs delay the given job, and how
much delay those jobs will cause. For an optimization-based policy such as MaxWeight, the set
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of jobs in service can only be determined via a global view of the system, and no classification
into higher and lower priority is possible.

No candidates for optimality When we turn our eye towards optimal mean response time,
no candidate policies present themselves: All known index-based policies do not achieve optimal
stability region, and hence cannot achieve optimal mean response time. On the other hand,
optimization-based policies are too complex to allow for analysis.

2-server exact analysis cannot be extended The unique mean response time analysis of
any MSJ setting is in the special case of k = 2 servers, FCFS scheduling, and a workload in
which jobs require an exponential service duration, independent of server need, which can be
either 1 or 2 servers. This setting was solved via characterizing the exact z-transform of the
number of jobs in system. Unfortunately, even solving this simple setting required analytically
computing the root of a quartic equation. If the system was made any more complicated, with
different duration distributions or more than 2 servers, analysis via this method would become
intractable.

1.3.5 Results
We devise the first analysis and optimality results for more than 2 servers in the MSJ setting.

ServerFilling analysis In Chapter 4, we devise and analyze a novel MSJ scheduling policy
which we refer to as ServerFilling. In particular, we prove bounds on the mean response time
of ServerFilling. We show that ServerFilling’s mean response time matches that of “resource-
pooled” FCFS, to within an additive constant. By resource-pooled FCFS, we refer to a system
with a single server running at speed k times the speed of a regular server, and where the schedul-
ing policy is FCFS. This additive constant depends on number of servers k and on the service
duration and server need distributions, but crucially does not depend on the load ρ. As a result,
these bounds become tight in the heavy-traffic limit, as load ρ approaches 1, the boundary of
full stability. This is the first closed-form analysis of any MSJ scheduling policy, and the first
resource-pooling result in the MSJ model.

ServerFilling details & generalization In order to make this analysis possible, we focus
on the special case of the MSJ system where every job’s server need is a power of 2, and the
number of servers k is a power of 2. In this setting, the ServerFilling policy is able to achieve a
form of work conservation, ensuring that every server is occupied whenever a sufficient number
of jobs are present. This work-conservation is key to the resource-pooling result. We also devise
and analyze DivisorFilling, a scheduling policy which covers the more general setting where
every job’s server need evenly divides the total number of servers k. More generally, we specify
and analyze an entire class of queueing models, which we refer to as “work-conserving finite-
skip” models, all of which we show have a mean response time within an additive constant of
resource-pooled FCFS.

ServerFilling-SRPT optimality While ServerFilling achieves full stability region, and we
have analyzed its mean response time, this response time is in no way optimal. In order to
achieve optimal response time, we need a new scheduling policy which still achieves the full
stability region, and yet prioritizes smaller jobs. In Chapter 5, we define such a policy, which
we refer to as ServerFilling-SRPT. A key step in defining ServerFilling-SRPT is ordering jobs
by their remaining sizes, where size is defined as the product of remaining duration and server
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need. We prove bounds on the mean response time of ServerFilling-SRPT which become tight
in the heavy-traffic limit, proving that ServerFilling-SRPT converges to resource-pooled SRPT,
and is thus heavy-traffic optimal. This is the first optimality result in the MSJ setting. Our results
generalize to the unknown-size or estimate-size settings, where we prove that the ServerFilling-
Gittins policy is heavy-traffic optimal. The Gittins policy is known to be the optimal single-server
scheduling policy in those settings [72, 73, 199].

RESET and MARC: Analyzing MSJ FCFS While ServerFilling-SRPT achieves excellent
mean response time, many systems today use FCFS scheduling, or related policies. Understand-
ing the mean response time of MSJ FCFS is therefore an important problem. In Chapter 6, we
analyze the FCFS scheduling policy for the MSJ model. We prove bounds on the mean response
of MSJ FCFS, bounding its mean response time up to an additive constant not depending on the
arrival rate. Because MSJ FCFS is not a work-conserving policy, we invent a completely new
non-work-based framework of analyze its response time. This is the first closed-form analytic
bound on mean response time for any non-work-conserving multiserver scheduling model. Our
results generalize to settings of multidimensional resource constraints, and more generally to all
“finite-skip” models, with work conservation no longer required.

1.3.6 New analysis techniques
The results in Section 1.3.5 require inventing new analytic techniques, which may be important
for future problems. We describe these techniques below.

Scheduling to ensure work conservation Our ServerFilling and ServerFilling-SRPT re-
sults rely on a form of work conservation: Whenever at least k jobs are present, all k servers
are busy. In simpler multiserver settings such as the M/G/k, work conservation is automatic, not
scheduling-policy dependent, and is crucial to our results and previous results in that setting. In
the MSJ setting, while work conservation is not automatic, it can be achieved by well-designed
scheduling policies in specific server-need settings. This is the key insight behind the design of
the ServerFilling policy.

The W2 method To analyze work in the ServerFilling system, our key insight is to analyze
the rate of change of W 2, the square of the amount of work in the system. For any stationary
random variable, the rate of increase must balance the rate of decrease, because the overall distri-
bution is not changing. For random variables based on work, increases are due to arrivals, while
decreases are due to work completion. Equating the rate of change of W 2 allows us to derive
E[W ], the mean work in the system. This characterization of E[W ] is key to our analysis because
it is closely related to mean response time.

Waste Via the W 2 analysis, we prove that the key term in bounding mean work E[W ] is
E[W (1 − B)], which we call waste. Here B represents the fraction of servers that are busy at a
given moment in time. The key insight is that waste, namely leaving servers idle (B < 1) when
there is a significant amount of work in the system, has an enormous impact on mean response
time: Our characterizations of E[W ] in Chapters 4 and 5 consist of a resource-pooled term, plus
an additive E[W (1−B)]/(1− ρ) term. As a result, tightly bounding waste is the key to proving
resource-pooling results.

Replacing work conservation with constant drift In the MSJ FCFS studied in Chapter 6,
work conservation does not hold: no matter how many jobs are present, servers may be left idle.
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In particular, as jobs complete and service, the number of idle servers varies in complicated ways.
As a result, work does not exit the system at a constant rate. In lieu of work, we need to invent
some new random variable that exits the system at constant rate. More specifically, we need to
find some random variable that has constant drift: The expected rate of change of the variable
must be constant. The key to this random variable is relative completions, to be defined next.

Relative completions To invent the constant-drift random variable, we start with Q, the
number of jobs in the queue. Obviously, this does not have constant drift: In some states, many
fast jobs are in service, and the drift of Q is quite negative. In others, only a few slow jobs are in
service, and the drift of Q is barely negative. However, this drift is only dependent on the state
Y of the jobs in service. To compensate for this irregularity, we invent the relative completions
function ∆(y): a function of the states of the jobs in service, which summarizes their impact
on the upcoming completions of the system. ∆(y) smooths out the irregularities of the drift of
Q. When combined, Q −∆(Y ) has constant drift. As a result, we can adapt the W 2 method to
analyze Q−∆(Y ), and hence analyze the MSJ FCFS system.

1.3.7 Potential Impact
Immediate application: New policies Based on our results, ServerFilling, ServerFilling-SRPT,
and the rest of the policies that we analyze in Chapters 4 and 5 have the potential to dramatically
improve performance in large-scale computing systems, as shown in Fig. 5.4 in Chapter 5. Many
such computing systems, such as datacenters and supercomputing centers, closely match the
MSJ model. In these systems, packing inefficiency often lowers system utilization dramatically,
so to the extent that efficient packing can be guaranteed using our policies, our research indicates
that performance could be dramatically improved. However, ServerFilling and DivisorFilling are
only applicable under restricted server needs and zero-cost preemption, which limit their impact.

Hurdles The road from theoretical results to real-world adoption requires overcoming a
variety of hurdles. We discuss these hurdles and provide ideas for overcoming them in Sec-
tions 4.10.4, 5.10.3, 6.13.3 and 8.2.2.

Immediate application: Analysis Our analysis of the MSJ FCFS scheduling policy in
Chapter 6 allows us to predict mean response time for a wide variety of more realistic MSJ
settings, including settings with general server needs and no preemption. With this better under-
standing of mean response time, our research allows us to make theoretically validated capacity
planning decisions, deciding how many servers are needed to achieve a given mean response
time for a given workload.

Load balancing In many real-world MSJ systems, jobs arrive to a dispatcher, which then
sends the job to one of several computing clusters. A common dispatching strategy is to send each
job to the cluster where it will achieve the lowest response time. Previously, it was not understood
how to select that cluster. We can now understand the effect of the duration and server need
distributions and the number of servers at cluster on the response time at that cluster, enabling
high-quality predictions about response time, to use as the basis for dispatching decisions.

Bandwidth sharing Beyond the setting of datacenters and supercomputing centers, the
network scheduling setting bears a resemblance to the MSJ model. A packet flow is analogous
to a job. The amount of bandwidth requested by a given flow is analogous to its server need.
This is relevant in particular for low-latency network scheduling, where a given flow requires a
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certain amount of dedicated network bandwidth. Of course, more work is needed to incorporate
the network structure into the decision-making, but the resemblance is present.

1.4 Theme 3: Advanced performance metrics: Tail schedul-
ing

The real-world importance of tail performance Standard queueing theory analysis focuses
overwhelmingly on mean response time as its primary performance metric. But in the real world,
service-level-objectives (SLOs) are not phrased in terms of mean response time. System opera-
tors don’t monitor their mean response time for signs of degraded performance. Instead, SLOs
require that a certain percentage of jobs complete in under a certain time. Operators monitor
their 99th percentile of response time, and Amazon and Google have found that users are very
sensitive to small delays in website loading times [140]. To address these real-world needs, we
must analyze and optimize effects of scheduling on the tail of the response time distribution, not
just on its mean.

1.4.1 Topic and goals

Topic: Scheduling for tails This theme focuses on the effects of scheduling on the tail of the
response time distribution. By “tail of response time”, we mean the tail probability, namely the
probability that response time exceeds some threshold t. Characterizing this effect of schedul-
ing on tail probability is extremely difficult. Queueing theory has not yet characterized how
scheduling affects the tail probability, even in the single-server setting, with the multiserver set-
ting completely out of reach for the time being.

Focus: Single-server tail scheduling We focus on studying the effects of scheduling in
the single-server setting, and specifically in the M/G/1. There are two important tail scheduling
regimes to study:
Asymptotic tail: To study the asymptotic tail of response time, we consider the behavior of the

tail probability function. Letting T denote the response time distribution, the asymptotic
tail regime studies the asymptotic decay rate of P {T > t} as t grows without bound, under
a variety of scheduling policies.

Non-asymptotic tail The non-asymptotic tail of response time studies the behavior of P {T > t}
at concrete t, under different scheduling policies. One can study the behavior of P {T > t},
for fixed, concrete values of t, under a variety of scheduling policies.

The asymptotic tail regime is generally theoretically cleaner, and more is known about it, as we
discuss in Section 1.4.2. The non-asymptotic tail regime is more resistant to analysis, but is more
applicable to real-world objectives.

Focus: Dethroning FCFS Prior work has proven that the simple FCFS scheduling policy
achieves weakly optimal asymptotic tail probability [27], and a long-standing conjecture claims
that it is strongly optimal [232], terms we define in Section 1.4.2. Intuitively, this seems wrong:
FCFS does not use any size information, so surely a better policy must exist. However, common
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size-based scheduling policies such as SRPT are known to achieve atrociously poor asymp-
totic tail probability, so FCFS is currently the best-known policy. We are interested in studying
scheduling policies in relation to FCFS, which is the previous best-known policy.

Goal: Asymptotic improvement on FCFS Our first goal is to improve upon FCFS in the
asymptotic regime. We want to design a scheduling policy which makes use of size information
to achieve better asymptotic tail probability than FCFS, contrary to standing conjecture [232].

Goal: Non-asymptotic improvement on FCFS Our second, more ambitious goal is to
improve upon FCFS in the non-asymptotic regime. While empirically some policies outperform
FCFS for some tail probability regimes, there is a dearth of analytical understanding of non-
asymptotic regimes. We hope to prove that, for some policy and some threshold t, our policy
is guaranteed to achieve better P {T > t} than a baseline policy such as FCFS. Our dream is to
prove stochastic dominance: Designing a policy which achieves better P {T > t} than FCFS for
all thresholds t, simultaneously.

1.4.2 State of the art

Prior work on the effect of scheduling on the tail of response time focuses on the Laplace-Stieltjes
transform of response time, on asymptotic analysis, and on worst-case results.

Transform analysis The Laplace-Stieltjes transform is an important tool in studying the
response time distribution of various scheduling policies. The transform function T̃ (s) is defined
as:

T̃ (s) = E[e−sT ] = P {T < Exp(s)}

By combining information across all values of s, the transform completely summarizes and
uniquely determines the response time distribution. Moreover, for a wide variety of schedul-
ing policies, the transform function is exactly known in closed form [104, 201]. The asymptotic
tail probability behavior can often be analytically extracted from the transform expression.

Asymptotic tail probability The asymptotic tail probability behavior is well understood for
a wide variety of scheduling policies, including FCFS, SRPT, FB, and Processor Sharing (PS)
[27]. The PS policy splits the capacity of the server equally among all of the jobs present. For
a large class of job size distributions known as light-tailed job size distributions, each of these
policies are known to have asymptotic tail probability of the form

P {T > t} = Ce−αt + o(e−αt), (1.1)

for some constants α,C dependent on the scheduling policy and the job size distribution. Light-
tailed job size distributions include bounded, exponential, hyperexponential, and phase-type dis-
tributions.

FCFS: Weakly asymptotically optimal For any light-tailed job size distribution, FCFS is
known to achieve the optimum (maximum) possible constant α, across all scheduling policies
[27]. As a result, FCFS achieves weakly optimal asymptotic tail probability. In contrast, SRPT,
PS, and FB are all known to achieve the pessimal (minimum) possible constant α for light-tailed
job size distributions [27]. As FCFS achieves the best possible exponential constant α, the only
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remaining question is whether it achieves the best possible multiplicative constant C. A long-
standing conjecture claims that FCFS does achieve the best possible C [232], which would make
FCFS strongly optimal if the conjecture holds.

Sample-path comparison Non-asymptotic comparison between scheduling policies is far
more limited. A couple of limited results have been proven, constructing size-based schedul-
ing policies which outperform non-size-based scheduling policies in a “sample-path” manner.
Sample-path improvement refers to achieving a lower response time for every job under an ar-
bitrary arrival sequence of jobs, making this a worst-case result. Sample-path improvement is
an even stronger result than the “stochastic dominance” discussed in Section 1.4.1. Such im-
provement is known relative to PS and FB, both of which are non-size-based policies which
time-share between different jobs [66, 67, 172]. In general, it is possible to achieve sample-path
improvement upon any time-sharing policy by using size information.

FCFS: Best maximum In the worst-case setting, one can show that for any finite arrival
sequence of jobs, the FCFS policy minimizes the maximum response time among those jobs.
More specifically, FCFS “lexicographically minimizes” the ordered sequence of response times:
It achieves the optimal maximum response time, and among policies which achieve the optimal
maximum, it achieves the optimal second-to-maximum response time, and so forth. Due to this
optimality property, no policy can achieve sample-path improvement upon FCFS.

1.4.3 Why it’s hard

There are may reasons why little is known about the tail of response time even in single-server
scheduling settings, some of which we discuss here.

Little’s law Little’s law is a key tool in queueing theory, which can only be used to analyze
mean response time. Denoting the number of jobs in system by the random variable N , response
time by T , and arrival rate by λ, Little’s law states that E[N ] = λE[T ] [142]. Little’s law holds
under an arbitrary scheduling policy. Little’s law is invaluable in queueing analysis, because
the number of jobs in the system N , being an instantaneous property of the system, is often
much easier to characterize than response time T , and Little’s law can be used to bridge the gap.
Unfortunately, no equivalent of Little’s law exists for the tail of response time P {T > t}.

Recursive transform: Non-asymptotic While the transform of response time T̃ (s) has
been exactly characterized for a variety of scheduling policies, this transform is extremely dif-
ficult to reason about. For all but the simplest combinations of scheduling policy and job size
distribution, the expression for the transform is a complicated, recursively defined function. Ex-
tracting properties of interest, such as P {T > t}, while possible in principle, is intractable in
actuality.

Scheduling using time-in-system While a wide variety of scheduling policies have been an-
alyzed, existing analyzed policies almost always essentially ignore time-in-system information.
Time-in-system is critical in making good scheduling decisions towards the goal of optimizing
tail probability. For instance, while the acclaimed SOAP technique enables the analysis of many
important policies, these policies cannot use time-in-system information, except through the nar-
row window of FCFS tiebreaking between otherwise equal-priority jobs. There are only a tiny
handful of analyzed scheduling policies that use time-in-system in a more substantive way [211].
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This inability to analyze most such policies obstructs our ability to design and analyze policies
optimized for tail performance.

1.4.4 Our results
We design and analyze the first scheduling policy to achieve superior asymptotic and non-
asymptotic tail performance to FCFS.

Nudge: Better asymptotic response time In Chapter 7, we design and analyze a novel
scheduling policy which we refer to as Nudge. We characterize Nudge’s asymptotic tail of re-
sponse time, proving that, under light-tailed job sizes, it achieves the same optimal exponential
decay rate α as FCFS and a superior multiplicative constant C to FCFS, where C and α are
defined in (1.1). We thus show that Nudge is the first scheduling policy with superior asymptotic
tail performance to FCFS, and the first policy to use size information to improve tail performance.
In particular, we overturn the long-standing conjecture of FCFS’s strong optimality.

Nudge: Stochastic dominance Furthermore, we prove that Nudge stochastically dominates
FCFS, achieving smaller tail probability P {T > t} for every threshold t simultaneously. This is
the first stochastic dominance scheduling result that is specific to the stochastic setting: All pre-
vious stochastic dominance results were worst-case results about time-sharing policies. This is a
strong non-asymptotic tail performance result, proving improvement on metrics that practition-
ers care about, such as the fraction of jobs that complete in under a second, or the 99th percentile
of response time.

1.4.5 New analysis techniques
The results in Section 1.4.4 require inventing new analytic techniques, which may be important
in the future, and which we describe below.

Relative analysis Our Nudge policy is only a small deviation from FCFS: A small ‘nudge’
in the right direction. Our analysis, rather than studying Nudge in isolation, characterizes the
difference in response time distribution between FCFS and Nudge. This leverages decades of
work characterizing the tail of response time of FCFS as the starting point for our analysis.

Ordering-based scheduling Like FCFS, Nudge makes heavy use of arrival order informa-
tion when deciding how to scheduling jobs. Arrival ordering information encodes time-in-system
information in a way that is more amenable to theoretical analysis than working directly with the
numerical time-in-system. In particular, time-in-system changes while a job waits in the queue,
introducing complication into the analysis, while arrival ordering is fixed from the moment the
job arrives. In this way, our analysis avoids the technical challenges that have impeded the anal-
ysis of more general time-in-system-based scheduling policies.

1.4.6 Potential Impact
Immediate, real-world application Based on our results, Nudge can serve as a drop-in re-
placement for FCFS in essentially any queueing system, regardless of whether that system’s
objectives focus more on mean response time or the tail of response time. Like FCFS, Nudge
is a nonpreemptive policy, and is therefore practical to use in the same settings as FCFS Many
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system operators are hesitant to deploy more aggressive scheduling policies such as SRPT due
to its detrimental effects on the tail of response time, but Nudge has no such downside.

While Nudge is defined to use exact size information, it can easily accommodate approximate
or estimated size information. Nudge only uses size information to classify jobs into one of two
size categories, and approximate classification is sufficient.

Hurdles Beyond approximate size information, the road from theoretical results to real-
world adoption requires overcoming a variety of hurdles. We discuss these hurdles and provide
ideas for overcoming them in Sections 7.14.5 and 8.2.3.

Extensions of our work Nudge is merely the first step into using size information to im-
prove tail scheduling. Researchers are already studying generalizations of Nudge, and charac-
terizing the situations under which such generalizations can achieve even better tail performance
than Nudge [222].

While we analyzed Nudge in the single-server model, the multiserver model more accurately
resembles many real-world applications. As even the analysis of FCFS in the multiserver setting
is much less well-developed, significant challenges stand in the way of transferring our results
to the multiserver setting. However, the core of our analysis should transfer to the multiserver
setting, giving hope for such results.

1.5 How to read this thesis
This thesis contains 8 chapters: The introduction, 6 content-focused chapters comprising the 3
themes of the thesis, and the conclusion. The introduction (Chapter 1) and conclusion (Chapter 8)
are new content, written fresh for this thesis. Each of the 6 content-focused chapters primarily
consists of a paper that I have written over the course of my PhD. In each content-focused chapter,
I have added additional introductory and concluding sections, fresh for this thesis. The rest of of
each content-focused chapter is a reiteration of an existing paper, with better formatting in some
cases due to a lack of length restrictions. I have also fixed inaccuracies in a couple places.

In each case, the material that is written fresh for this thesis is aimed at a more general
audience, such as people who may be new to queueing theory, while the preexisting material (the
papers) is aimed at a more technical audience.

This thesis does not need to be read end-to-end. The thesis consists of 3 themes, each of
which can be read independently. When reading a theme, first read the corresponding material
in the introduction, then the corresponding content-focused chapter(s), then the corresponding
material in the conclusion.

If you’ve read parts of this thesis and want to get in touch, either to ask questions, make a
connection, or for whatever reason, feel free to reach out. My website at the time of writing this
is https://isaacg1.github.io, which should list ways of contacting me. If it doesn’t
exist anymore, or is out of date, just search for my name – I’m the only person with my name. If
you want to prove you’ve read this far, you can include the phrase “Special system, more applied”
in your email or contact message. Those used to be first words on the 50th, 100th, 150th, and
250th pages of this thesis, rearranged. The 200th page used to be blank, and there used to be no
300th page. I think the phrase does a pretty good job of communicating what this thesis is about,
for a pile of randomly selected words.
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Part II

Multiserver Queues
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Chapter 2

Optimal Central-Queue Multiserver
Scheduling: SRPT-k

This chapter is based on the paper “SRPT for Multiserver Systems”, published in IFIP Perfor-
mance 2018, written with my coauthors Ziv Scully and Mor Harchol-Balter [81].

2.1 General Introduction
Modeling modern computing systems Modern computing systems typically contain huge
numbers of servers, allowing them to process many jobs at once. In these multiserver systems,
the scheduling decisions, deciding what order in which to process the jobs, has a major impact on
the performance of these systems. Improving the scheduling policy can improve mean response
time by an order of magnitude, without any additional resources.

To capture the behavior of these computing systems, we can use a multiserver queueing
model, depicted in Fig. 2.1. Jobs arrive randomly over time, and wait in a central queue. Each
job requires one of the k servers in order to run, so the scheduling policy can select any k jobs
to run at a time. Two important scheduling policies, which we depict in Fig. 2.1, are First-Come
First-Served (FCFS) and Shortest Remaining Processing Time (SRPT). FCFS always serves the
k oldest jobs in the system. SRPT always preemptively serves the k jobs of least remaining size

Figure 2.1: The FCFS and SRPT scheduling policies in the multiserver setting. Each policy
serves the k “best” jobs according to its ordering. For FCFS, the k best jobs are the k oldest jobs,
while for SRPT, the k best jobs are the k jobs with smallest remaining size.
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Figure 2.2: The SRPT-k system, showing the SRPT policy in a multiserver setting, and the
SRPT-1 system, showing the SRPT policy in a resource-pooled setting, with one gigantic server.

in the system, where a job’s size is its service duration. Preemption refers to pausing a job in
service, and returning to it later. We are interested in the performance effects of these scheduling
policies. A natural measure of a policy’s performance is its mean response time, the mean time
from when a job arrives to when it completes.

Multiserver scheduling not understood Unfortunately, from a theoretical perspective, lit-
tle is known about stochastic multiserver scheduling. No closed-form formula for mean response
time is known, nor are any closed-form bounds on mean response time. The optimal scheduling
policy is likewise unknown.

In contrast, in the single-server scheduling setting, far more is understood. The schedul-
ing policy that minimizes mean response time is the SRPT policy [194]. Moreover, the mean
response time of SRPT has been theoretically analyzed in the M/G/1, a common single-server
setting: An exact formula for mean response time is known [196]. The M/G/1 is a stochas-
tic queueing model, with arrival times distributed according to a Poisson process and job sizes
sampled i.i.d. from a general distribution.

Is multiserver SRPT optimal? Because SRPT achieves optimal mean response time in
the M/G/1, we ask: Does SRPT achieve optimal mean response time in the M/G/k? The M/G/k
is the multiserver analogue of the M/G/1: It has the same job arrival process. The M/G/k has
the structure shown in Fig. 2.1: Jobs wait in a central queue, and the scheduling policy selects
any k jobs to serve at a time. Each job occupies a single server. In addition to examining
SRPT’s optimality, we are also interested in analysis: theoretical characterization of SRPT’s
mean response time, either exact characterization or upper or lower bounds.

Key idea: Resource pooling Our key technique is to compare SRPT in the M/G/k, which
we call SRPT-k, against a resource-pooled system where all k servers have been combined into
one gigantic server. This gigantic server can serve any job at k times the speed of the original
k servers. The resource-pooled system is a huge upgrade over the original M/G/k: One could
split the gigantic server’s efforts k ways, to emulate the original system, but one also has far more
options. As a result, the resource-pooled system forms a lower bound that we can compare SRPT-
k against. Specifically, we compare against the SRPT policy for the resource-pooled system,
which we refer to as SRPT-1. We depict the SRPT-k and SRPT-1 systems in Fig. 2.2.
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2.2 Technical Introduction
The Shortest Remaining Processing Time (SRPT) scheduling policy and variants thereof have
been deployed in many computer systems, including web servers [110], networks [149], databases
[89], operating systems [32] and FPGA layout systems [36]. SRPT has also long been a topic
of fascination for queueing theorists due to its optimality properties. In 1966, the mean response
time for SRPT was first derived [196], and in 1968 SRPT was shown to minimize mean response
time both in a stochastic sense and in a worst-case sense [194]. However, these beautiful optimal-
ity results and the analysis of SRPT are only known for single-server systems. Almost nothing
is known for multiserver systems, such as the M/G/k, even for the case of just k = 2 servers.

The SRPT policy for the M/G/k is defined as follows: at all times, the k jobs with smallest
remaining processing time receive service, preempting jobs in service if necessary.

We assume a central queue, meaning any job can be dispatched or migrated to any server at
any time, and a preempt-resume model, meaning preemption incurs no cost or loss of work.

It seems believable that SRPT should minimize mean response time in multiserver systems
because it gives priority to the jobs which will finish soonest, which seems like it should minimize
the number of jobs in the system. However, it was shown in 1997 that SRPT is not optimal for
multiserver systems in the worst case [135, 136]. That is, one can come up with an adversarial
arrival sequence for which the mean response time under SRPT is larger that the optimal mean
response time. In fact, the ratio by which SRPT’s mean response time exceeds the optimal mean
response time can be arbitrarily large [135, 136].

The fact that multiserver SRPT is not optimal in the worst case provokes a natural question
about the stochastic case.

Is SRPT optimal or near-optimal for minimizing mean response time in the M/G/k?
Unfortunately, this question is entirely open. Not only is it not known whether SRPT is optimal,
but multiserver SRPT has also eluded stochastic analysis.

What is the mean response time for the M/G/k under SRPT?
The purpose of this chapter is to answer both of these questions in the high-load setting. Under
low load, response time is dominated by service time, which is not affected by the scheduling
policy. In contrast, under high load, response time is dominated by queueing time, which can
vary wildly under different scheduling policies. We thus focus on the high-load setting, and
specifically on the heavy-traffic limit as load approaches capacity.

Our main result is that, under mild assumptions on the service requirement distribution,
SRPT is an optimal multiserver policy for minimizing mean response time in the
M/G/k in the heavy-traffic limit.

We also give the first mean response time bound for the M/G/k under SRPT. The bound is valid
for all loads and is tight for load near capacity.

In addition to SRPT, we give the first mean response time bounds for the M/G/k with three
other scheduling policies, specifically Preemptive Shortest Job First (PSJF) [231], Remaining
Size Times Original Size (RS) [117, 233], and Foreground-Background (FB) [171]. Our bounds
imply that in the heavy-traffic limit, under the same mild assumptions as for SRPT above,

• multiserver PSJF and RS are also optimal multiserver scheduling policies; and
• multiserver FB is optimal in the same setting where single-server FB is optimal [185],
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Figure 2.3: Single-server and k-server systems.

which is when the service requirement distribution has decreasing hazard rate and the
scheduler does not have access to job sizes.

Our approach to analyzing SRPT on k servers is to compare its performance to that of SRPT
on a single server which is k times as fast, where both systems have the same arrival rate λ and
service requirement distribution S. Specifically, let SRPT-k be the policy which uses multiserver
SRPT on k servers of speed 1/k, as shown in Figure 2.3. Ordinary SRPT on a single server is
simply SRPT-1. The system load ρ = λE [S] is the average rate at which work enters the system.
The maximal total rate at which the k servers can do work is 1, so the system is stable for ρ < 1,
which we assume throughout.

Our main result is that in the ρ→ 1 limit, the mean response time under SRPT-k, E
[
T SRPT-k

]
,

approaches the mean response time under SRPT-1, E
[
T SRPT-1

]
. Because SRPT-1 minimizes

response time among all scheduling policies, this means that SRPT-k is asymptotically optimal
among k-server policies. In particular, let OPT-k be the optimal k-server policy. Then

E
[
T SRPT-1] ≤ E

[
TOPT-k] ≤ E

[
T SRPT-k] ,

so showing that E
[
T SRPT-k

]
approaches E

[
T SRPT-1

]
as ρ → 1 also shows that E

[
T SRPT-k

]
ap-

proaches E
[
TOPT-k

]
as ρ→ 1.

Specifically, we prove the following sequence of theorems.
Our first theorem is an upper bound on the mean response time of a job of size x under

SRPT-k, written E
[
T SRPT-k(x)

]
. As in the classic SRPT-1 analysis [196], the response time of a

job of size x depends on the system load contributed by jobs of size at most x, written ρ≤x (see
Definition 2.5.3).
Theorem 2.6.2. In an M/G/k, the mean response time of a job of size x under SRPT-k is bounded
by

E
[
T SRPT-k(x)

]
≤
∫ x

0
λt2fS(t) dt

2(1− ρ≤x)2
+

kρ≤xx

1− ρ≤x

+

∫ x

0

k

1− ρ≤t

dt,

where fS(·) is the probability density function of the service requirement distribution S.
The bound given in Theorem 2.6.2 holds for any load ρ and any service requirement distribu-

tion S. We use this bound to prove that, under mild conditions on S, the performance of SRPT-k
approaches that of SRPT-1 in the ρ→ 1 limit, which implies asymptotic optimality of SRPT-k.
Theorem 2.7.1. In an M/G/k with any service requirement distribution S such that E[S2(logS)+]
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is finite,

lim
ρ→1

E
[
T SRPT-k

]
E [T SRPT-1]

= 1.

The technique by which we bound response time under SRPT-k is widely generalizable. We
also use it to give mean response time bounds and optimality results for PSJF-k, RS-k, and FB-k
(see Section 2.8).

Our approach is inspired by two very different worlds: the stochastic world and the adver-
sarial worst-case world. Purely stochastic approaches are difficult to generalize to the M/G/k
for many reasons, including the fact that multiserver systems are not work-conserving. Purely
adversarial worst-case analysis is easier but leads to weak bounds when directly applied to the
stochastic setting. For instance, Leonardi and Raz [135, 136] show that for an adversarial arrival
sequence, SRPT-k has worse mean response time than the optimal offline k-server policy by a
factor of Ω(log(min(n/k, P )), where n is the total number of jobs in the arrival sequence and P
is the ratio of the largest job size to the smallest job size. This factor can be arbitrarily large in
the context of the M/G/k, because n → ∞ if the arrival sequence is an infinite Poisson process,
and P → ∞ if the service requirement distribution is unbounded or allows for arbitrarily small
jobs.

What makes our analysis work is a strategic combination of the stochastic and worst-case
techniques. We use the more powerful stochastic tools where possible and use worst-case tech-
niques to bound variables for which exact stochastic analysis is intractable.

2.3 Prior Work
Countless papers have been published on the stochastic analysis of the SRPT policy in the single-
server model over the last 52 years, beginning in 1966 with Schrage and Miller’s response time
analysis of the M/G/1 queue under SRPT [196], which was followed shortly by the proof of
SRPT’s optimality [194]. SRPT remains a major topic of study today. There have been beautiful
works on analyzing the tail of response time [25–27], the fairness of SRPT [17, 231] and SRPT
in different models, such as energy-aware control [70].

However, all of these works analyze single-server SRPT. We give the first analysis of multi-
server SRPT. While single-server SRPT minimizes mean response time, multiserver SRPT does
not1 [135, 136]. We show that multiserver SRPT approaches optimality in heavy traffic.

2.3.1 Single-Server SRPT in Heavy Traffic
While the exact mean response time analysis of single-server SRPT is known, it is in the form of
a triply nested integral. Therefore, it is useful to have a simpler formula for mean response time.
Many papers have derived such a formula under heavy traffic [15, 16, 52, 138].

Heavy traffic analysis describes the behavior of a queueing system in the limit as load ap-
proaches capacity. The most general heavy-traffic analysis of the mean response time of single-

1It has been claimed that multiserver SRPT is optimal under the additional assumption that all servers are busy
at all times [51, Theorem 2.1]. However, the proof has an error. See Section 2.3.5.
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server SRPT is due to Lin et al. [138], who characterize the asymptotic behavior of mean re-
sponse time for general service requirement distributions.

In particular, we show in Lemma 2.7.1 that their results imply that for any job size distri-
bution S for which E [S2(logS)+] is finite, the mean response time of single-server SRPT is
ω(log(1/(1− ρ))). We focus on the finite E [S2(logS)+] setting, which is roughly equivalent to
finite variance.

We build on the work of Lin et al. [138] to give the first heavy-traffic analysis of multiserver
SRPT. In particular, we demonstrate that in the heavy-traffic limit, the mean response time of
SRPT in a multiserver system with k servers approaches that of SRPT in a single-server system
which runs k times faster (see Figure 2.3).

2.3.2 The Multiserver Priority Queue

While there is no existing stochastic analysis of multiserver SRPT, there is some analysis of mul-
tiserver priority queues. In a multiserver priority queue, it is assumed that there are finitely many
classes of jobs (typically two) with exponential or phase-type service requirement distributions.
Thus, the system can be modeled as a multidimensional Markov chain. Mitrani and King [154]
give an exact analysis of the two class multiserver system with preemptive priority between the
job classes and exponential service times within each class. Sleptchenko et al. [207] extend this
analysis to hyperexponential service requirement distributions, and Harchol-Balter et al. [111]
extend it further still to support phase-type service requirement distributions and any constant
number of preemptive priority classes. However, the solutions found through these extensions
can take a very long time to calculate, requiring more time with every added server, priority class,
or state in the phase-type distribution.

Our analysis goes beyond the multiclass setting by handling an arbitrary service requirement
distribution and a policy, namely SRPT-k, with an infinite set of priorities. Furthermore, our
analysis produces a closed-form result, in contrast to the numerical results of these prior works.

2.3.3 Multiserver SRPT in the Worst Case

While stochastic analysis of multiserver SRPT is open, multiserver SRPT has been well studied
in the worst-case setting. Worst-case analysis considers an adversarially chosen sequence of
job arrival times and service requirements. An online policy (which does not know the arrival
sequence) such as SRPT-k is typically compared to the optimal offline policy (which knows the
arrival sequence). In the worst-case setting, a policy is a c-approximation if its mean response
time is at most c times the mean response time of the offline optimal policy on any arrival se-
quence.

Leonardi and Raz [135, 136] analyze SRPT-k in the worst-case setting under the assumptions
that (1) there are n jobs in the arrival sequence and (2) the ratio of the largest and smallest service
requirements in the arrival sequence is P . They show that SRPT-k is an O(log(min(n/k, P )))-
approximation for mean response time, where n is the total number of jobs. They also show that
any online policy is at least an Ω(log(min(n/k, P )))-approximation. This shows that no online
policy has a better approximation ratio than SRPT-k by more than a constant factor.
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Unfortunately, directly applying the O(log(min(n/k, P ))) bound on SRPT-k to the M/G/k is
not helpful for two reasons. First, the arrival process is an infinite Poisson process, so n → ∞.
Second, often the maximum job size is unbounded or the minimum job size is arbitrarily small,
so P →∞ as well.

SRPT has also been considered in other multiserver models. For example, Avrahami and
Azar [12] analyze the immediate dispatch setting, in which each server has a queue and jobs
are dispatched to these queues on arrival. Each server can only serve the jobs in its queue,
and jobs cannot migrate between queues. Within each queue, jobs are served according to
SRPT. Avrahami and Azar [12] give a dispatch policy called IMD which achieves the same
O(log(min(n/k, P )))-approximation as SRPT-k, even when compared to the optimal offline pol-
icy with migrations. Again, directly applying this to the M/G/k is problematic because n → ∞
and P →∞.

In contrast with these worst-case results, we show that in the stochastic setting, SRPT-k is
asymptotically optimal policy for mean response time in the heavy-traffic limit. Our result holds
for an extremely general class of service requirement distributions, including distributions which
are unbounded and/or have arbitrarily small jobs.

2.3.4 Other Prior Work
Gong and Williamson [76] propose a single-server policy called K-SRPT which is superficially
similar to our SRPT-k. Specifically, K-SRPT shares the processor between the k jobs in the
system with least remaining time. That is, K-SRPT is a hybrid of processor sharing (PS) and
SRPT. Crucially, when fewer than k jobs are in the system, K-SRPT allows each job to receive
an increased share of the maximum service rate, ensuring work conservation. In contrast, our
SRPT-k model never allows a job to receive more than 1/k of the maximum service rate of the
system, since a job cannot run on more than one server at once. This means SRPT-k is not
work-conserving, which makes it difficult to analyze.

2.3.5 Flawed Interchange Arguments
Down and Wu [51, Theorem 2.1] claim that SRPT-k is optimal in the sense of minimizing the
completion time of the nth job for all n, under the additional assumption that all servers are
busy at all times. Unfortunately, this claim is false. The proof attempts to use an interchange
argument, mimicking the classic proof of the optimality of SRPT-1 [194]. However, the specified
interchange can result in the same job running on two servers simultaneously, which is of course
not possible.

A concrete counterexample is the following: let k = 2, and let jobs of size 1, 1, 2 and 2
arrive at time 0. Recall that a job of size x must be in service for kx time to complete. SRPT-k
completes its third job at time 6, while a policy which serves a job of size 2 over the interval
[0, 4) and jobs of size 1 over the intervals [0, 2) and [2, 4) would finish its third job at time 4.
Moreover, more complicated counterexamples exist which show that multiserver SRPT does not
minimize mean response time even if all servers are busy at all times.

A similar error occurs in a claim by Wu and Down [236, Theorem 2.1] that FB-k is optimal
among policies that do not have access to job size information when the service requirement
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distribution has decreasing hazard rate. Again the proof given is an interchange argument, and
again the specified interchange can result in the same job running on two servers simultaneously.

2.4 Model
We study scheduling policies for the M/G/k queue. We write λ for the arrival rate, S for the
service requirement distribution, and k for the number of servers. The rate at which any given
server completes work is 1/k. That is, a job with a service requirement, or size, of x needs to be
served for time kx to complete. The k servers all together have total service rate 1.

The load of the M/G/k system, namely the average rate at which work arrives, is

ρ = λE [S] .

That is, jobs arrive at rate λ jobs per second, each contributing E [S] work in expectation. We
can view E [S] = 1/(kµ), where 1/µ is the expected amount of time a job needs to be served to
complete. We assume a stable system, meaning ρ < 1, and a preempt-resume model, meaning
that preemption incurs no cost or loss of work.

We will analyze systems in the heavy-traffic limit, which is the limit as ρ → 1. More pre-
cisely, this is the limit as λ→ 1/E [S] for fixed S.

We analyze and compare systems with k = 1 and general k. An example of each is shown in
Figure 2.3. Note that in our model, the M/G/1 and M/G/k systems have the same load ρ.

The primary policy we study is the SRPT-k policy, which is the Shortest Remaining Process-
ing Time policy on k servers. At every moment in time, SRPT-k serves the k jobs with smallest
remaining processing time. If there are fewer than k jobs in the system, every job receives ser-
vice, which leaves some servers idle. Note SRPT-1 is the usual single-server SRPT policy.

2.5 Background and Challenges
Our approach to analyzing response time under SRPT-k is to compare it with SRPT-1. As such,
we begin this section by briefly reviewing the analysis of SRPT-1, specifically focusing on the
definitions and formulations that will come up in the SRPT-k analysis. We then outline why the
SRPT-1 analysis does not easily generalize to SRPT-k with k > 1 servers.

2.5.1 SRPT-1 Tagged Job Tutorial
We now review the technique used by Schrage and Miller [196] to analyze SRPT-1. Consider a
particular “tagged” job j, of size x, arriving to a random system state drawn from the system’s
steady-state distribution. We denote j’s response time by T SRPT-1(x). Of course, T SRPT-1(x) is a
random variable which depends on both the random arrivals that occur after j and the random
queue state that j observes upon its own arrival.

We split the analysis of T SRPT-1(x) into two parts, shown in Figure 2.4:
• waiting time W SRPT-1(x), the time between j’s arrival and the moment j first enters service;

and
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Figure 2.4: Response time of the tagged job j of size x is the sum of waiting time and residence
time.

• residence time RSRPT-1(x), the time between the moment j first enters service and j’s de-
parture.

Given waiting time and residence time, response time is simply

T SRPT-1(x) = W SRPT-1(x) +RSRPT-1(x).

Under SRPT-1, j has priority over all jobs with larger remaining size than itself, so such jobs
do not impact j’s response time.
Definition 2.5.1. Suppose job j has remaining size x. A job ℓ is relevant to job j if ℓ has
remaining size at most x. Otherwise ℓ is irrelevant to j.

In particular, we will often consider which jobs are relevant to the tagged job j. We will
simply call jobs “relevant” and “irrelevant” when the comparison is clear from context. For the
purpose of analyzing j’s response time, we can ignore all jobs which are irrelevant to j.

During j’s waiting time, the server is only doing relevant work, namely work that is due to a
relevant job. The total amount of work done is the sum of

• relevant work due to relevant jobs that were in the system when j arrived and
• relevant work due to relevant jobs that arrived after j.

To analyze j’s waiting time, we make use of a concept called a “busy period”.
Definition 2.5.2. A busy period started by (possibly random) amount of work V , written B(V ),
is the amount of time it takes for a single-server work-conserving system that starts with V work
to become empty.

Busy periods are very useful because their length depends only on the initial amount of work
and the arrival process, not on the service policy or the number of jobs in the system.

In the SRPT-1 system, we do not have to wait for the system to become completely empty
for j to start receiving service. We only have to wait for the system to become empty of relevant
work. We capture this with the concept of a “relevant busy period”.
Definition 2.5.3. A relevant busy period for a job of size x started by (possibly random) amount
of work V , written B≤x(V ), is the amount of time it takes for a work-conserving system that
starts with V work to become empty, where only arrivals of size at most x, the relevant arrivals,
are admitted to the system. A relevant busy period has expectation

E [B≤x(V )] =
E [V ]

1− ρ≤x

.
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Above, ρ≤x is the relevant load for a job of size x, which is the total load due to relevant jobs. Its
value is

ρ≤x = λE [S1(S ≤ x)] ,

where 1(·) is the indicator function.
This means j’s waiting time is a relevant busy period started by the amount of relevant work

that the tagged job j sees on arrival. By the PASTA property (Poisson Arrivals See Time Aver-
ages) [235], the distribution for the amount of relevant work j sees is the steady-state distribution.
Definition 2.5.4. The steady-state relevant work for a job of size x under SRPT-1, written
RelWorkSRPT-1

≤x , is the sum of remaining sizes of all jobs with remaining size at most x observed
at a random point in time. (An analogous definition applies to SRPT-k.)

By the above discussion, j’s waiting time is

W SRPT-1(x) = B≤x

(
RelWorkSRPT-1

≤x

)
.

The analysis of RelWorkSRPT-1
≤x is known [196] but outside the scope of this tutorial.

The residence time of j can be analyzed in a similar way. At the start of j’s residence time,
the SRPT-1 policy serves j, so j, which has remaining x, must be the job with the smallest
remaining size in the system. This means the system is effectively empty from j’s perspective,
because all work relevant to j is gone.

The only work that will be done from this point until j completes is work on j itself and
relevant arrivals. Because j’s residence time starts with its own work x and ends when that work
is done, we can stochastically upper bound j’s residence time as a relevant busy period:

RSRPT-1(x) ≤st B≤x(x).

The reason this bound is not tight is because j’s remaining size decreases during service, which
changes the cutoff for relevant jobs. An exact analysis of RSRPT-1(x) is known [196] but outside
the scope of this tutorial.

2.5.2 Why the Tagged Job Analysis is Hard for SRPT-k
Having summarized the analysis of SRPT-1, it is natural to ask: why does a similar strategy not
work for SRPT-k? The primary difficulty is that multiserver systems are not work-conserving,
which manifests in two ways.

First, analyzing busy periods relies on work conservation, namely the fact that the server is
doing work at rate 1 whenever the system is not empty. This allows for many simplifications. For
instance, in Definition 2.5.3, we define busy periods as being started as a total amount of work,
without worrying exactly how that work is divided among jobs. In a k-server system, work is
only done at rate 1 if there are k or more jobs in the system. Thus, the exact rate at which work
is done varies over time depending on the number of jobs in the system, making it difficult to
analyze.

Second, analyzing the steady-state relevant work relies on work conservation. The analysis
of RelWorkSRPT-1

≤x by Schrage and Miller [196] relies on being able to equate RelWorkSRPT-1
≤x to the

total work in a simpler first-come-first-served system. Equality of remaining work only holds if
both systems are work-conserving. The fact that SRPT-k is not work-conserving means that we
can’t make such an argument.
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2.6 Analysis of SRPT-k
As explained in Section 2.5.2, traditional tagged job analysis cannot be applied to SRPT-k be-
cause SRPT-k is not work-conserving. Our approach is to find a way to make SRPT-k appear
work-conserving while the tagged job j is in the system. We do this by introducing the new
concept of virtual work. Virtual work encapsulates all of the time that the servers spend either
idle or working on irrelevant jobs while j is in the system. By thinking of these times as “virtual
work”, the system appears to be work-conserving while j is in the system, allowing us to bound
the response time of j.

Consider a tagged job j of size x. Recall from Definition 2.5.1 that only jobs of remaining
size at most x are relevant to j when j arrives. We will bound j’s response time by bounding
the total amount of server activity between j’s arrival and departure. Between j’s arrival and
departure, each server can be doing one of four categories of work.

• Tagged work: serving j.
• Old work: serving a job which is relevant to j that was in the system upon j’s arrival.
• New work: serving a job which is relevant to j that arrived after j.
• Virtual work: either idling or serving an job which is irrelevant to j.

The response time of j is exactly the total of tagged, old, new, and virtual work. The main idea
behind our analysis is to bound this total by a single (work-conserving) relevant busy period (see
Definition 2.5.3). The busy period is still defined with regards to a single server system, making
the analysis straightforward.

We already know a few facts about the four categories of work.
• Tagged work is j’s size x.
• Old work is equal to the amount of relevant work seen by j upon arrival.2 By the PASTA

property [235], this is RelWorkSRPT-k
≤x , the steady state amount of relevant work for a job of

size x (see Definition 2.5.4).
• New work is bounded by all jobs which are relevant to a job of remaining size x that arrive

during a relevant busy period B≤x(·) started by tagged, old, and virtual work.3 This is only
an upper bound because we ignore the fact that j’s remaining size decreases as j is served,
which changes the size cutoff for relevant jobs.

• Virtual work is as of yet unknown. We denote with the random variable VirtWorkSRPT-k(x)
the amount of virtual work done while j is in the system.

Taken together, these yield the bound

T SRPT-k(x) ≤st B≤x

(
x+ RelWorkSRPT-k

≤x + VirtWorkSRPT-k(x)
)
. (2.1)

Our task in the remainder of this section is to bound RelWorkSRPT-k
≤x and VirtWorkSRPT-k(x) as

tightly as we can. We use worst-case methods to bound VirtWorkSRPT-k(x) and a combination
of stochastic and worst-case methods to bound RelWorkSRPT-k

≤x .

2One might worry that an old job that is irrelevant when j arrives could later become relevant to j, and therefore
be part of old work, but this does not occur under SRPT-k.

3One might worry that a new job that is irrelevant when it arrives could later become relevant to j, and therefore
be part of new work, but this does not occur under SRPT-k.
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2.6.1 Virtual Work
We start by bounding VirtWorkSRPT-k(x), the virtual work done while j is in the system. A
purely stochastic analysis of virtual work would be very difficult. Fortunately, a simple worst-
case bound suffices for our purposes. The key is that a server can do virtual work only while j
is in service at a different server. This is because SRPT-k never allows an irrelevant job to have
priority over j.
Lemma 2.6.1. The virtual work is bounded by

VirtWorkSRPT-k(x) ≤ (k − 1)x.

Proof. Virtual work only occurs while j is in service. The maximum possible virtual work is
achieved by all k− 1 other servers doing virtual work whenever j is in service. Each server does
work at rate 1/k. This means j is in service for time kx, during which virtual work is done at
rate at most (k − 1)/k.

2.6.2 Relevant Work
Our next task is to bound RelWorkSRPT-k

≤x , the steady state amount of relevant work for a job
of size x under SRPT-k. As with virtual work, a purely stochastic analysis of relevant work
would be very difficult. We therefore take the following hybrid approach. We consider a pair of
systems, one using SRPT-1 and the other using SRPT-k, experiencing the same arrival sequence.
We compare the amounts of relevant work in each system, giving a worst-case bound for the
difference. This allows us to use the previously known stochastic analysis of RelWorkSRPT-1

≤x to
give a stochastic bound for RelWorkSRPT-k

≤x .
Consider running a pair of systems under the same job arrival sequence:
• System 1, which schedules using SRPT-1; and
• System k, which schedules using SRPT-k.

For any time t, let RelWork(1)≤x(t) be the amount of relevant work in System 1 at t, and similarly
for RelWork(k)≤x(t). Our goal is to give a worst-case bound for the difference in relevant work
between Systems 1 and k,

∆≤x(t) = RelWork
(k)
≤x(t)− RelWork

(1)
≤x(t).

To bound ∆≤x(t), we split times t into two types of intervals:
• few-jobs intervals, during which there are fewer than k relevant jobs at a time in System k;

and
• many-jobs intervals, during which there are at least k relevant jobs at a time in System k.

A similar type of splitting was used by Leonardi and Raz [135, 136].
As a reminder, a job is relevant if its remaining size is at most x and irrelevant otherwise

(see Definition 2.5.1). Note that many-jobs intervals are defined only in terms of System k, so
System 1 may or may not have relevant jobs during a many-jobs interval.
Lemma 2.6.2. For any arrival sequence and at any time t, the difference between the relevant
work in System 1 and the relevant work in System k is bounded by

∆≤x(t) ≤ kx.
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Figure 2.5: Relevant work difference is nonincreasing during many-jobs intervals.

Lemma 2.6.2 shows that ∆≤x(t) is bounded at all times. We can summarize the proof of
Lemma 2.6.2 as follows. In a few-jobs interval, ∆≤x(t) is bounded because there are few relevant
jobs in System 1 and each contributes a bounded amount of relevant work. In a many-jobs
interval, ∆≤x(t) is nonincreasing, and hence bounded.

One might intuitively expect ∆≤x(t) to be constant during a many-jobs interval. However,
∆≤x(t) can decrease during a many-jobs interval, namely when System 1 is empty, as shown in
Figure 2.5.

Since the few-jobs and many-jobs intervals cover all possible times, Lemma 2.6.2 always
holds.

Proof of Lemma 2.6.2. Any time t is in either a few-jobs interval or a many-jobs interval. The
case where t is in a few-jobs interval is simple: there are at most k− 1 relevant jobs in System k
at time t, each of remaining size at most x, so

∆≤x(t) ≤ RelWork
(k)
≤x(t) ≤ (k − 1)x.

Suppose instead that t is in a many-jobs interval. Let time s be the start of the many-jobs
interval containing t. We will show

∆≤x(t) ≤ ∆≤x(s) ≤ kx.

We first show that ∆≤x(t) ≤ ∆≤x(s). Let

D(1) = RelWork
(1)
≤x(t)− RelWork

(1)
≤x(s)

D(k) = RelWork
(k)
≤x(t)− RelWork

(k)
≤x(s)

be the change in relevant work from s to t in Systems 1 and k, respectively. Because

∆≤x(t)−∆≤x(s) = D(k) −D(1),

it suffices to show D(k) ≤ D(1).
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We can write D(1) as a sum of three components,

D(1) = Arrivals(1) + NewlyRelevant(1) − Served(1),

which are defined as follows.

• Arrivals(1) is the relevant work added during [s, t] due to relevant new arrivals.
• NewlyRelevant(1) is the relevant work added during [s, t] due to the server serving irrele-

vant jobs until they reach remaining size x, at which point they become relevant. For our
purposes, all that matters is that NewlyRelevant(1) ≥ 0.

• Served(1) is the amount of relevant work done by the server during [s, t]. System 1 does
relevant work at rate 1 if it has any relevant jobs and rate 0 otherwise, so Served(1) ≤ t−s.

We define analogous quantities for System k and compare them to their System 1 counterparts.

• Arrivals(k) = Arrivals(1) because the two systems experience the same arrivals.
• NewlyRelevant(k) = 0 because [s, t] is within a many-jobs interval, during which Sys-

tem k has at least k relevant jobs. Therefore, there is never an opportunity for an irrelevant
job to be served and become relevant. In particular,

NewlyRelevant(k) ≤ NewlyRelevant(1).

• Served(k) = t−s because [s, t] is within a many-jobs interval, during which System k has
at least k relevant jobs. Therefore, its servers do relevant work at combined rate 1 during
all of [s, t]. In particular,

Served(k) ≥ Served(1).

The three comparisons above imply D(k) ≤ D(1), as desired.
All that remains is to show ∆≤x(s) ≤ kx. Recall that s is the start of a many-jobs interval.

There are two ways to enter a many-jobs interval. In both cases, we show that ∆≤x(s) ≤ kx.
One way a many-jobs interval can start is when a relevant job arrives while System k has

k − 1 relevant jobs. The same arrival occurs in System 1, so ∆≤x(s) = ∆≤x(s
−), where s− is

the instant before the arrival. But s− is the end of a few-jobs interval, during which System k has
at most k − 1 relevant jobs, so

∆≤x(s) = ∆≤x(s
−) ≤ RelWork

(k)
≤x(s

−) ≤ (k − 1)x.

The other way a many-jobs interval can start is for irrelevant jobs already in System k to
become relevant. For this to happen, System k must be serving i ≥ 1 irrelevant jobs at s−.
Because relevant jobs have priority over irrelevant jobs, all relevant jobs must also be in service
at s−. There are i irrelevant jobs in service at s−, so there are at most k− i relevant jobs at s−. At
time s, at most i irrelevant jobs become relevant, so there are at most k relevant jobs at s. Each
relevant job has size at most x, so

∆≤x(s) ≤ RelWork
(k)
≤x(s) ≤ kx.
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2.6.3 Response Time Bound

Theorem 2.6.1. In an M/G/k, the response time of a job of size x under SRPT-k is bounded by

T SRPT-k(x) ≤st W
SRPT-1(x) +B≤x(2kx),

where W SRPT-1(x) denotes the waiting time of a job of size x under SRPT-1.

Proof. From (2.1), we know that

T SRPT-k(x) ≤st B≤x

(
x+ RelWorkSRPT-k

≤x + VirtWorkSRPT-k(x)
)
.

By plugging in Lemmas 2.6.1 and 2.6.2, we find that

T SRPT-k(x) ≤st B≤x

(
RelWorkSRPT-1

≤x + 2kx
)

= B≤x

(
RelWorkSRPT-1

≤x

)
+B≤x(2kx).

Recall from Section 2.5.1 that the waiting time in SRPT-1 is

W SRPT-1(x) = B≤x

(
RelWorkSRPT-1

≤x

)
,

giving the desired bound.

While Theorem 2.6.1 gives a good bound on the response time under SRPT-k, we can tighten
the bound further by making use of three ideas.

• As the tagged job j is served, its remaining size decreases. This decreases the size cutoff
for new arrivals to be relevant, so not as many arriving jobs contribute to new work. Our
current bounds do not account for this effect.

• In Lemma 2.6.2, we bound the difference ∆≤x(t) between relevant work in System 1,
which uses SRPT-1, and relevant work in System k, which uses SRPT-k. It turns out that
the same proof holds when System 1 uses PSJF-1, the preemptive shortest job first policy,
instead of SRPT-1. This improves the bound because waiting time under PSJF-1 is smaller
than waiting time under SRPT-1 [233].

• Even after replacing SRPT-1 with PSJF-1, Lemma 2.6.2 is not tight. In particular, ∆≤x(t)
is at most x times the number of servers serving relevant jobs at time t, and there are not
always k such servers.

These ideas allow us to prove the following bound on mean response time, which is strictly
tighter than the one given by Theorem 2.6.1.
Theorem 2.6.2. In an M/G/k, the mean response time of a job of size x under SRPT-k is bounded
by

E
[
T SRPT-k(x)

]
≤
∫ x

0
λt2fS(t) dt

2(1− ρ≤x)2
+

kρ≤xx

1− ρ≤x

+

∫ x

0

k

1− ρ≤t

dt,

where fS(·) is the probability density function of the service requirement distribution S.
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Proof. We will prove Theorem 2.6.2 by proving improved versions of (2.1) and Lemma 2.6.2.
A key element of our analysis is bounding the amount of new work done while the tagged

job j of size x is in the system. In (2.1), we bound this quantity by a relevant busy period with
size cutoff x. However, in reality, the size cutoff decreases as j receives service. We can use this
to give a tighter bound on the amount of new work performed.

Let rj be the amount of relevant work seen by j on arrival. Note that rj is also the amount of
old work that will be done while j is in the system.

Starting from the time of j’s arrival, after at most B≤x(rj) time, j must enter service. During
this busy period, an amount of work is performed equal to rj plus all relevant arrivals during this
busy period.

More generally, for any amount of time s ≤ x, after at most a relevant busy period started
by rj + ks work, j must have received s service. This holds because even if the servers finish
all the old work and all the new work that has arrived so far, the servers must still complete ks
combined tagged and virtual work. Of this tagged and virtual work, at least s must be tagged
work, namely serving j. This means that the first dt service of j must be completed by time

B≤x(rj) +B≤x(k · dt).

The next dt service of j must be completed by time

B≤x(rj) +B≤x(k · dt) +B≤x−dt(k · dt),

because the cutoff for entering the relevant busy period decreases as j receives service. Similarly,
the following dt service of j must be completed by time

B≤x(rj) +B≤x(k · dt) +B≤x−dt(k · dt) +B≤x−2 dt(k · dt).

This pattern continues as j receives service. The descending size cutoff yields the same sort of
relevant busy period as in the traditional tagged job analysis of SRPT-1 [196]. Recalling that rj
is drawn from the distribution RelWorkSRPT-k

≤x yields the following bound on the mean response
time of j:

T SRPT-k(x) ≤ B≤x

(
RelWorkSRPT-k

≤x

)
+

∫ x

0

B≤t(k · dt). (2.2)

With (2.2), we have improved upon (2.1).
Next, we will improve upon Lemma 2.6.2. We consider a pair of systems experiencing the

same arrival sequence: System 1, which uses PSJF-1, and System k, which uses SRPT-k.
Recall from Section 2.8.1 that under PSJF-1, a job ℓ is relevant to j if ℓ has original size at

most x. In contrast, under SRPT-k, a job ℓ is relevant to j if ℓ has remaining size at most x.
We define ∆′

≤x(t) to be the difference between the amounts of relevant work in the two
systems at time t. Using Lemma 2.6.3 (proof deferred), we obtain a bound on ∆′

≤x(t) tighter
than the analogous bound in Lemma 2.6.2.

Lemma 2.6.3. The difference in relevant work between Systems 1 and k is bounded by

∆′
≤x(t) ≤ x · RelBusy(k)≤x(t)

where RelBusy
(k)
≤x(t) is the number of servers in System k which are busy with relevant work at

time t.
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Proof. We define few-jobs intervals and many-jobs intervals as in Section 2.6.2. Note that
RelBusy

(k)
≤x(t) = k during a many-jobs interval, and that RelBusy(k)≤x(t) is the number of jobs in

the system during a few-jobs interval.
The case where t is in a few-jobs interval is simple: there are exactly RelBusy

(k)
≤x(t) jobs in

System k at time t, each of remaining size at most x, so

∆′
≤x(t) ≤ x · RelBusy(k)≤x(t).

Suppose instead that t is in a many-jobs interval, in which case RelBusy(k)≤x(t) = k. Let time
s be the start of the many-jobs interval containing t. Over the interval [s, t], the same amount
of relevant work arrives in both systems, because relevant arrivals are the same under SRPT and
PSJF. Upon arrival a job’s original and remaining sizes are equal. The other two categories of
relevant work over the interval follow the same arguments as in the proof of Lemma 2.6.2. Thus,

∆′
≤x(t) ≤ ∆′

≤x(s).

It therefore suffices to show ∆′
≤x(s) ≤ kx. As in Lemma 2.6.2, a many-jobs interval can

begin due to the arrival of a relevant job, or due an irrelevant job in System k becoming relevant.
In the case of an arrival, the same arrival occurs in System 1, and must be relevant in System 1,
so

∆′
≤x(s) = ∆≤x(s

−) ≤ (k − 1)x,

because s−, the instant before s, is in a few-jobs interval. In the case of an irrelevant job in
System k becoming relevant, by the same argument as in the proof of Lemma 2.6.2,

∆′
≤x(s) ≤ RelWork

(k)
≤x(s) ≤ kx.

Continuing the proof of Theorem 2.6.2, we are now ready to prove the stronger bound. From
(2.2), we know

T SRPT-k(x) ≤ B≤x

(
RelWorkSRPT-k

≤x

)
+

∫ x

0

B≤t(k · dt).

By plugging in Lemma 2.6.1 and Lemma 2.6.3, we find that

T SRPT-k(x)

≤ B≤x

(
RelWorkPSJF-1

≤x + x · RelBusySRPT-k
≤x

)
+

∫ x

0

B≤t(k · dt)

= B≤x

(
RelWorkPSJF-1

≤x

)
+B≤x

(
x · RelBusySRPT-k

≤x

)
+

∫ x

0

B≤t(k · dt)

= W PSJF-1(x) +B≤x

(
x · RelBusySRPT-k

≤x

)
+

∫ x

0

B≤t(k · dt),

where RelBusySRPT-k
≤x is the steady state number of servers which are busy with relevant jobs

under SRPT-k. Taking expectations yields

E
[
T SRPT-k(x)

]
≤ E

[
W PSJF-1(x)

]
+ E

[
B≤x

(
x · RelBusySRPT-k

≤x

)]
+

∫ x

0

E [B≤t(k · dt)] .
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From the literature [233], we know that

E
[
W PSJF-1(x)

]
=

∫ x

0
λt2fS(t) dt

2(1− ρ≤x)2
.

By the expectation of a relevant busy period, from Definition 2.5.3,∫ x

0

E [B≤t(k · dt)] =
∫ x

0

k

1− ρ≤t

dt.

Similarly,

E
[
B≤x

(
x · RelBusySRPT-k

≤x

)]
=

E
[
x · RelBusySRPT-k

≤x

]
1− ρ≤x

.

The average rate at which the SRPT-k system performs relevant work is E
[
RelBusySRPT-k

≤x

]
/k,

since each busy server does work at rate 1/k. Because the system is stable, the rate at which rel-
evant work is done must equal the rate at which relevant work enters the system, namely ρ≤x.
Thus, E

[
RelBusySRPT-k

≤x

]
= kρ≤x, so

E
[
B≤x

(
x · RelBusySRPT-k

≤x

)]
=

kρ≤xx

1− ρ≤x

,

yielding the desired bound.

Note that the first term of Theorem 2.6.2’s upper bound is the mean waiting time of a job of
size x under PSJF-1.

2.7 Optimality of SRPT-k in Heavy Traffic

With the bound derived in Theorem 2.6.1, we can prove our main result on the optimality of
SRPT-k in the heavy-traffic limit. Theorem 2.7.1 will refer to E

[
T SRPT-k

]
, which is derived from

Theorem 2.6.1 by taking the expectation over possible sizes x.
Theorem 2.7.1. In an M/G/k with any service requirement distribution S such that E[S2(logS)+]
is finite,

lim
ρ→1

E
[
T SRPT-k

]
E [T SRPT-1]

= 1.

To prove Theorem 2.7.1, we start with a result from the literature on the performance of
SRPT-1 in the heavy-traffic limit [138].
Lemma 2.7.1. In an M/G/1 with any service requirement distribution S such that E[S2(logS)+]
is finite,

lim
ρ→1

log
(

1
1−ρ

)
E [T SRPT-1]

= 0.
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Proof. This proof was originally published in our 2020 paper [202, Theorem 1.3].
Lin et al. [138] analyze the mean response time of SRPT in the M/G/1. A result of theirs

implies [138, Lemma 5]

E [T1] = Ω

(
1

(1− ρ)G−1(ρ)

)
,

where G(r) = E [S1S ≤ r] /E [S]. We therefore want to show

1

G−1(ρ)
= ω

(
(1− ρ) log

1

1− ρ

)
,

which amounts to showing that in the r →∞ limit,

(1−G(r)) log
1

1−G(r)
= o

(
1

r

)
.

It actually suffices to show 1−G(r) = o(1/(r log r)), as then

(1−G(r)) log
1

1−G(r)
= o

(
log r + log log r

r log r

)
= o

(
1

r

)
.

We now use the E [S2(logS)+] < ∞ assumption to prove 1 − G(r) = o(1/(r log r)). The
first step is to express 1−G(r) in terms of S and Se:

1−G(r) =
E [S1 {S > r}]

E [S]
=

E [(S − r)+]

E [S]
=

r

E [S]
P {S > r}+ P {Se > r} .

We show that both terms are o(1/(r log r)). For the first term, finiteness of E [S2(logS)+] implies

r2(log r)+P {S > r} ≤ E
[
S2(logS)+1 {S > r}

]
= E

[
S2(logS)+

]
− E

[
S2(logS)+1 {S ≤ r}

]
= o(1).

We can bound the second term similarly because

E [S]E
[
Se(logSe)

+
]
= E

[
1 {S > 1}

∫ S

1

s log s ds

]
= E

[
1 {S > 1}

(
1

2
S2 logS − 1

4
S2 +

1

4

)]
<∞.

The next step in proving Theorem 2.7.1, is to use the bound on T SRPT-k(x) provided by The-
orem 2.6.1. Let H(x) be the bound on E

[
T SRPT-k(x)

]
,

H(x) = E
[
W SRPT-1(x) +B≤x(2kx)

]
. (2.3)

By taking the expectation of drawing size x from the service requirement distribution S, The-
orem 2.6.1 implies E

[
T SRPT-k

]
≤ E [H(S)]. The following lemma shows that E [H(S)] ap-

proaches E
[
T SRPT-1

]
in the heavy-traffic limit.
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Lemma 2.7.2. In an M/G/k with any service requirement distribution S such that E[S2(logS)+]
is finite,

lim
ρ→1

E [H(S)]

E [T SRPT-1]
= 1.

Proof. We know E [H(S)] ≥ E
[
T SRPT-k

]
by Theorem 2.6.1, and we know E

[
T SRPT-k

]
≥ E

[
T SRPT-1

]
by optimality of SRPT-1, so

E [H(S)]

E [T SRPT-1]
≥ 1.

We thus only need to show

lim
ρ→1

E [H(S)]

E [T SRPT-1]
≤ 1.

Because W SRPT-1 ≤ T SRPT-1, by (2.3) it suffices to show

lim
ρ→1

E [B≤S(2kS)]

E [T SRPT-1]
= 0. (2.4)

Applying standard results for busy periods [104],

E [B≤S(2kS)] = 2kE
[

S

1− ρ≤S

]
= 2k

∫ ∞

0

xfS(x)

1− ρ≤x

dx,

where fS(·) is the probability density function of S. To compute the integral, we make a change
of variables from x to ρ≤x (see Definition 2.5.3), which uses the following facts:

ρ≤x = λE [S1(S < x)] =

∫ x

0

λtfS(t) dt

dρ≤x

dx
= λxfS(x)

ρ≤0 = 0

lim
x→∞

ρ≤x = ρ.

Given this change of variables, we compute

E
[

S

1− ρ≤S

]
=

∫ ∞

0

xfS(x)

1− ρ≤x

dx

=

∫ ρ

0

1

λ(1− ρ≤x)
dρ≤x

=
1

λ
ln

(
1

1− ρ

)
= Θ

(
log

(
1

1− ρ

))
.

This means E [B≤S(2kS)] = Θ(log(1/(1− ρ))), so (2.4) follows from Lemma 2.7.1.
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Armed with Theorem 2.6.1 and Lemma 2.7.2, we are now prepared to prove our main result,
Theorem 2.7.1.

Proof of Theorem 2.7.1. Because SRPT-1 minimizes mean response time, it suffices to show that

lim
ρ→1

E
[
T SRPT-k

]
E [T SRPT-1]

≤ 1,

which follows immediately from Theorem 2.6.1 and Lemma 2.7.2.

Theorem 2.7.1 and the optimality of SRPT-1 imply that SRPT-k is optimal in the heavy-traffic
limit.
Corollary 2.7.1. In an M/G/k with any service requirement distribution S such that E[S2(logS)+]
is finite,

lim sup
ρ→1

E
[
T SRPT-k

]
E [T P ]

≤ 1

for any scheduling policy P .
Recall from (2.3) that Theorem 2.6.1 implies E

[
T SRPT-k

]
≤ E [H(S)]. Similarly, letting

I(x) =

∫ x

0
λt2fS(t) dt

2(1− ρ≤x)2
+

kρ≤xx

1− ρ≤x

+

∫ x

0

k

1− ρ≤t

dt,

Theorem 2.6.2 implies E
[
T SRPT-k

]
≤ E [I(S)]. Lemma 2.7.2 and the optimality of SRPT-1

imply that these bounds on SRPT-k’s mean response time are tight as ρ→ 1.
Corollary 2.7.2. In an M/G/k with any service requirement distribution S such that E[S2(logS)+]
is finite,

lim
ρ→1

E [H(S)]

E [T SRPT-k]
= lim

ρ→1

E [I(S)]

E [T SRPT-k]
= 1.

Proof. After applying Theorem 2.6.1, Lemma 2.7.2, and the optimality of SRPT-1, we know that

lim
ρ→1

E [H(S)]

E [T SRPT-k]
= 1.

All that remains is to show I(x) ≤ H(x). This holds because∫ x

0
λt2fS(t) dt

2(1− ρ≤x)2
≤ E

[
W SRPT-1(x)

]
by the standard analysis of W SRPT-1(x) [196], and

kρ≤xx

1− ρ≤x

+

∫ x

0

k

1− ρ≤t

dt ≤ 2kx

1− ρ≤x

= E [B≤x(2kx)] .

As an illustration of the optimality of SRPT-k, we plot the ratio E
[
T SRPT-k

]
/E
[
T SRPT-1

]
in

Figure 2.6. The solid orange lines show simulation results for this ratio. For the dashed blue
lines, we used our analysis from Theorem 2.6.2 as an upper bound on E

[
T SRPT-k

]
, and divided

by the known results for E
[
T SRPT-1

]
. The important feature to notice in Figure 2.6 is that as

system load ρ approaches 1, both our analytic bound and the simulation converge to 1.
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Figure 2.6: The plots above show the ratio E
[
T SRPT-k

]
/E
[
T SRPT-1

]
. Observe that as ρ → 1,

both our bound and the simulation converge to a ratio of 1. Our simulations of this ratio are the
solid orange curves. Our analytic upper bounds derived in Theorem 2.6.2 are the dashed blue
curves. We use k = 10 servers. The service requirement distribution S is Uniform(0, 2) in the
left plot and a Hyperexponential distribution with E[S] = 1 and C2 = 10 in the right plot. We
only simulate up to ρ = 0.9975 due to long convergence times.

2.8 Other Scheduling Policies
We generalize our analysis to give the first response time bounds on several additional multiserver
scheduling policies. Using the bounds, we prove optimality results for each policy as ρ→ 1. For
each policy P , we generalize the usual M/G/1 policy, written P -1, to a multiserver policy for the
M/G/k, written P -k, by preemptively serving the k jobs with highest priority at any time.

• Preemptive Shortest Job First (PSJF) prioritizes the jobs with smallest original size. PSJF-
1 achieves performance comparable to SRPT despite not tracking every job’s age [104].

• Remaining Size Times Original Size (RS) prioritizes the jobs with the smallest product
of original size and remaining size. RS is also known as Size Processing Time Product
(SPTP). RS-1 is optimal for minimizing mean slowdown [117].

• Foreground-Background (FB) prioritizes the jobs with smallest age, meaning the jobs that
have been served the least so far. FB is also known as Least Attained Service (LAS).
When the service requirement distribution has decreasing hazard rate, FB-1 minimizes
mean response time among all scheduling policies that do not have access to job sizes
[185].

We give the first response time bounds for PSJF-k, RS-k and FB-k. We then use these bounds
to prove the following optimality results, under mild assumptions on the service requirement
distribution:

• In the ρ→ 1 limit, PSJF-k and RS-k minimize mean response time among all scheduling
policies (see Theorems 2.8.2 and 2.8.4).

• In the ρ → 1 limit, FB-k minimizes mean response time under the same conditions as
FB-1 (see Theorem 2.8.6).

Our analyses follow the same steps as in Section 2.6.
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• Use the four categories of work to bound the response time of the tagged job j in terms of
virtual work and steady-state relevant work.

• Bound virtual work.
• Bound steady-state relevant work.

Because different scheduling policies prioritize jobs differently, we use a different definition of
“relevant jobs” for each policy. Under PSJF-k and RS-k, the definition of relevant jobs is very
similar to that for SRPT-k, allowing us to use familiar tools such as relevant busy periods B≤x(·).
However, FB-k uses a somewhat different definition of relevant jobs, resulting in a few changes
to the analysis.

Finally, in Section 2.8.4, we discuss why our technique does not generalize to the First-Come,
First-Served (FCFS) scheduling policy.

2.8.1 Preemptive Shortest Job First (PSJF-k)
As usual, we consider a tagged job j of size x. Under PSJF-k, another job ℓ is relevant to j if ℓ
has original size at most x. With this definition of relevance, we divide work into the same four
categories as in Section 2.6, namely tagged, old, new, and virtual. This bounds the response time
of j by

T PSJF-k ≤st B≤x

(
x+ RelWorkPSJF-k

≤x + VirtWorkPSJF-k(x)
)
. (2.5)

The proof of Lemma 2.6.1 works nearly verbatim for PSJF-k, so

VirtWorkPSJF-k(x) ≤ (k − 1)x. (2.6)

The analysis of steady-state relevant work is similar to that in Section 2.6.2. We consider
a pair of systems experiencing the same arrival sequence: System 1, which uses PSJF-1, and
System k, which uses PSJF-k. We define ∆PSJF-k

≤x (t) to be the difference between the amounts of
relevant work in the two systems at time t. We then bound ∆PSJF-k

≤x (t).
Lemma 2.8.1. The difference in relevant work between Systems 1 and k is bounded by

∆PSJF-k
≤x (t) ≤ (k − 1)x.

Proof. We define few-jobs intervals and many-jobs intervals as in Section 2.6.2. The case where
t is in a few-jobs interval is simple: there are at most k − 1 relevant jobs in System k at time t,
each of remaining size at most x, so

∆PSJF-k
≤x (t) ≤ (k − 1)x.

Suppose instead that t is in a many-jobs interval. Let time s be the start of the many-jobs
interval containing t. By essentially the same argument as in the proof of Lemma 2.6.2,4

∆PSJF-k
≤x (t) ≤ ∆PSJF-k

≤x (s).

4In fact, the argument for PSJF is slightly simpler than that for SRPT, because irrelevant jobs never become
relevant under PSJF.
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It thus suffices to show ∆PSJF-k
≤x (s) ≤ (k−1)x. The only way a many-jobs interval can start under

PSJF-k is for a relevant job to arrive while System k has k − 1 relevant jobs. The same arrival
occurs in System 1, so

∆PSJF-k
≤x (s) = ∆PSJF-k

≤x (s−) ≤ (k − 1)x

because s−, the instant before s, is in a few-jobs interval.

Theorem 2.8.1. In an M/G/k, the response time of a job of size x under PSJF-k is bounded by

T PSJF-k(x) ≤st W
PSJF-1(x) +B≤x((2k − 1)x).

Proof. By (2.5), (2.6), and Lemma 2.8.1,

T PSJF-k(x) ≤st B≤x

(
RelWorkPSJF-1

≤x + (2k − 1)x
)

= B≤x

(
RelWorkPSJF-1

≤x

)
+B≤x((2k − 1)x).

The waiting time in PSJF-1 is

W PSJF-1(x) = B≤x

(
RelWorkPSJF-1

≤x

)
,

giving the desired bound.

With the bound derived in Theorem 2.8.1, we can prove that PSJF-k also minimizes mean
response time in the heavy-traffic limit.
Theorem 2.8.2. In an M/G/k with any service requirement distribution S such that E[S2(logS)+]
is finite,

lim
ρ→1

E
[
T PSJF-k

]
E [T SRPT-1]

= 1.

Proof. From Theorem 2.8.1, we know that

T PSJF-k(x) ≤st W
PSJF-1(x) +B≤x((2k − 1)x)

However, W PSJF-1(x) ≤st W
SRPT-1(x) [233]. Therefore,

T PSJF-k(x) ≤st W
SRPT-1(x) +B≤x((2k − 1)x)

≤st W
SRPT-1(x) +B≤x(2kx)

This bound on T PSJF-k(x) is the same as the bound on T SRPT-k(x) given in Theorem 2.6.1. The
rest of the proof proceeds as in the proof of Theorem 2.7.1.

As in Corollary 2.7.1, Theorem 2.8.2 and the optimality of SRPT-1 imply that PSJF-k is
optimal in the heavy-traffic limit.
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2.8.2 Remaining Size Times Original Size (RS-k)
As usual, we consider a tagged job j of size x. When j has remaining size y, another job ℓ is
relevant to j if the product of ℓ’s original size and remaining size is at most xy. In particular, if ℓ
is relevant to j, then ℓ’s remaining size is at most x. With this definition of relevance, we divide
work into the same four categories as in Section 2.6, namely tagged, old, new, and virtual. This
bounds the response time of j by

T RS-k ≤st B≤x

(
x+ RelWorkRS-k

≤x + VirtWorkRS-k(x)
)
. (2.7)

The proof of Lemma 2.6.1 works nearly verbatim for RS-k, so

VirtWorkRS-k(x) ≤ (k − 1)x. (2.8)

The analysis of steady-state relevant work is similar to that in Section 2.6.2. We consider
a pair of systems experiencing the same arrival sequence: System 1, which uses RS-1, and
System k, which uses RS-k. We define ∆RS-k

≤x (t) to be the difference between the amounts of
relevant work in the two systems at time t. We then bound ∆RS-k

≤x (t).
Lemma 2.8.2. The difference in relevant work between Systems 1 and k is bounded by

∆RS-k
≤x (t) ≤ kx.

Proof. Even though RS uses a definition of relevant jobs different from SRPT’s, the proof is
analogous to that of Lemma 2.6.2.

Theorem 2.8.3. In an M/G/k, the response time of a job of size x under RS-k is bounded by

T RS-k(x) ≤st W
RS-1(x) +B≤x(2kx).

Proof. By (2.7), (2.8), and Lemma 2.8.2,

T RS-k(x) ≤st B≤x

(
RelWorkRS-1

≤x + 2kx
)

≤st B≤x

(
RelWorkRS-1

≤x

)
+B≤x(2kx).

The waiting time in RS-1 is

W RS-1(x) = B≤x

(
RelWorkRS-1

≤x

)
,

giving the desired bound.

With the bound derived in Theorem 2.8.3, we can prove that RS-k also minimizes mean
response time in the heavy-traffic limit.
Theorem 2.8.4. In an M/G/k with any service requirement distribution S such that E[S2(logS)+]
is finite,

lim
ρ→1

E
[
T RS-k

]
E [T SRPT-1]

= 1.
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Proof. From Theorem 2.8.3, we know that

T RS-k(x) ≤st W
RS-1(x) +B≤x(2kx)

However, W RS-1(x) ≤st W
SRPT-1(x) [233]. Therefore,

T RS-k(x) ≤st W
SRPT-1(x) +B≤x(2kx)

This bound on T RS-k(x) is the same as the bound on T SRPT-k(x) given in Theorem 2.6.1. The rest
of the proof proceeds as in the proof of Theorem 2.7.1.

As in Corollary 2.7.1, Theorem 2.8.4 and the optimality of SRPT-1 imply that RS-k is optimal
in the heavy-traffic limit.

We have so far shown response time bounds for SRPT-k, PSJF-k, and RS-k that are strong
enough to prove asymptotic optimality in heavy traffic. We conjecture that similar bounds and
optimality results hold for multiserver variants of any policy in the SMART class [233], which
includes SRPT, PSJF, and RS.

2.8.3 Foreground-Background (FB-k)

The analysis of FB-k proceeds similarly to the analysis of SRPT-k but with a few more changes
than were needed for PSJF-k and RS-k. To analyze PSJF-k and RS-k, we followed the same
outline as Section 2.6 with a small change to the definition of relevant jobs. In particular, we
reused the notion of relevant busy periods B≤x(·) from Definition 2.5.3. In contrast, as we will
see shortly, FB-k has a significantly different definition of relevant jobs, so the definition of
relevant busy periods will also change.

As usual, we consider a tagged job j of size x. Recall that FB prioritizes the jobs of smallest
age, or attained service. When j arrives, its age is 0, so it has priority over all other jobs in the
system. However, as j is served, its age increases and its priority gets worse. The key to the
usual single-server analysis of FB is that to define relevant work, we have to look at j’s worst
future priority [104, 195, 201]. This worst priority occurs when j has age x, an instant before
completion, giving us the following definition of relevant jobs.
Definition 2.8.1. Suppose job j has original size x. Under FB-k, a job ℓ is relevant to job j if ℓ
has age at most x. Otherwise ℓ is irrelevant to j.

There is an important difference between the notions of relevance for SRPT-k and FB-k.
Under SRPT-k, each arriving job starts as either relevant or irrelevant to j and remains that way
for j’s entire time in the system. In contrast, under FB-k, every new arrival is at least temporarily
relevant to j. Specifically, if a new arrival ℓ has size at most x, then ℓ is relevant to j for its entire
time in the system. If ℓ instead has size greater than x, then ℓ is relevant to j only until it reaches
age x, at which point it becomes irrelevant. This observation motivates the definition of relevant
busy periods for FB-k.
Definition 2.8.2. Under FB-k, a relevant busy period for a job of size x started by (possibly
random) amount of work V , written Bx(V ), is the amount of time it takes for a work-conserving
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system that starts with V work to become empty, where every arrival’s service is truncated at
age x. A relevant busy period has expectation

E [Bx(V )] =
E [V ]

1− ρx
.

Above, ρx is the relevant load for a job of size x, which is the total load due to relevant jobs. Its
value is

ρx = λE [min(S, x)] ,

because each arrival is relevant only until it reaches age x.
We make a similar modification to the definition of steady-state relevant work.

Definition 2.8.3. The steady-state relevant work for a job of size x under FB-k, written RelWorkFB-k
x ,

is the sum of remaining truncated sizes of all jobs observed at a random point in time. A job’s
remaining truncated size is the amount of time until it either completes or reaches age x.

Armed with Definitions 2.8.1, 2.8.2, and 2.8.3, we divide work into the same four categories
as in Section 2.6, namely tagged, old, new, and virtual. This bounds the response time of j by

T FB-k ≤st Bx

(
x+ RelWorkFB-k

x + VirtWorkFB-k(x)
)
. (2.9)

The proof of Lemma 2.6.1 works nearly verbatim for FB-k, so

VirtWorkFB-k(x) ≤ (k − 1)x. (2.10)

The analysis of steady-state relevant work is similar to that in Section 2.6.2. We consider
a pair of systems experiencing the same arrival sequence: System 1, which uses FB-1, and
System k, which uses FB-k. We define ∆FB-k

x (t) to be the difference between the amounts of
relevant work in the two systems at time t. We then bound ∆FB-k

x (t).
Lemma 2.8.3. The difference in relevant work between Systems 1 and k is bounded by

∆FB-k
x (t) ≤ (k − 1)x.

Proof. Even though FB uses a definition of relevant jobs different from PSJF’s,5 the proof is
analogous to that of Lemma 2.8.1.

Theorem 2.8.5. In an M/G/k, the response time of a job of size x under FB-k is bounded by

T FB-k(x) ≤st Bx

(
RelWorkFB-k

x + (2k − 1)x
)
.

Proof. Combining (2.9), (2.10), and Lemma 2.8.3 yields the desired bound.

Note that the waiting time under FB-1 is always zero, as a new job immediately receives
service, so we do not phrase the bound in terms of waiting time.

5We draw an analogy with PSJF rather than SRPT because under both FB and PSJF, irrelevant jobs never become
relevant.
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With the bound derived in Theorem 2.8.3, we can prove that the mean response time of FB-
k approaches that of FB-1 in the heavy-traffic limit. We make use of prior work on the mean
response time of FB in heavy traffic [121]. Let

W (x) = E
[
Bx(RelWork

FB-k
x )

]
R(x) = E [Bx(x)] .

W (x) and R(x) are not the mean waiting and residence times of a job of size x under FB because
waiting time is always zero, but they play roughly analogous roles in the standard analysis of FB
[201, Section 5].
Lemma 2.8.4. In an M/G/1 with any service requirement distribution S which is unbounded with
tail function of upper Matuszewska index less than −2,

lim
ρ→1

E [R(S)]

E [T FB-1]
= 0.

Proof. Recall that

W (x) = E
[
Bx(RelWork

FB-k
x )

]
R(x) = E [Bx(x)] .

The standard analysis of FB-1 [104, 195] shows

E
[
T FB-1] = E [W (S)] + E [R(S)] .

Kamphorst and Zwart [121, Equation (4.3)] decompose E
[
T FB-1

]
into a sum of three functions

of the load ρ,
E
[
T FB-1] = X(ρ) + Y (ρ) + Z(ρ),

such that

E [W (S)] = Z(ρ) +
1

2
Y (ρ)

E [R(S)] = X(ρ) +
1

2
Y (ρ).

Kamphorst and Zwart [121, Section 4.1.1] then show that

lim
ρ→1

X(ρ)

Z(ρ)
= lim

ρ→1

Y (ρ)

Z(ρ)
= 0,

which implies the desired limit

lim
ρ→1

E [R(S)]

E [T FB-1]
= lim

ρ→1

X(ρ) + 1
2
Y (ρ)

X(ρ) + Y (ρ) + Z(ρ)
= 0.

Theorem 2.8.6. In an M/G/k with any service requirement distribution S which is unbounded
with tail function of upper Matuszewska index less than −2,

lim
ρ→1

E
[
T FB-k

]
E [T FB-1]

= 1.
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Proof. The standard analysis of FB-1 [104, 195] shows

E
[
T FB-1] = E [W (S)] + E [R(S)] ,

whereas Theorem 2.8.5 implies

E
[
T FB-k] ≤ E [W (S)] + (2k − 1)E [R(S)] ,

so the result follows by Lemma 2.8.4.

Righter and Shanthikumar [185] show that when the job size distribution S has decreasing
hazard rate, FB-1 is optimal for minimizing response time among all scheduling policies that
do not have access to job sizes. Theorem 2.8.6 implies that in the heavy-traffic limit, FB-k is
optimal in the same setting.6

Corollary 2.8.1. In an M/G/k with any service requirement distribution S which (a) is un-
bounded, (b) has decreasing hazard rate, and (c) has tail function of upper Matuszewska index
less than −2,

lim
ρ→1

E
[
T FB-k

]
E [T P ]

≤ 1

for any scheduling policy P that does not have access to job sizes.

2.8.4 What about First-Come, First-Served?
Having seen the success of our modified tagged job analysis for a variety of policies, it is natural
to ask: does a similar analysis work for the multiserver First-Come, First-Served policy (FCFS-
k)?

Unfortunately, our technique does not work for FCFS-k. To see why, let us take a look at
what our analyses of SRPT-k, PSJF-k, RS-k, and FB-k have in common. A central component of
all four analyses is bounding the difference in relevant work between two systems experiencing
the same arrival sequence, one using a single-server policy P -1 and another using its k-server
variant P -k. These bounds are given in Lemmas 2.6.2, 2.8.1, 2.8.2, and 2.8.3. All four lemmas
have similar two-step proofs.

• First, they bound the number of relevant jobs both during few-jobs intervals and at the start
of many-jobs intervals. For all four policies, this bound is at most k.

• Second, they bound the relevant work contributed by each relevant job. For all four poli-
cies, this bound is x.

When we try to prove analogous bounds for FCFS-k, we can still bound the number of relevant
jobs by k, but the relevant work contributed by each relevant job is unbounded.

The definition of relevant jobs is the crucial difference between FCFS-k and the policies we
analyze. Consider the jobs relevant to a tagged job j of size x.

• Under SRPT-k, PSJF-k, and RS-k, only some jobs are relevant to j, and all such jobs have
size at most x.

6It has been claimed that FB-k is optimal for arbitrary arrival sequences when the service requirement distribution
has decreasing hazard rate [236, Theorem 2.1]. However, the proof has an error. See Section 2.3.5.
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• Under FB-k, while all jobs might be relevant to j, they are only temporarily relevant, each
contributing at most x relevant work.

• However, under FCFS-k, all jobs in the system when j arrives are permanently relevant
to j.

This means that if the service requirement distribution S is unbounded, our worst-case technique
is insufficient for bounding the difference in relevant work between FCFS-1 and FCFS-k.

2.9 Technical Conclusion
We give the first stochastic bound on the response time of SRPT-k (see Section 2.6). Using
this bound, we show that SRPT-k has asymptotically optimal mean response time in the heavy-
traffic limit (see Section 2.7). We generalize our analysis to give the first stochastic bounds on
the response times of the PSJF-k, RS-k and FB-k policies, and we use these bounds to prove
asymptotic optimality results for all three policies (see Section 2.8).

To achieve these results, we strategically combine stochastic and worst-case techniques.
Specifically, we obtain our bounds using a modified tagged job analysis. Traditional tagged
job analyses for single-server systems rely on properties that do not hold in multiserver systems,
notably work conservation. To make tagged job analysis work for multiple servers, we use two
key insights.

• We introduce the concept of virtual work (see Section 2.6), which makes the system appear
work-conserving while the tagged job is in the system. We give a worst-case bound for
virtual work.

• We compare the multiserver system with a single-server system of the same service capac-
ity. We show that even in the worst case, the steady state amount of relevant work under
SRPT-k is close to the steady state amount of relevant work under SRPT-1.

Applying these two insights to the tagged job analysis gives a stochastic expression bounding
response time.

One direction for future work is to apply our technique to a broader range of scheduling
policies. In particular, we conjecture that out results generalize to the SMART class of policies
[233], which includes SRPT, PSJF, and RS. Another direction is to improve our response time
bounds under low system load. While our bounds are valid for all loads, they are only tight for
load near capacity.

2.10 General Conclusion

2.10.1 Summary
We start by summarizing the results proven in this chapter, as well as the key techniques behind
these results.

Results: Multiserver SRPT is optimal We prove that the multiserver SRPT scheduling
policy achieves the best possible mean response time when the load on the system is high and
queue lengths become long (See Theorem 2.7.1).
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We also prove an upper bound on the mean response time of multiserver SRPT, in the form
of a clean mathematical formula (See Theorem 2.6.2). This upper bound proves that multiserver
SRPT achieves similar mean response time to that of resource-pooled SRPT, in which all k
servers are combined into a single ultra-fast server, which runs single-server SRPT. This bound
becomes tight as load becomes high. The bound is looser at moderate traffic. Further research
will be needed to more tightly bound multiserver SRPT’s mean response time under moderate
traffic.

Simulation result: SRPT is near-optimal under moderate traffic While our results focus
on heavy traffic, we show via simulation in Fig. 2.6 that SRPT-k is also very good for moderate
traffic. In particular, we see that the ratio between SRPT-k and our lower bound of SRPT-1 is
near 1 even at moderate loads. This implies that SRPT-k is near optimal even at moderate loads.

Results: Other scheduling policies We prove similar optimality results and upper bounds
for several more multiserver scheduling policies in Section 2.8: Preemptive Shortest Job First
(PSJF), which preemptively prioritizes the job with least original size, Remaining Size Times
Original Sizes (RS), which is a halfway point between PSJF and SRPT, and Foreground Back-
ground (FB), which preemptively prioritizes the job with least service already completed. FB
is useful in settings where job sizes are unknown to the server [182, 183], in contrast to the
known-size setting that is the focus of this chapter. We prove that each of these policies achieves
optimal mean response time when load becomes high, in each policy’s respective setting. We
also prove upper bounds on each policy’s mean response time, proving that each policy resem-
bles its respective resource-pooled variant. These bounds also become tight as load becomes
high.

Key techniques To understand the response time of a specific job, we start by understanding
work in the system is relevant to the specific job: what work the specific job must wait behind,
before it can reach service. The work that is relevant to a specific job of size x consists of
other jobs with remaining size smaller than x. Our first proof step, in Section 2.6.2, focuses on
bounding the random distribution of relevant work in the system.

To bound relevant work, we need a baseline to compare against. For that baseline, we use a
resource-pooled system, where all k original servers are combined into one gigantic server which
runs k times as fast. In the resource-pooled system, we consider the SRPT scheduling policy. We
show that multiserver SRPT can nearly keep up with resource-pooled SRPT, and has not much
more relevant work than resource-pooled SRPT.

Coupling analysis To compare the multiserver and resource-pooled systems, we set up a
coupling: We send the same stochastic arrival process to both systems, and analyze the amount
of relevant work in both systems. To perform this analysis, we split up time into two kinds of
intervals: Periods where there are fewer than k relevant jobs, and periods where there are at least
k relevant jobs. We show that in each period of time, the difference in relevant work between the
coupled multiserver SRPT and resource-pooled SRPT systems is small: No more than k job’s
worth of work.

Finally, we use this bound on relevant work to show that multiserver SRPT has nearly the
same mean response time as resource-pooled SRPT (See Theorem 2.6.1).
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2.10.2 Subsequent results

The techniques discussed in Section 2.10.1 have been extended to a wide variety of multiserver
scheduling systems:
Unknown sizes and size estimates: While this chapter focuses on the setting where job sizes

are known to the scheduler, one can apply the same proof structure to a setting where job
sizes are unknown to the scheduler, or where only size estimates are known. A natural
scheduling policy for this setting is the Gittins index policy, which is known to achieve
optimal mean response time in the M/G/1 [72, 73, 199]. We first use this proof structure to
analyze the monotonic Gittins policy, a close variant of Gittins, in the M/G/k with unknown
sizes [204]. We prove the first heavy-traffic optimality results in those settings. We next
use this proof structure, with a variety of new techniques, to analyze the Gittins policy
in the M/G/k, handling unknown sizes, size estimates, and a variety of other scheduler-
information settings, proving yet more heavy-traffic optimality results [202].

General interarrival times, setup times: Building off of the multiserver Gittins results, Hong
and Scully [114] then extended the analysis to handle general i.i.d. interarrival time dis-
tributions, as well as general setup times, where servers take time to reactivate after going
idle.

Dispatching: This chapter focuses on the central-queue setting, where every job is available to
be served at any server. Another important multiserver model is the dispatching model,
where each arriving job must be immediately sent to the server where it will eventually be
served. The dispatching model is important for capturing the behavior of webservers, cloud
computing systems, and other large-scale computing systems. Building on the techniques
in this chapter, we prove the first results on optimal scheduling in the dispatching model in
Chapter 3.

Multiserver-jobs: This chapter focuses on a setting where each job requires one server. In
many real-world computing systems, such as supercomputers and datacenters, different
jobs may require dramatically different amounts of resources, modeled as different num-
bers of servers. The resulting model, the multiserver-job model, is the focus of Chapters 4
to 6, with Chapter 5 most directly building off of this chapter’s results to prove the first
optimal scheduling results in the multiserver-job model.

2.10.3 Future directions

Improving upon SRPT-k This chapter proves that SRPT-k achieves optimal mean response
time in heavy traffic. At the opposite extreme, with no arrivals, SRPT-k is likewise known to
achieve optimal mean response time [77, Section 4.4.1] [152]. For moderate arrival rates, no
such optimality results are known. As we discuss in Section 8.3.1, SRPT-k does not achieve
optimal mean response time in the M/G/k, under specific combinations of arrival rate and job
size distribution.

In particular, we have found alternative scheduling policies which outperform SRPT-k by up
to 1% under specific combinations of job size distribution and load. SRPT-k appears to make
suboptimal decisions when there are just over k jobs in the system. In such situations, SRPT-k
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will rapidly complete jobs, bringing the total number of jobs remaining below k, and wasting
some server capacity. When jobs later arrive, there is more work in the system than necessary,
potentially hurting mean response time.

We therefore ask:
Can we devise a scheduling policy with lower mean response time than SRPT-k,
across all arrival rates and job size distributions?

This lower arrival rate will be asymptotically negligible, but could be significant at intermediate
loads.

Stronger lower bonds At intermediate loads, outside of heavy traffic and light traffic, we
know little about optimal scheduling in the M/G/k: The upper bounds on SRPT-k proven in this
chapter are not tight. There are two natural lower bounds: SRPT-1, from the resource-pooled
system, and kE[S], the mean service time. At intermediate loads, around ρ = 1 − 1/k, neither
of these bounds are tight. Proving stronger lower bounds on all policies, not just SRPT-k, is of
particular interest. We discuss the problem of proving stronger lower bounds in the M/G/k in
Section 8.3.2.

2.10.4 Potential impact

We now explore potential directions in which the multiserver SRPT policies could be applied,
and discuss ways of adapting the multiserver SRPT policy to real-world environments.

Adopting SRPT into Multiserver Computing Systems

Our analysis of SRPT in multiserver systems shows that the SRPT policy can dramatically lower
response times compared to other scheduling policies, and that SRPT is in fact optimal for mean
response time under sufficiently heavy load. Our hope is that our results will lead computing
system operators to adopt SRPT scheduling in their systems.

However, the road from theoretical results to adoption requires overcoming several hurdles.
These include:

1. Verifying that multiserver SRPT achieves low mean response time under the moderate
loads that real computing systems operate under. In [78], we show that multiserver SRPT
empirically achieves low mean response time under moderate load in simulation. Proving
that this behavior always holds is a major open problem. For practical applications, trace-
based simulation may be most useful.

2. Ensuring that SRPT won’t “starve” large jobs by dramatically increasing their mean re-
sponse times. While SRPT will remain stable, and jobs won’t literally take forever to
complete, SRPT may dramatically increase the mean response time of the largest jobs, un-
der certain job size distributions. This question has been investigating in the single-server
setting, both in theory and practice. In the single-server setting, this behavior primarily
occurs under low variability job size distributions. Under the high variability job size dis-
tributions commonly found in real computing systems, every size of job can benefit from
being prioritized ahead of even larger jobs, resulting in mean response time improvement
at every size [17]. This theoretical result has been replicated in practice in the setting
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of webserver scheduling [41, 110]. More research is needed to determine whether these
results transfer from the single-server setting to the multiserver setting.

3. Dealing with unknown sizes. Often only approximate size information is known, rather
than the exact size information utilized by SRPT. If the estimate quality distribution is
known, the Gittins index policy can be applied, as discussed in Section 2.10.2. In the more
common situation where approximation quality is unknown, the SRPT-B policy is a good
option. Under the SRPT-B policy, a job’s priority improves until it has received its esti-
mated service duration, after which the priority reduces back down again. We introduced
and analyzed SRPT-B in the single-server setting with approximations of unknown quality
[205]. We believe its advantageous properties likely carry over to the multiserver setting.

4. Handling jobs with differing importance. In the real world, some jobs may be far more
latency-sensitive than others. This is naturally modeled by introducing a holding cost
per second waited for each job. The natural generalization of SRPT to this setting is to
prioritize jobs according to the ratio of holding cost to remaining size. The results of this
chapter generalize to prove optimality in that setting as well. Specifically, if the ratio of
largest to smallest holding cost is bounded, the techniques of this chapter suffice, while
Gittins-based techniques along the lines of our Gittins-k result may be helpful to handle
the setting of general holding costs [202].

SRPT for Scheduling People at Multiple Servers

One might think that if SRPT is so good at reducing mean response time for computing systems,
it should also be applied to scheduling people. For example, if two people show up to a post
office, and one needs to mail a letter while the other needs to fill out some complicated shipping
paperwork, we should first serve the “short job”, the person who won’t take as long.

Challenge: Fairness However, challenges arise when serving people. People have strong
opinions about fairness: If everyone is put in the same line, and then certain people are pulled for
out for favored treatment, people will get upset. However, if one makes the scheduling structure
transparent to the people involved, it will help quell that anger and incentivize people towards
more helpful behavior. For instance, there could be two lines, one for quick interactions, and
one for slow interactions: Few people would begrudge someone in a different line being served
before them.

Another measure of fairness is the mean response time of jobs of a specific size, such as the
mean response time of large jobs. In the single-server scheduling setting, research has shown that
SRPT gives jobs of size x a mean response time approximately proportional to x [17, 109]. This
proportional response time is also described as constant slowdown, where a job’s slowdown is
the ratio between its response time and its size. Constant slowdown is considered a desirable goal
from the perspective of fairness. We prove in Theorems 2.6.1 and 2.6.2 that under multiserver
SRPT, a job of size x achieves similar mean response time as under resource-pooled SRPT. Thus,
multiserver SRPT achieves the same approximately constant slowdown as singe-server SRPT.

Challenge: Preemption Preemption must be considered more carefully as well. Unlike
computer jobs, it doesn’t work to preempt people unpredictably. Instead, one should only pre-
empt jobs that are taking a long time, and only when the reason for doing so is clear, such as
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when a large line has built up. Long jobs holding up long queues is the only situation where
preemption is very important to mean response time.

In addition to limiting the amount of preemption performed, when scheduling people, one
must consider overheads due to preemption. While computer jobs can often be paused and re-
sumed with negligible overhead, people are not so simple. Often, some time may be required to
pick up where an interaction left off. Sometimes, one might need to restart the interaction en-
tirely. Research is ongoing into characterizing when preemption is worthwhile in the presence of
overheads [177, 200]. Under sufficiently high-variability conditions, even preemption involving
a complete restart can lower mean response times [103].
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Chapter 3

Optimal Dispatching and Scheduling:
Guardrails

This chapter is based on the paper “Load Balancing Guardrails: Keeping Your Heavy Traffic on
the Road to Low Response Times”, published in ACM SIGMETRICS 2019, written with my
coauthors Ziv Scully and Mor Harchol-Balter [82].

3.1 General Introduction
Modeling dispatching in computer systems Modern computing systems typically contain
huge numbers of servers, allowing them to process many jobs at once. At this large scale, hold-
ing jobs in a central queue, as studied in Chapter 2, can become a bottleneck. Instead, these
multiserver systems often dispatch an arriving job to a specific server, immediately upon arrival.
Dispatching is often performed in webservers, remote-procedure-call (RPC) systems, and many
other large computing systems.

Dispatching model To capture the behavior of these computing systems, we can use an
immediate-dispatch queueing model, depicted in Fig. 3.1. New jobs arrive at the dispatcher,
which sends that job to a queue at a server. At the server, a scheduling policy decides which

Figure 3.1: The multiserver dispatching model, with FCFS and SRPT scheduling. Each job
arrives to the dispatcher, which sends the job to one of the k servers. The scheduling policy
determines which job to serve, out of the jobs present at a given server. FCFS serves the oldest
job, which SRPT servers the job with smallest remaining size.
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of the jobs in the local queue to run. Both the dispatching policy and the scheduling policy
are important to the performance of the system. Two important scheduling policies, which we
depict in Fig. 3.1, are First-Come First-Served (FCFS) and Shortest Remaining Processing Time
(SRPT). FCFS serves the oldest job in the queue, while SRPT preemptively serves the job of least
remaining size in the queue. A job’s size is its service duration. Preemption refers to pausing
a job in service, putting it back in the same queue it came from, and returning to it later. We
are interested in the performance effects of these dispatching and scheduling policies. A natural
measure of the combined performance of a dispatching policy and a scheduling policy is the
system’s mean response time, the mean time from when a job arrives to when it completes.

Prior focus: Dispatch to FCFS The are many important dispatching policies which have
been theoretically analyzed in combination with FCFS scheduling at each server. Such policies
include Join-Shortest-Queue (JSQ), which sends each job to to the server with the fewest jobs at
its queue, and Least-Work-Left (LWL), which sends each job to the server with the least work,
where the work at a server is the total remaining size of all jobs at the server. LWL dispatching
to FCFS queues achieves the same response time distribution as the central-queue FCFS policy.
Certain optimality results are known for JSQ [227, 234] and LWL [102] dispatching, but only
under the assumptions that FCFS scheduling is used at the servers, and that the dispatcher does
not know the size of the arriving job. These policies emphasize balancing the load of arriving
jobs across all of the servers, ensuring that all servers are busy as often as possible.

If the size of the arriving job is known to the dispatcher, intentional load imbalancing can
be beneficial [107, 197]. The Size-Interval-Task-Assignment (SITA) policy employs such load
imbalancing. SITA statically routes jobs according to their sizes, sending smaller jobs to the
servers with less total load, ensuring better response time for those small jobs, with the goal
of improving overall response time [108]. SITA can outperform even LWL dispatching under
certain loads and job size distributions [112]. Optimal dispatching to FCFS queues using size
information is still an area of active research [237].

Prior work: Dispatch to Processor Sharing A practical setting that is far less studied in the
literature is dispatching jobs to servers running Processor Sharing (PS). Under Processor Sharing,
the server is split equally among all jobs in the queue. The combination of JSQ dispatching and
PS service was studied in [96], and further studied in [94]. Interestingly, it has been shown that
the mean response time under this combination is insensitive to the job size distribution [94].

Optimal dispatching + scheduling Mean response time is only well-understood in dis-
patching systems where the scheduling policy is either FCFS or PS. However, it is straight-
forward to show that SRPT scheduling is the optimal scheduling policy for minimizing mean
response time, in combination with any dispatching policy. This optimality follows from the
worst-case optimality of SRPT [194]. Surprisingly, policies with great performance under FCFS
scheduling, such as LWL and SITA, can have terrible performance under SRPT scheduling, as
shown in Fig. 3.4. Thus, the focus of this chapter is:

What dispatching policy minimizes mean response time, given SRPT scheduling at
each server?

Key idea: Same mix of jobs at each server To achieve optimal mean response time, we
invent a novel class of dispatching policies, “guardrails” policies. The key idea behind guardrails
policies is to balance not just the total amount of work at each server as in LWL, but also the
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Figure 3.2: The guardrails/SRPT system, showing the combination of a generic guardrails dis-
patching policy and the SRPT scheduling policy, and the SRPT-1 system. In the SRPT-1 system,
the SRPT policy is used in a resource-pooled setting, with one gigantic server which runs as fast
as all of the original servers combined.

amount of work of each kind of job at each server. Imagine labeling every job as small, medium,
or large, based on its size. Guardrails policies ensure that each server has the same amount of
work of small jobs, the same amount of work of medium jobs, and so forth. As a result, if any
small jobs are present in the system, all servers will work on small jobs, improving response
times. This property is at the heart of our optimality results for guardrails policies.

Key idea: Resource pooling Our key proof technique is to compare the guardrails/SRPT
combination against a resource-pooled system where all k servers have been combined into one
gigantic server. This gigantic server can serve any job at k times the speed of the original k
servers. This resource-pooled system is strictly more capable than the original k-server dispatch-
ing system: One could split the gigantic server’s efforts k ways, to emulate the original system,
but one also has far more options. The resource-pooled system forms a lower bound that we can
compare the guardrails/SRPT combination against. Specifically, we compare against the SRPT
policy for the resource-pooled system, which we call the SRPT-1 system. We show both systems
in Fig. 3.2. Using the fact that each server has the same mix of jobs as each other server, we
show that each server in the dispatching system operates like a miniature version of the SRPT-1
system. This forms the core of our proof of the optimality of the guardrails/SRPT system.

3.2 Technical Introduction

Load balancers are ubiquitous throughout computer systems. They act as a front-end to web
server farms, distributing HTTP requests to different servers. They likewise act as a front-end to
data centers and cloud computing pools, where they distribute requests among servers and virtual
machines.

In this chapter, we consider the immediate dispatch load balancing model, where each ar-
riving job is immediately dispatched to a server, as shown in Figure 3.3. The system has two
decision points:

(1) A dispatching policy decides how to distribute jobs across the servers.

(2) A scheduling policy at each server decides which job to serve among those at that server.
We ask:
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Figure 3.3: Two decision points within a load balancing system: (1) Pick the dispatching policy.
(2) Pick the scheduling policy for the servers.

What (1) dispatching policy and (2) scheduling policy should we use to minimize
mean response time of jobs?

We assume that the job arrival process is Poisson and that job sizes are i.i.d. from a general size
distribution. We assume jobs are preemptible with no loss of work. Finally, we assume that job
sizes are known at the time the job arrives in the system.

With these assumptions, the scheduling question turns out to be easy to answer: use Shortest-
Remaining-Processing-Time (SRPT) at the servers. No matter what dispatching decisions are
made, if we consider the sequence of jobs dispatched to a particular server, the policy which
minimizes mean response time for that server must be to schedule those jobs in SRPT order.
This follows from from the optimality of SRPT for arbitrary arrival sequences [194]. SRPT
scheduling is in fact already used in backend servers [110, 160]. Thus, in the remainder of this
chapter we assume SRPT is used at the servers.

The question remains: What dispatching policy minimizes mean response time given SRPT
service at the servers? While many dispatching policies have been considered in the litera-
ture, they have mostly been considered in the context of First-Come-First-Served (FCFS) or
Processor-Sharing (PS) scheduling at the servers. Popular dispatching policies include Ran-
dom routing [108, 156], Least-Work-Left (LWL) [29, 108, 112], Join-Shortest-Queue (JSQ) [24,
96, 227, 234], JSQ-d [29, 137, 156, 162], Size-Interval-Task-Assignment (SITA) [14, 62, 108],
Round-Robin (RR) [108, 143], and many more [7, 23, 46, 244]. However, only the simplest of
these policies, such as Random and RR, have been studied for SRPT servers [51, 104].

One might hope that the same policies that yield low mean response time when servers
use FCFS scheduling would also perform well when servers use SRPT scheduling. Unfortu-
nately, this does not always hold. For example, when the servers use FCFS, it is well-known
that LWL dispatching, which sends each job to the server with the least remaining work, out-
performs Random dispatching, which sends each job to a randomly chosen server. (We write
this as LWL/FCFS outperforms Random/FCFS.) However, the opposite can happen when the
servers use SRPT: as shown in the scenario in Figure 3.4, Random/SRPT can outperform
LWL/SRPT. Moreover, the performance difference is highly significant: Random/SRPT out-
performs LWL/SRPT by a factor of 5 or more under heavy load. This means that LWL is making
serious mistakes in dispatching decisions. We can therefore see that the heuristics that served us
well for FCFS servers can steer us awry when we use SRPT servers.
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Figure 3.4: Two dispatching policies: Random and LWL. Two scheduling policies: FCFS and
SRPT. FCFS scheduling at the servers yields higher mean response time as a function of load,
compared with SRPT scheduling at the servers. Random dispatching is worse than LWL dis-
patching under FCFS scheduling at the servers, but Random dispatching is better than LWL
dispatching under SRPT scheduling at the servers. Simulation uses k = 10 servers. Size distri-
bution shown is Bimodal with jobs of size 1 with probability 99.95% and jobs of size 1000 with
probability 0.05%.

In this chapter, we introduce guardrails, a new technique for creating dispatching poli-
cies. Given an arbitrary dispatching policy P, applying guardrails results in an improved pol-
icy Guarded-P (G-P). We prove that the improved policy G-P has asymptotically optimal mean
response time in the heavy traffic limit, no matter what the initial policy P is. We also show
empirically that adding guardrails to a policy almost always decreases its mean response time
(and never significantly increases it), even outside the heavy-traffic regime.

As an example of the power of guardrails, Figure 3.5 shows the performance of guarded
versions of LWL and Random, namely G-LWL and G-Random. The guardrails stop LWL from
making serious mistakes and dramatically improve its performance. Random dispatching also
benefits from guardrails. Moreover, the guarded policies have a theoretical guarantee: In the
limit as load ρ→ 1, G-Random/SRPT and G-LWL/SRPT converge to the optimal mean response
time. In contrast, unguarded Random/SRPT is a factor of k worse than optimal in the ρ → 1
limit, where k is the number of servers.

This chapter makes the following contributions:
• In Section 3.3, we introduce guardrails, a technique for improving any dispatching policy.
• In Section 3.5, we bound the mean response time of any guarded dispatching policy when

paired with SRPT scheduling at the servers. Using that bound, we prove that any guarded
policy has asymptotically optimal mean response time as load ρ→ 1, subject to a technical
condition on the job size distribution roughly equivalent to finite variance.

• In Section 3.6, we consider a wide variety of common dispatching policies. We empirically
show that guardrails improve most of these at all loads.

• In Section 3.8, we discuss practical considerations and extensions of guardrails, including
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Figure 3.5: Adding guardrails to LWL yields much lower mean response time as a function of
load. Guardrails yield a factor of 3 improvement even at ρ = 0.8, and a factor of 7 improvement
at ρ = 0.9. Adding guardrails to Random also yields significantly lower mean response time as a
function of load. Simulation uses k = 10 servers. Size distribution shown is Bimodal with jobs
of size 1 with probability 99.95% and jobs of size 1000 with probability 0.05%. The guardrails
have tightness g = 2.

guardrails for large systems, which may have multiple dispatchers and network de-
lays;

guardrails for scheduling policies other than SRPT; and

guardrails for heterogeneous servers.

We give a more technical summary of our theoretical results and review related work in Sec-
tion 3.4.

3.3 Load Balancing Guardrails

3.3.1 What are Guardrails?
Traditional dispatching policies aim to equalize load at each server. However, minimizing mean
response time requires more than balancing load: we also need to find a way to favor small
jobs. Given that every server uses SRPT scheduling, if we can spread out the small jobs across
the servers, then we ensure that the maximum possible number of servers are working on the
smallest jobs available. Our idea is to take any dispatching policy and add “guardrails” that force
it to spread out small jobs across the servers.

In the discussion above, “small” is a relative term. Whatever the size of the smallest jobs
currently in the system, we would like to spread out jobs near that size across the servers. To do
this, we define the rank of a job of size x to be

r = ⌊logc x⌋, (3.1)

where c > 1 is a constant called the guardrail rank width (see Section 3.3.1). The idea of
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guardrails is to spread out the jobs within a rank r across the servers, doing so separately for
each rank r. To do so, for each rank r and each server s, the dispatcher stores a guardrail work
counter Gr

s. When dispatching a job of size x to server s, the dispatcher increases Gr
s by x, with r

given by (3.1).1 Guardrails are a set of constraints which ensure that no two rank r work counters
are ever too far apart.
Definition 3.3.1. A dispatching policy satisfies guardrails with tightness g if at all times

|Gr
s −Gr

s′| ≤ gcr+1

for all ranks r and all pairs of servers s and s′, where c > 1 is the same constant as in (3.1). The
tightness can be any constant g ≥ 1.

We sometimes say that a particular dispatching decision satisfies (respectively, violates)
guardrails if it satisfies (respectively, violates) the constraints imposed by Definition 3.3.1.

Choosing the Guardrail Rank Width c

The choice of c in (3.1) heavily affects the performance of policies satisfying guardrails.
• If c is too large, then guardrails may not differentiate between jobs of different sizes.
• If c is too small, then guardrails may misguidedly differentiate between jobs of similar

sizes. This could allow one server to receive multiple small jobs of different ranks while
another receives none.

To balance this tradeoff, we set c to be a function of load ρ:

c = 1 +
1

1 + ln 1
1−ρ

. (3.2)

This particular value of c is chosen to enable the heavy-traffic optimality proof for any dispatch-
ing policy satisfying guardrails.

3.3.2 Guarded Policies: How to Augment Dispatching Policies with Guardrails
Guardrails as described in Definition 3.3.1 are a set of constraints on dispatching policies that we
will use to guarantee bounds on mean response time (see Section 3.5). However, the constraints
alone do not give a complete dispatching policy. To define a concrete dispatching policy satis-
fying guardrails, we start with an arbitrary dispatching policy P and augment it to create a new
policy, called Guarded-P (G-P), which satisfies guardrails.

Roughly speaking, G-P tries to dispatch according to P, but if dispatching to P’s favorite
server would violate guardrails, G-P considers P’s second-favorite server, and so on. Below are
guarded versions of some common dispatching policies:

• G-Random dispatches to a random server among those which satisfy guardrails.
• G-LWL dispatches to the server with the least remaining work among those which satisfy

guardrails.

1The dispatcher also occasionally decreases work counters, as explained in Section 3.3.3.
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• Round-Robin (RR) can be seen as always dispatching to the server that has least recently
received a job, so G-RR dispatches to the server that has least recently received a job
among those which satisfy guardrails.

Given an arbitrary dispatching policy P, Algorithm 1 formally defines G-P. We assume that
P is specified by procedure DispatchP which, when passed a job of size x and a set of servers S,
returns a server in S to which P would dispatch a job of size x. The key to Algorithm 1 is
that instead of calling DispatchP with the set of all servers, we pass it a restricted set of servers
Ssafe ⊆ S such that dispatching to any server in Ssafe will satisfy guardrails. Ssafe is never empty
because x ≤ gcr+1, so Ssafe will always contain the server s′ of minimal Gr

s′ .
Algorithm 1. The Guarded-P (G-P) policies is defined as follows:

Given a dispatching policy P , tightness g ≥ 1, set of servers S, and rank width c = 1 +
1

1+ln 1
1−ρ

,

InitializeG-P(): When the system starts, for each rank r ∈ Z and each server s ∈ S, initialize the
counter Gr

s = 0.

DispatchG-P(x): Whenever a job of size x arrives,

• Let the job’s rank r be ⌊logc x⌋.
• Let the minimal counter value Gmin be the minimum over servers s′ ∈ S of Gr

s′ .
• Let the safe set Ssafe be the set of servers {s′ ∈ S | Gr

s′ + x ≤ Gmin + gcr+1}.
• Dispatch to the server s chosen by dispatch policy P: s = DispatchP(x,Ssafe)
• Increment the counter: Gr

s ← Gr
s + x.

ResetG-P(s): Whenever a server s becomes empty, for every rank r ∈ Z, set the counter Gr
s =

mins′∈S G
r
s′ , the minimum rank-r counter value in the system.

Algorithm 1 is phrased in terms of for loops over all ranks r. While there are infinitely many
ranks in theory, it is simple to represent all of the work counters in finite space by representing
most of them implicitly.

3.3.3 Resets

Algorithm 1 includes a procedure, ResetG-P, which we have not yet explained. As defined so far,
guardrails effectively spread out small jobs across the servers, but they have an unfortunate side
effect: they sometimes prevent dispatches to empty servers. This is because the work counters Gr

s

as defined so far depend only on the dispatching history, not the current server state.
Because dispatching to empty servers is desirable, we would like to ensure that dispatching to

an empty server never violates guardrails. We accomplish this by having servers reset whenever
they becomes empty. When a server s resets, for each rank r, we decrease Gr

s to match the
minimum among all rank r work counters. Because all rank r jobs have size less than gcr+1, by
Definition 3.3.1, dispatching to a server that has just reset will never violate guardrails.
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3.4 Technical Summary

3.4.1 System Model
We will study a k-server load balancing system with Poisson arrivals at rate λ jobs per second and
job size distribution X . Our optimality results (Theorem 3.4.2) assume that E

[
X2 log2X1{X > 1}

]
is finite. This assumption is roughly equivalent to finite variance. We adopt the convention that
each of the k servers serves jobs at speed 1/k. As a result, a job of size x requires kx service
time to complete. We have chosen to define the speed of a server this way because we will later
compare the k-server system with a single server system of speed 1, and this convention allows
us to directly apply standard results on single server systems. We define the system load ρ for
both a single-server system and the k-server system by

ρ = λE [X] < 1.

Load does not depend on k because the total service rate of all k servers combined is 1.
Throughout, we assume that the dispatching policy is a guarded policy, as defined in Algo-

rithm 1. We consider two different scheduling policies that might be used at the servers:
SRPT The policy that serves the job of least remaining size.

Priority-c The preemptive class-based priority policy in which a job’s class is its rank, as defined
by (3.1). That is, a job of size x has rank r = ⌊logc x⌋, and Priority-c serves the job of
minimal rank. Within each rank, jobs are served FCFS.

3.4.2 Theorem Overview
Our overall goal is to prove, for any dispatching policy P, the asymptotic optimality of the policy
Guarded-P (G-P) with respect to mean response time, given SRPT scheduling at the servers. We
refer to this joint dispatch/scheduling policy as G-P/SRPT.

Rather than studying G-P/SRPT directly, we instead bound mean response time under G-P/Priority-c.
By the optimality of SRPT scheduling [194], the mean response time under G-P/Priority-c gives
an upper bound on the mean response time under G-P/SRPT.
Theorem 3.4.1. For any dispatching policy P, consider the policy G-P with tightness g. The
expected response time for a job of size x under G-P/Priority-c is bounded by

E [T (x)]G-P/Priority-c ≤
λ
2

∫ cr+1

0
t2fX(t)dt

(1− ρcr)(1− ρcr+1)
+

(4c+ 2)gk cr+1

c−1
+ kx

(1− ρcr)
,

where
• fX(·) is the probability density function of X ,
• c is the guardrail rank width
• r = ⌊logc x⌋ is the rank of a job of size x, and
• ρy = λ

∫ y

0
tfX(t) dt is the load due to jobs of size ≤ y.

We prove Theorem 3.4.1 in Section 3.5.3.
Using the bound in Theorem 3.4.1, we show that the mean response time of the G-P/Priority-c

system converges to that of a single-server SRPT system in the heavy-traffic limit.
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Theorem 3.4.2. Consider a single-server SRPT system whose single server is k times as fast as
each server in the load balancing system. For any dispatching policy P, consider the policy G-P
with any constant tightness. Then for any size distribution X such that E

[
X2 log2X1{X > 1}

]
<

∞, the mean response times of G-P/SRPT, G-P/Priority-c, and (single-server) SRPT converge
as load approaches capacity:

lim
ρ→1

E [T ]G-P/SRPT

E [T ]SRPT =
E [T ]G-P/Priority-c

E [T ]SRPT = 1.

We prove Theorem 3.4.2 in Section 3.5.4.
Theorem 3.4.2 relates the mean response times of G-P/SRPT and single-server SRPT, which

has the optimal mean response time among all single-server policies [194]. But a single-server
system can simulate a load balancing system running any joint dispatching/scheduling pol-
icy P′/S′. As a result, the mean response time under single-server SRPT is a lower bound for
the mean response time under P′/S′.

Using that bound, Theorem 3.4.2 implies the following relationship between the mean re-
sponse times of G-P/SRPT and P′/S′.
Corollary 3.4.1. For any dispatching policy P consider the policy G-P with any constant tight-
ness. Consider any joint dispatching/scheduling policy P′/S′. Then for any size distribution X
such that E

[
X2 log2X1{X > 1}

]
<∞, the mean response times of G-P/SRPT and G-P/Priority-c

are at least as small as the mean response time of P′/S′ as load approaches capacity:

lim
ρ→1

E [T ]G-P/SRPT

E [T ]P
′/S′ =

E [T ]G-P/Priority-c

E [T ]P
′/S′ ≤ 1.

3.4.3 Relationship to Prior Work
Our guardrails provide the first mechanism to augment an arbitrary dispatching policy to ensure
size balance at all job size scales. Moreover, we give the first bound on the mean response time
of load balancing systems with SRPT scheduling at the servers. Using this bound, we prove that
guarded dispatching policies have asymptotically optimal mean response time in the ρ→ 1 limit
for any constant number of servers. Our guarded policies are the first dispatching policies known
to have this property for general job size distributions.

We are not the first to consider load balancing systems with SRPT scheduling at the servers.
Avrahami and Azar [12] consider a problem analogous to ours but in a worst-case setting, assum-
ing adversarial arrival times and job sizes, in contrast to our stochastic setting. Their dispatching
policy, which they call IMD, divides jobs into size ranks in a manner similar to our size ranks,
except with the width of each rank set to c = 2. IMD dispatches each rank r job to the server that
has received the least work of rank r jobs in the past. Put another way, IMD is the policy that
keeps maximally tight guardrails with no other underlying policy. Avrahami and Azar prove that
IMD is O(logP ) competitive with an optimal migratory offline algorithm, where P is the ratio
between the largest and smallest job sizes in this system. Note that P can be arbitrarily large for
general job size distributions. Unfortunately, the O(logP ) competitive ratio is optimal for any
online dispatching policy in the worst-case setting [135]. Our result is much stronger thanks to
our stochastic setting.
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Down and Wu [51] also consider a stochastic setting with SRPT scheduling at the servers,
and they also propose a dispatching policy that balances jobs of different sizes across the servers.
Their analysis does not result in any formula for mean response time but instead uses a dif-
fusion limit argument to show optimality in heavy traffic. However, this limits their results to
discrete job size distributions, thus excluding many practically important continuous job size
distributions. In fact, Down and Wu [51, Section 5] observe empirically that their policy per-
forms poorly for Bounded Pareto job size distributions. In contrast, our analysis shows that any
guarded dispatching policy is heavy-traffic optimal for general job size distributions, including
Bounded Pareto (see Figure 3.6). Finally, the Down and Wu [51] result provides no insight into
mean response time outside of the heavy traffic regime, whereas we derive a mean response time
bound that is valid for all loads.

3.5 Analysis of Guarded Policies
In this section, we analytically bound the mean response time of a load balancing system using
an arbitrary guarded dispatching policy G-P paired with SRPT scheduling. We then show that
our bound implies that G-P/SRPT minimizes mean response time in heavy traffic.

3.5.1 Preliminaries and Notation

We use a tagged job analysis: we analyze the expected response time of a particular “tagged”
job, which we call j, arriving to a steady-state system. The expected response time of j is equal
to the system’s mean response time by the PASTA property [235].

Instead of studying G-P/SRPT directly, we analyze G-P/Priority-c, which yields an upper
bound on the mean response time under G-P/SRPT. Studying Priority-c simplifies the analysis
because the priority classes of Priority-c match the ranks used by guardrails.

Suppose that j has rank r and is dispatched to server s. Under Priority-c scheduling, there
are two types of work that might delay job j:

• The current relevant work at server s when j arrives. This is the total amount of remaining
work at server s due to jobs of rank ≤ r.

• The future relevant work due to arriving jobs dispatched to server s while j is in the system.
These are the jobs dispatched to s of rank < r (that is, rank ≤ r − 1).

We use the following notation, where “rank r work” denotes work due to jobs of rank r.
• W r

s (t) denotes the current amount of rank r work at server s at time t.
• V r

s (t) denotes the total amount of rank r work that has ever been dispatched to server s up
to time t. In particular, the amount of rank r work dispatched to s during a time interval
(t1, t2) is V r

s (t2)− V r
s (t1).

• Gr
s(t) denotes the rank r guardrail work counter for server s at time t (see Algorithm 1).

Specifically, Gr
s(t) is defined as follows:2

2The notations t− and t+ below refer to “just before” and “just after” time t. More formally, they refer to the
left and right limits, respectively, of an expression that is piecewise-continuous in t.
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If a rank r job of size x is dispatched to server s at time t, we set Gr
s(t

+) = Gr
s(t

−)+x.

If a server s becomes empty of all jobs at time t, we set Gr
s(t

+) = mins′ G
r
s′(t

−),
where s′ ranges over all servers. We call this a reset of server s.

Otherwise, Gr
s(t) does not change.

We write W≤r
s (t), V ≤r

s (t), and G≤r
s (t) to denote the corresponding quantities where we consider

all ranks ≤ r, rather than just rank r, and similarly for superscript < r.
Occasionally, we will be talking about the total work in the system, or the total work that has

arrived, summed over all servers. In that case, we will drop the subscript s, writing W≤r(t) or
V ≤r(t). Finally, we write W≤r to denote the stationary distribution of the amount of rank ≤ r
work in the whole system.

3.5.2 Bounding Response Time: Key Steps
Our goal in this section is to bound the expected response time of a tagged job j under G-P/Priority-c.
We assume that j has size x and rank r = ⌊logc x⌋. We first bound current relevant work, then
move on to bound future relevant work.

We begin by showing that guardrails ensure that any two servers have a similar amount of
remaining rank ≤ r work.
Lemma 3.5.1. For any dispatching policy P, consider the dispatching policy G-P with tight-
ness g. In a G-P/Priority-c system, the difference in remaining rank ≤ r work between any two
servers s and s′ at any time t is bounded by

W≤r
s (t)−W≤r

s′ (t) ≤ 2gcr+2

c− 1
,

where c is the guardrail rank width.
We prove Lemma 3.5.1 in Section 3.5.3.
Roughly speaking, Lemma 3.5.1 shows that guarded policies do a good job of spreading out

rank ≤ r work across the servers. This is important because if the rank ≤ r work is spread out
well, then whenever there is a large amount of rank ≤ r work in the system, all the servers are
doing rank ≤ r work. This allows us to bound the amount of rank ≤ r work in the k-server
G-P/Priority-c system in terms of the remaining rank ≤ r work in an M/G/1/Priority-c system
with a single server that runs k times as fast.
Lemma 3.5.2. For any dispatching policy P, consider the dispatching policy G-P with tight-
ness g. The total amount of remaining rank≤ r work in a G-P/Priority-c system is stochastically
bounded relative to the remaining rank≤ r work in a M/G/1/Priority-c system whose server runs
k times as fast:

W≤r ≤st W
≤r
M/G/1/Priority-c +

2gkcr+2

c− 1
,

where c is the guardrail rank width.
We prove Lemma 3.5.2 in Section 3.5.3.
Combining Lemmas 3.5.1 and 3.5.2 yields a bound on the amount of remaining rank ≤ r

work at any server s, thus bounding the current relevant work.

72



We now turn to bounding future relevant work. Suppose that the tagged job j is dispatched
to server s. The fact that guardrails spread out relevant work across the servers means that
while j is in the system s will not receive much more rank < r work than other servers, thus
bounding future relevant work. Combining this with our bound on current relevant work yields
the following bound on j’s response time.
Lemma 3.5.3. For any dispatching policy P, consider the dispatching policy G-P with tight-
ness g. In a G-P/Priority-c system, the response time of a job of size x is stochastically bounded
by

T (x) ≤st B<r

(
W≤r

M/G/1/Priority-c +
(4c+ 2)gkcr+1

c− 1
+ kx

)
,

where c is the guardrail rank width, r = ⌊logc x⌋ is the rank of the job, and B<r(w) is the length
of a busy period comprising only jobs of rank < r started by work w.

We prove Lemma 3.5.3 in Section 3.5.3.
Taking expectations in Lemma 3.5.3 and applying the well-known formula for E

[
W≤r

M/G/1/Priority-c

]
,

we obtain Theorem 3.4.1.
Theorem 3.4.1. For any dispatching policy P, consider the policy G-P with tightness g. The
expected response time for a job of size x under G-P/Priority-c is bounded by

E [T (x)]G-P/Priority-c ≤
λ
2

∫ cr+1

0
t2fX(t)dt

(1− ρcr)(1− ρcr+1)
+

(4c+ 2)gk cr+1

c−1
+ kx

(1− ρcr)
,

where
• fX(·) is the probability density function of X ,
• c is the guardrail rank width
• r = ⌊logc x⌋ is the rank of a job of size x, and
• ρy = λ

∫ y

0
tfX(t) dt is the load due to jobs of size ≤ y.

We prove Theorem 3.4.1 in Section 3.5.3.

3.5.3 Bounding Response Time: Proofs
Proof of Lemma 3.5.1

Lemma 3.5.1. For any dispatching policy P, consider the dispatching policy G-P with tightness g.
In a G-P/Priority-c system, the difference in remaining rank ≤ r work between any two servers
s and s′ at any time t is bounded by

W≤r
s (t)−W≤r

s′ (t) ≤ 2gcr+2

c− 1
,

where c is the guardrail rank width.

Proof. Let t0 be the most recent time up to time t when server s was empty of rank ≤ r work.
Note that t0 may equal t. We will bound the difference in rank ≤ r work at the two servers at
time t by comparison with time t0.

The remaining rank ≤ r work present at time t is

73



(i) the remaining rank ≤ r work present at time t0
(ii) plus rank ≤ r work due to arrivals in the interval [t0, t]

(iii) minus rank ≤ r work processed during the interval.

We consider these three quantities first for server s, then for server s′.
We begin with server s:

(i) By the definition of t0, there is no remaining rank ≤ r work at server s.
(ii) The amount of work that arrives to server s over the interval [t0, t] is V ≤r

s (t)− V ≤r
s (t0).

(iii) The amount of rank ≤ r work processed during the interval [t0, t] is equal to t−t0
k

, because
the server s processes work at speed 1/k, s has rank ≤ r work available throughout the
interval, and the Priority-c scheduling policy always prioritizes lower rank work.

These quantities give us the remaining rank ≤ r work at server s at time t:

W≤r
s (t) = (V ≤r

s (t)− V ≤r
s (t0))−

t− t0
k

. (3.3)

Because server s was never empty at any time during (t0, t], the guardrail work counters were
never reset to the system-wide minimums during [t0, t]. As a result, the changes in G≤r

s (·) and
V ≤r
s (·) over the interval [t0, t] must be equal. We can apply this fact to (3.3):

W≤r
s (t) = (G≤r

s (t)−G≤r
s (t0))−

t− t0
k

. (3.4)

We now turn to server s′:

(i) The remaining rank ≤ r work present at server s′ at time t0 is non-negative.
(ii) The amount of work that arrives to server s over the interval [t0, t] is V ≤r

s′ (t)− V ≤r
s′ (t0).

(iii) The amount of rank ≤ r work processed over the interval [t0, t] is at most t−t0
k

.

Therefore, we may lower bound the remaining rank ≤ r work at server s′ at time t:

W≤r
s′ (t) ≥ (V ≤r

s′ (t)− V ≤r
s′ (t0))−

t− t0
k

. (3.5)

The change in G≤r
s′ (·) over the interval [t0, t] is no more than the change in V ≤r

s′ (·) over the same
interval, since any reset to the system-wide minimum can only lead to a decrease in G≤r

s′ (t). We
can apply this fact to (3.5):

W≤r
s′ (t) ≥ (G≤r

s′ (t)−G≤r
s′ (t0))−

t− t0
k

. (3.6)

Combining (3.4), (3.6), and the guardrail constraint in Definition 3.3.1 yields the desired
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bound:

W≤r
s (t)−W≤r

s′ (t) ≤ (G≤r
s (t)−G≤r

s (t0))− (G≤r
s′ (t)−G≤r

s′ (t0))

≤ |G≤r
s (t)−G≤r

s′ (t)|+ |G
≤r
s (t0)−G≤r

s′ (t0)|

=
r∑

q=−∞

(|Gq
s(t)−Gq

s′(t)|+ |G
q
s′(t0)−Gq

s(t0)|)

≤
r∑

q=−∞

2gcq+1

=
2gcr+2

c− 1
.

Proof of Lemma 3.5.2

Lemma 3.5.2. For any dispatching policy P, consider the dispatching policy G-P with tight-
ness g. The total amount of remaining rank≤ r work in a G-P/Priority-c system is stochastically
bounded relative to the remaining rank≤ r work in a M/G/1/Priority-c system whose server runs
k times as fast:

W≤r ≤st W
≤r
M/G/1/Priority-c +

2gkcr+2

c− 1
,

where c is the guardrail rank width.

Proof. We consider two coupled systems receiving the same arrivals:

• a G-P/Priority-c system where each of the k servers runs at speed 1/k, and
• a M/G/1/Priority-c system where the single server runs at speed 1.

We will refer to the total amount of remaining rank ≤ r work in the G-P/Priority-c system as
W≤r(t), and the total amount of remaining rank ≤ r work in the M/G/1/Priority-c system as
W≤r

M/G/1/Priority-c(t).
It suffices to show that at any time t, we have the following bound on the difference in the

total amounts of remaining rank ≤ r work between the two systems:

W≤r(t) ≤ W≤r
M/G/1/Priority-c(t) +

2gkcr+2

c− 1
. (3.7)

To prove (3.7), we consider two cases:

(i) At least one server in the G-P/Priority-c system that has no remaining rank ≤ r work at
time t.

(ii) All servers in the G-P/Priority-c system have remaining rank ≤ r work at time t.

In case (i), suppose server s′ in the G-P/Priority-c system has no remaining rank ≤ r work at
time t. By Lemma 3.5.1, we know that at all servers s,

W≤r
s (t) = W≤r

s (t)−W≤r
s′ (t) ≤ 2gcr+2

c− 1
.
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Summing over all k servers implies (3.7).
We now turn to case (ii). Let t0 be the most recent time before t when a G-P/Priority-c server

had no remaining rank ≤ r work. Note that case (i) applies at time t0. Therefore, it suffices
to show that the difference in remaining rank ≤ r work between the two systems is no more at
time t than at time t0:

W≤r(t)−W≤r
M/G/1/Priority-c(t) ≤ W≤r(t0)−W≤r

M/G/1/Priority-c(t0). (3.8)

By definition of t0, for the duration of entire time interval (t0, t), each of the k servers in the
G-P/Priority-c system processes rank ≤ r work at speed 1/k, for a total of t− t0 work. This is at
least as much rank≤ r work as the M/G/1/Priority-c system processes during (t0, t), because the
single server’s speed is 1. Due to coupling, the two systems receive the same amount of rank≤ r
work during (t0, t), implying (3.8).

Proof of Lemma 3.5.3

Lemma 3.5.3. For any dispatching policy P, consider the dispatching policy G-P with tightness g.
In a G-P/Priority-c system, the response time of a job of size x is stochastically bounded by

T (x) ≤st B<r

(
W≤r

M/G/1/Priority-c +
(4c+ 2)gkcr+1

c− 1
+ kx

)
,

where c is the guardrail rank width, r = ⌊logc x⌋ is the rank of the job, and B<r(w) is the length
of a busy period comprising only jobs of rank < r started by work w.

Proof. Let

• j be the tagged job,
• x be j’s size and r = ⌊logc x⌋ be j’s rank,
• aj and dj be j’s arrival and departure times, respectively, and
• s be the server to which j is dispatched.

The time at which job j departs, dj , can be calculated as the time required for server s to
complete the following work:

• relevant work already present at time aj , namely W≤r
s (aj);

• plus all relevant work that arrives at s while j is in the system, namely V <r
s (t)− V <r

s (aj);
• plus j’s size, namely x.

Let t ≥ aj be an arbitrary time while j is in the system. Because each server runs at speed 1/k,
the amount of work that server s has completed by time t is (t− aj)/k. Writing

Zs(t) = W≤r
s (aj) + (V <r

s (t)− V <r
s (aj))

gives the following expression for j’s departure time dj:

dj = inf

{
t

∣∣∣∣ t− aj
k
≥ Zs(t) + x

}
. (3.9)
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To bound dj , we first bound Zs(t). Let

Z(t) =
1

k

∑
s′

Zs′(t) (3.10)

be the average value of Zs′(t) over all servers s′, and let

Zmaxdiff
s (t) = max

s′
(Zs(t)− Zs′(t))

be the maximum difference between Zs(t) and Zs′(t) over all servers s′. Observe that

Zs(t) ≤ Z(t) + Zmaxdiff
s (t).

Combining this with (3.9) gives a bound on dj:

dj ≤ inf

{
t

∣∣∣∣ t− aj
k
≥ Z(t) + Zmaxdiff

s (t) + x

}
. (3.11)

To simplify (3.11), our next step is to bound Zmaxdiff
s (t). We start by expanding Zs(t)−Zs′(t):

Zs(t)− Zs′(t) = (W≤r
s (aj)−W≤r

s′ (aj)) + (V <r
s (t)− V <r

s (aj))− (V <r
s′ (t)− V <r

s′ (aj)).

We are left with an expression in terms of the rank < r work dispatched to each server. We
would like to turn this into an expression in terms of guardrail work counters, which will allow
us to apply the constraints given by Definition 3.3.1. Consider the time interval (aj, t). Job j is
present at server s for the duration of the interval, so server s does not reset, implying

V <r
s (t)− V <r

s (aj) = G<r
s (t)−G<r

s (aj). (3.12)

In contrast, server s′ may reset during (aj, t). When a reset occurs at some time treset, G<r
s′ (treset)

decreases while V <r
s′ (treset) stays constant. Furthermore, G<r

s′ (t
′) and V <r

s′ (t′) change in the same
way at all other times t′, so

V <r
s′ (t)− V <r

s′ (aj) ≥ G<r
s′ (t)−G<r

s′ (aj). (3.13)

Applying (3.12), (3.13), and Lemma 3.5.1 to (3.12) yields the bound

Zs(t)− Zs′(t) ≤
2gcr+2

c− 1
+ (G<r

s (t)−G<r
s (aj))− (G<r

s′ (t)−G<r
s′ (aj)).

Because G-P is a guarded policy, we can apply the guardrail constraints from Definition 3.3.1:

Zs(t)− Zs′(t) ≤
2gcr+2

c− 1
+ (G<r

s (t)−G<r
s′ (t))− (G<r

s (aj)−G<r
s′ (aj))

=
2gcr+2

c− 1
+

r−1∑
q=−∞

(Gq
s(t)−Gq

s′(t)) + (Gq
s′(aj)−Gq

s(aj))

≤ 2gcr+2

c− 1
+

r−1∑
q=−∞

(gcq+1 + gcq+1)

=
(2c+ 2)gcr+1

c− 1
.
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We have bounded Zs(t)−Zs′(t) for arbitrary s′ and hence bounded Zmaxdiff
s (t). Substituting into

(3.11) yields

dj ≤ inf

{
t

∣∣∣∣ t− aj
k
≥ Z(t) +

(2c+ 2)gcr+1

c− 1
+ x

}
.

Recalling the definition of Z(t) from (3.10) gives us

dj ≤ inf

{
t

∣∣∣∣ t− aj ≥ W≤r(aj) + (V <r(t)− V <r(aj)) +
(2c+ 2)gkcr+1

c− 1
+ kx

}
.

Because the arrival process to the overall system is a Poisson process, we can rewrite this in
terms of a “relevant” busy period, meaning one containing only jobs of rank < r:

dj − aj ≤ B<r

(
W≤r(aj) +

(2c+ 2)gkcr+1

c− 1
+ kx

)
.

The Poisson arrival process also implies, by the PASTA property [235], that the amount of
relevant work j sees on arrival, namely W≤r(aj), is drawn from the steady-state distribution,
namely W≤r, so

T (x) ≤st B<r

(
W≤r +

(2c+ 2)gkcr+1

c− 1
+ kx

)
.

Applying Lemma 3.5.2 to W≤r yields the desired bound.

Remark 3.5.1. Note we can prove Lemmas 3.5.1 and 3.5.3 using only the following properties
of resets:

• A server only resets when it is empty.
• When a server resets, its work counters do not increase.
• The guardrail constraints in Definition 3.3.1 continue to hold after each reset.

In particular, this means that resets are optional for proving our response time bounds, so the
bounds hold even if the dispatcher chooses to omit some resets. This is helpful when implement-
ing guarded dispatching policies in large systems (see Sections 3.8.1 and 3.8.2).

Proof of Theorem 3.4.1

Theorem 3.4.1. For any dispatching policy P, consider the policy G-P with tightness g. The
expected response time for a job of size x under G-P/Priority-c is bounded by

E [T (x)]G-P/Priority-c ≤
λ
2

∫ cr+1

0
t2fX(t)dt

(1− ρcr)(1− ρcr+1)
+

(4c+ 2)gk cr+1

c−1
+ kx

(1− ρcr)
,

where
• fX(·) is the probability density function of X ,
• c is the guardrail rank width
• r = ⌊logc x⌋ is the rank of a job of size x, and
• ρy = λ

∫ y

0
tfX(t) dt is the load due to jobs of size ≤ y.
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Proof. Recall the conclusion of Lemma 3.5.3,

T (x) ≤ B<r

(
W≤r

M/G/1/Priority-c +
(4c+ 2)gkcr+1

c− 1
+ kx

)
. (3.14)

Standard results on busy periods [104] state that

E [B<r(Y )] =
E [Y ]

1− ρcr
,

and standard results on the single-server Priority-c system[104] give the expected steady-state
remaining rank ≤ r work:

E
[
W≤r

M/G/1/Priority-c

]
=

λ
2

∫ cr+1

0
t2fX(t)dt

(1− ρcr+1)
.

Taking expectations of (3.14) and applying these standard results yields the desired bound.

We will also need a lemma relating the single-server Priority-c system to the single-server
PSJF system:
Lemma 3.5.4. For any job size distribution, the mean response time of a single-server Priority-c
system is no more than c+2

√
c− 1 times the mean response time of a single-server PSJF system:

E [T ]Priority-c ≤ (c+ 2
√
c− 1)E [T ]PSJF .

Proof. We will consider a new random variable, D, the delay due to a job. D is defined for
scheduling policies that assign every job a fixed priority, like Priority-c and PSJF. For a given
job j of size x, Dj is

• the amount j delays other jobs, namely x times the number of jobs with lower priority than
j in the system when j arrives,

• plus the amount other jobs that arrived before j delay j, namely the total remaining size of
jobs with higher priority than j in the system when j arrives,

• plus j’s size.

Note that the response time of a job ℓ is equal to ℓ’s size, plus the amount ℓ is delayed by
jobs that arrived before ℓ, plus the amount ℓ is delayed by jobs that arrive after ℓ. Each of those
amounts of time is accounted for in the delay of exactly one job. As a result, the sum of the
delays of the jobs in a busy period equals the sum of the response times of those jobs. Therefore,
in steady state, mean response time and mean delay are equal:

E [T ] = E [D] .

Therefore, it suffices to show that

E [D]Priority-c ≤ (c+ 2
√
c− 1)E [D]PSJF .

Let us consider a pair of coupled systems receiving the same arrivals: A single-server system
with PSJF scheduling, and a single-server system with Priority-c scheduling.
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Note that PSJF and Priority-c both prioritize all jobs of lower ranks over all jobs of higher
ranks. As a result, both coupled systems will server jobs of the same ranks at the same times,
and will always have the same amount of remaining work of each rank.

Let us consider the expected delay due to a particular “tagged” job j, arriving to a steady-
state system. The expected delay due to j is equal to each system’s mean delay by the PASTA
property [235]. Let j be a job of size x with rank r = logc x.

The delay due to j, Dj , is a summation over each job in the system at the moment j arrives.
Let Dq

j be the delay caused by the interaction of j and jobs of rank q that are in the system when
j arrives, including j’s size in Dr

j . Then we can write Dj in terms of the Dq
j s:

Dj =
∞∑

q=−∞

Dq
j .

Therefore, it suffices to show for all ranks q that

E
[
Dq

j

]Priority-c ≤ (c+ 2
√
c− 1)E

[
Dq

j

]PSJF
. (3.15)

Let Xj′ denote the original size of a job j′, and let Rj′ denote the remaining size of j′. Let Jq

denote the set of jobs of rank q in the system at the time j arrives. Let N q denote the number of
jobs of rank q in the system at the time j arrives.

We now consider three cases: q < r, q = r, and q > r.
Case 1: q < r. Because q < r, all jobs in rank q have higher priority than j. As a result,

under both PSJF and Priority-c, Dq
j is equal to the total remaining size of jobs of rank q:

Dq
j =

∑
j′∈Jq

Rj′ .

As noted above, this is equal in the two systems due to the coupling. This proves (3.15) in this
case.

Case 2: q = r. Because Priority-c uses First-Come-First-Served scheduling within a rank,
Dr

j in the Priority-c system is equal to the total remaining size of jobs of rank q:

Dr
j
(Priority-c) =

∑
j′∈Jr(Priority-c)

Rj′ .

In contrast, Dr
j in the PSJF system is equal to the total remaining size of jobs of rank r with size

at most x, plus x times the number of jobs of rank r with size more than x:

Dr
j
(PSJF) =

∑
j′∈Jr(PSJF)|Xj′≤x

Rj′ +
∑

j′∈Jr(PSJF)|Xj′>x

x.

Noting that x ≥ cr and the remaining size of any job of rank r is at most cr+1, we can lower
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bound Dr
j
(PSJF):

Dr
j
(PSJF) ≥

∑
j′∈Jr(PSJF)|Xj′≤x

Rj′ +
∑

j′∈Jr(PSJF)|Xj′>x

cr

≥
∑

j′∈Jr(PSJF)|Xj′≤x

Rj′ +
∑

j′∈Jr(PSJF)|Xj′>x

Rj′

c

≥ 1

c

∑
j′∈Jr(PSJF)

Rj′ .

As noted above,
∑

j′∈Jq Rj′ is equal in both systems. As a result,

E
[
Dq

j

]Priority-c ≤ cE
[
Dq

j

]PSJF
,

which proves (3.15) in this case.
Case 3: q > r. Because q > r, all jobs in rank q have lower priority that j. As a result, in

both systems,
Dq

j = xN q.

Also, note that x is independent of N q. Therefore, we simply need to show that

E [N q]Priority-c ≤ (c+ 2
√
c− 1)E [N q]PSJF .

However, it is possible for there to be twice as many jobs of rank q in the Priority-c system as in
the PSJF system, regardless of the value of c. In particular, there could be two rank q jobs in the
Priority-c system and one rank q job in the PSJF system, if one of the rank q jobs in the Priority-c
system has very little remaining size.

Let jold be the oldest job of rank q in the Priority-c system at a given time. Because Priority-c
serves jobs in FCFS order, only jold has been processed, so only jold can have remaining size
under cq. Therefore, we can bound the total remaining size of the rank q jobs in the Priority-c
system: ∑

j′∈Jq(Priority-c)

Rj′ ≥ Rjold + cq(N q(Priority-c) − 1).

Likewise, we can bound the total remaining size of the rank q jobs in the PSJF system:∑
j′∈Jq(PSJF)

Rj′ ≤ cq+1N q(PSJF).

Using the fact that
∑

j′∈Jq Rj′ is equal in both systems gives us

Rjold + cq(N q(Priority-c) − 1) ≤ cq+1N q(PSJF),

which rearranges to

N q(Priority-c) ≤ cN q(PSJF) + 1−
Rjold

cq
.
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This implies N q(Priority-c) ≤ cN q(PSJF)+1, which allows us to relate the expected numbers of jobs
in the systems:

E
[
N q(Priority-c)

]
≤ cE

[
N q(PSJF)

]
+ Pr{N q(Priority-c) > cN q(PSJF)}.

Recall that N q(Priority-c) and N q(PSJF) are both integers. This means that if N q(Priority-c) >
cN q(PSJF), then

N q(Priority-c) ≥ N q(PSJF) + 1.

As a result, if N q(Priority-c) > cN q(PSJF), then

N q(PSJF) + 1 ≤ cN q(PSJF) + 1−
Rjold

cq
,

meaning that
Rjold ≤ (c− 1)cqN q(PSJF). (3.16)

Therefore, we will show that either Pr{N q(Priority-c) > cN q(PSJF)} is small or E
[
N q(PSJF)

]
is large.

In either case, (3.16) will imply the desired bound (3.15).
Let us condition on Rjold . Because j is a Poisson arrival, j sees a time-average state of Rjold .

The (stochastically) smallest this distribution can be is the uniform distribution on [0, cq], because
the original size of a rank q job is at least cq. In particular, for any ℓ,

Pr{Rjold < ℓ} ≤ ℓ

cq
.

Let ρq be the probability that j sees a rank q job in the system on arrival. Let m be the largest
integer such that

Pr{N q(Priority-c) > cN q(PSJF)} ≥ m(c− 1)ρq.

Then (3.16) implies
Pr{Rjold ≤ cq(c− 1)N q(PSJF)} ≥ m(c− 1)ρq. (3.17)

Regardless of the correlation between N q(PSJF) and Rjold , we must have

Pr{N q(PSJF) ≥ m} ≥ (c− 1)ρq. (3.18)

This is because if N q(PSJF) ≤ m−1 on a particular arrival, and also N q(Priority-c) > cN q(PSJF), then
by (3.16),

Rjold ≤ (c− 1)cq(m− 1). (3.19)

But an arrival only sees job jold in the system at all with probability ρq. Moreover, conditional
on seeing a job jold at all, the arrival observes (3.19) with probability at most (c − 1)(m − 1),
because every rank q job has size at least cq. This means

Pr{Rjold ≤ (c− 1)cq(m− 1)} ≤ (m− 1)(c− 1)ρq,

which together with (3.17) implies (3.18).
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By a similar argument as (3.18),

Pr{N q(PSJF) ≥ m− z} ≥ (z + 1)(c− 1)ρq

for any integer z < m.
In addition, if there is a job in the Priority-c system then there is a job in the PSJF system:

Pr{N q(PSJF) ≥ 1} ≥ ρq.

We can combine these bounds on the probability of N q(PSJF) taking specific values to a derive a
bound on its expectation:

E
[
N q(PSJF)

]
≥
(m−1∑

z=0

(m− z)(c− 1)ρq

)
+ (ρq − ρqm(c− 1))

=

((m−1∑
z=0

(m− z − 1)(c− 1)

)
+ 1

)
ρq

=

(
1 +

m

2
(m− 1)(c− 1)

)
ρq.

We are now ready to show that either Pr{N q(Priority-c) > cN q(PSJF)} is small or E
[
N q(PSJF)

]
is

large by bounding their ratio for any value of m:

Pr{N q(Priority-c) > cN q(PSJF)}

E
[
N q(PSJF)

] ≤ (m+ 1)(c− 1)ρq
(1 + m

2
(m− 1)(c− 1))ρq

=
m+ 1

1
c−1

+ m
2
(m− 1)

.

This expression is maximized when

m =

√
2c

c− 1
− 1,

so

Pr{N q(Priority-c) > cN q(PSJF)}
E [N q](PSJF) ≤

√
2c
c−1

1
c−1

+ (
√

c
c−1
− 1

2
)(
√

2c
c−1
− 2)

=
1√

2c
c−1
− 3

2

≤ 2
√
c− 1.

where the final bound holds due to the fact that 1 < c ≤ 2, by the definition of c. Combining this
result with (3.16) yields

E
[
N q(Priority-c)

]
≤ (c+ 2

√
c− 1)E

[
N q(PSJF)

]
,

which is (3.15), as desired.
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3.5.4 Asymptotic Behavior of Guarded Policies
Theorem 3.4.2. Consider a single-server SRPT system whose single server is k times as fast as
each server in the load balancing system. For any dispatching policy P, consider the policy G-P
with any constant tightness. Then for any size distribution X such that E

[
X2 log2X1{X > 1}

]
<

∞, the mean response times of G-P/SRPT, G-P/Priority-c, and (single-server) SRPT converge
as load approaches capacity:

lim
ρ→1

E [T ]G-P/SRPT

E [T ]SRPT =
E [T ]G-P/Priority-c

E [T ]SRPT = 1.

Proof. We start with the bound on the mean response time of G-P/Priority-c from Theorem 3.4.1:

E [T (x)]G-P/Priority-c ≤
λ
2

∫ cr+1

0
t2fX(t)dt

(1− ρcr)(1− ρcr+1)
+

(4c+ 2)gk cr+1

c−1
+ kx

(1− ρcr)
.

Note that the first term in this expression also appears in the expression for mean response time
under single-server Priority-c [104]:

E [T (x)]Priority-c =
λ
2

∫ cr+1

0
t2fX(t)dt

(1− ρcr)(1− ρcr+1)
+

x

(1− ρcr)
.

Therefore, let us simplify (3.20):

E [T (x)]G-P/Priority-c ≤ E [T (x)]Priority-c +
(4c+ 2)gk cr+1

c−1
+ (k − 1)x

(1− ρcr)
.

We may simplify this bound by combining constant terms. Note that c ≤ 2 and x ≥ cr. Let
m = 20gk + k − 1. Then

mx ≥ (4c+ 2)gkcr+1 + (k − 1)(c− 1)x.

Thus, we may simplify (3.20) further:

E [T (x)]G-P/Priority-c ≤ E [T (x)]Priority-c +
mx

(c− 1)(1− ρcr)
.

We want to relate this to something more similar to the mean response time under SRPT. A
convenient policy for comparison with Priority-c that is similar enough to SRPT is Preemptive-
Shortest-Job-First (PSJF), which prioritizes jobs according to their original size.

We now use Lemma 3.5.4 which says that

E [T ]Priority-c ≤ (c+ 2
√
c− 1)E [T ]PSJF .

For brevity, let
b(c) = (c+ 2

√
c− 1).
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Using Lemma 3.5.4, we find that

E [T (x)]G-P/Priority-c ≤ b(c)E [T ]PSJF +
mx

(c− 1)(1− ρcr)
.

Note that x ≥ cr, so ρx ≥ ρcr , so

E [T (x)]G-P/Priority-c ≤ b(c)E [T ]PSJF +
mx

(c− 1)(1− ρx)
.

Based on standard results on mean response time under PSJF and SRPT [104], we know that

E [T (x)]PSJF ≤ E [T (x)]SRPT +
x

1− ρx
.

Let m′ = m+ 4. Because c ≤ 2, we know b(c) · (c− 1) ≤ 4. Thus,

E [T (x)]G-P/Priority-c ≤ b(c)E [T (x)]SRPT +
m′x

(c− 1)(1− ρx)
. (3.20)

Next, we take the expectation of (3.20) over all job sizes x. To do so, we need to integrate∫ ∞

0

x

1− ρx
fX(x)dx,

where fX(·) is the probability density function of X . To compute the integral, we make a change
of variables from x to ρx, using the following facts:

ρx =

∫ x

0

λtfX(t)dt

dρx
dx

= λxfX(x)

ρ0 = 0

lim
x→∞

ρx = ρ.

Given this change of variables, we compute∫ ∞

0

x

1− ρx
fX(x)dx =

∫ ρ

0

1

λ(1− ρx)
dρx =

1

λ
ln

(
1

1− ρ

)
.

Applying this to (3.20), we find that

E [T ]G-P/Priority-c ≤ b(c)E [T ]SRPT +
m′

λ(c− 1)
ln

(
1

1− ρ

)
.

Dividing through by E [T ]SRPT, we find that

E [T ]G-P/Priority-c

E [T ]SRPT ≤ b(c) +
m′ ln 1

1−ρ

λ(c− 1)E [T ]SRPT .
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Plugging in the value of c in terms of ρ from (3.2),

E [T ]G-P/Priority-c

E [T ]SRPT ≤ b(c) +
m′ · (ln2 1

1−ρ
+ ln 1

1−ρ
)

λE [T ]SRPT .

We now take the limit of the above ratio as ρ→ 1. In this limit,

• ln 1
1−ρ

diverges,
• λ approaches E [X], and
• c approaches 1, so b(c) also approaches 1:

lim
c→1+

c+ 2
√
c− 1 = 1.

Therefore, letting m′′ = 2m′/E [X],

lim
ρ→1

E [T ]G-P/Priority-c

E [T ]SRPT ≤ lim
ρ→1

(
1 +

m′′ ln2 1
1−ρ

E [T ]SRPT

)
. (3.21)

Recall now that we assume that E
[
X2 log2X1{X > 1}

]
< ∞. By Lemma 3.5.5, this

implies that

lim
ρ→1

ln2 1
1−ρ

E [T ]SRPT = 0.

Applying this to (3.21), we find that

lim
ρ→1

E [T ]G-P/Priority-c

E [T ]SRPT ≤ 1. (3.22)

SRPT yields optimal mean response time over all single-server policies [194], and a joint dis-
patching/scheduling policy can be emulated on a single server, so (3.22) is in fact an equality, as
desired.

The optimality of SRPT’s mean response time also implies that the mean response time under
G-P/SRPT is no more than the mean response time under G-P/Priority-c. As a result,

lim
ρ→1

E [T ]G-P/SRPT

E [T ]SRPT = 1.

3.5.5 Bounding SRPT response time
We need to bound the mean response time of SRPT in the M/G/1. We need a result simi-
lar to Lemma 2.7.1, but slightly stronger. We prove that result here, paralleling the proof of
Lemma 2.7.1.
Lemma 3.5.5. In an M/G/1 with any service requirement distribution S such that E[S2 log2 S1{S >
1}] is finite,

lim
ρ→1

ln2 1
1−ρ

E [T ]SRPT = 0.
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Proof. We start with a result from the literature on the performance of SRPT-1 in the heavy-
traffic limit [138].

E [T1] = Ω

(
1

(1− ρ)G−1(ρ)

)
,

where G(r) = E [S1S ≤ r] /E [S].
We therefore want to show

1

G−1(ρ)
= ω

(
(1− ρ) log2

1

1− ρ

)
,

which amounts to showing that in the r →∞ limit,

(1−G(r)) log2
1

1−G(r)
= o

(
1

r

)
.

It actually suffices to show 1−G(r) = o(1/(r log2 r)), as then

(1−G(r)) log2
1

1−G(r)
= o

(
log2 r + log2 log2 r

r log2 r

)
= o

(
1

r

)
.

We now use the E
[
S2 log2 S1{S > 1}

]
<∞ assumption to prove 1−G(r) = o(1/(r log2 r)).

The first step is to express 1−G(r) in terms of S and Se:

1−G(r) =
E [S1 {S > r}]

E [S]
=

E [(S − r)+]

E [S]
=

r

E [S]
P {S > r}+ P {Se > r} .

We show that both terms are o(1/(r log r)). For the first term, finiteness of E
[
S2 log2 S

]
implies

r2 log2 rP {S > r} ≤ E
[
S2 log2 S1 {S > r}

]
= E

[
S2 log2 S

]
− E

[
S2 log2 S1 {S ≤ r}

]
= o(1).

We can bound the second term similarly because

E [S]E
[
Se log

2 Se1{Se > 1}
]
= E

[
1 {S > 1}

∫ S

1

s log2 s ds

]
= E

[
1 {S > 1}

(
1

2
S2 log2 S − 1

4
S2 logS +

1

4

)]
<∞.

Throughout this chapter, the E[S2 log2 S] <∞ assumption can be replaced by a E[S2 log1+ϵ S] <
∞ assumption, for any ϵ > 0, by redefining c as c = 1

1+ 1
1+lnϵ(1−ρ)

. In the above proof, we would

then replace 2 by 1 + ϵ.
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Figure 3.6: At heavy load ρ = 0.98, adding guardrails significantly reduces the mean response
times of SITA-E, LWL, Random, and RR, while leaving the mean response times of JSQ, JSQ-2,
and FPI nearly unchanged. At more moderate load ρ = 0.8, adding guardrails significantly
reduces the mean response times of SITA-E, Random, RR, and JSQ-2 while leaving the mean
response times of LWL, JSQ, and FPI nearly unchanged. The smallest tightness, g = 1, shows
the best performance for all policies except JSQ and FPI, where it doesn’t really matter. Simu-
lation uses k = 10 servers. Size distribution shown is Bounded Pareto with α = 1.5 and range
[1, 106]. C2 ∼ 333. 40 trials simulated, 95% confidence intervals shown.

3.5.6 Optimality of Guarded Policies
As a simple corollary of Theorem 3.4.2, we find that for any dispatching policy P, G-P/SRPT
has optimal mean response time in the heavy traffic limit over all joint dispatching/scheduling
policies.
Corollary 3.4.1. For any dispatching policy P consider the policy G-P with any constant tight-
ness. Consider any joint dispatching/scheduling policy P′/S′. Then for any size distribution X
such that E

[
X2 log2X1{X > 1}

]
<∞, the mean response times of G-P/SRPT and G-P/Priority-c

are at least as small as the mean response time of P′/S′ as load approaches capacity:

lim
ρ→1

E [T ]G-P/SRPT

E [T ]P
′/S′ =

E [T ]G-P/Priority-c

E [T ]P
′/S′ ≤ 1.

Proof. SRPT has optimal mean response time among all single-server policies [194], and any
joint dispatching/scheduling policy can be emulated on a single server, so E [T ]SRPT ≤ E [T ]P

′/S′
.

The result thus follows from Theorem 3.4.2.

3.6 Simulation
We have shown that in heavy traffic, adding guardrails to any dispatching policy gives it optimal
mean response time. We now turn to investigating loads outside the heavy-traffic regime. While
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the mean response time upper bound in Theorem 3.4.1 holds for all loads, it is only tight in the
heavy-traffic limit. We therefore focus on simulation.

We consider the following dispatching policies, each paired with SRPT scheduling at the
servers:
Random The policy which dispatches each job to a uniformly random server.

Round-Robin (RR) The policy which dispatches each job to the server which least recently
received a job.

Least-Work-Left (LWL) The policy which dispatches each job to the server with the least re-
maining work.

Size-Interval-Task-Assignment (SITA) The policy which classifies jobs into size intervals (small,
medium, large, etc.) and dispatches all small jobs to one server, all medium jobs to another
server, etc. Specifically, we simulate SITA-E, the SITA policy which chooses the size
intervals to equalize the expected load at each server.

Join-Shortest-Queue (JSQ) The policy which dispatches each job to the server with the fewest
jobs present.

Join-Shortest-Queue-d (JSQ-d) The policy which samples d uniformly random servers on each
arrival and dispatches the job to the server with the fewest jobs present among those d. We
focus on the d = 2 case.

First Policy Iteration (FPI) The first policy iteration heuristic, as described by Hyytiä et al. [118]
in the setting of dispatching to SRPT servers. FPI dispatches each job to the server that
would be optimal if all jobs thereafter were dispatched randomly. Hyytiä et al.’s derivation
of the FPI policy assumes that the job size distribution is continuous, and specifically that
two different jobs almost surely have different sizes. As a result, we only implement the
FPI policy for the Bounded Pareto distribution, shown in Figure 3.6.

3.6.1 Simulation Results
Figures 3.6 and 3.7 show the mean response time under all of the above dispatching policies
with SRPT scheduling at the servers. We omit the FPI policy from Figure 3.7, because that sim-
ulation’s job size distribution is not continuous, and Hyytiä et al. do not derive the FPI policy
for such distributions [118]. We also show 95% confidence intervals for each mean response
time. We consider two different job size distributions: a Bounded Pareto distribution (see Fig-
ure 3.6) and a Bimodal distribution (see Figure 3.7). In each case we show (a) very heavy traffic
(ρ = 0.98) and (b) more moderate traffic (ρ = 0.8). We augment each dispatching policy with
guardrails of varying tightness, g = 1, 2, and 4.

The high-level message seen in Figures 3.6 and 3.7 is that adding guardrails to dispatching
policies can greatly reduce their response times, even at more moderate loads. Simple dispatch-
ing policies like Random and RR improve by 15 − 40% when ρ = 0.8 and 30 − 50% when
ρ = 0.98, in the figures shown. Other policies, like LWL and SITA-E, show even more dramatic
improvement for certain job size distributions. We find using tightness g = 1 is generally best.

The FPI heuristic of Hyytiä et al. [118] performs about equally well with or without guardrails.
Figure 3.6 shows that adding guardrails to FPI yields a slight reduction in mean response time at
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Figure 3.7: At heavy load ρ = 0.98, adding guardrails significantly reduces the mean response
time of SITA-E, LWL, Random, and RR, while leaving the mean response times of JSQ and
JSQ-2 nearly unchanged. At more moderate load ρ = 0.8, adding guardrails significantly re-
duces the mean response times of SITA-E, LWL, Random, RR, and JSQ-2, while leaving the
mean response time of JSQ nearly unchanged. The smallest tightness, g = 1, shows the best
performance for all policies except JSQ, where it doesn’t really matter. Simulation uses k = 10
servers. Size distribution shown is Bimodal with 99.95% size 1 jobs and 0.05% size 1000 jobs.
C2 ∼ 221. 40 trials simulated, 95% confidence intervals shown.

ρ = 0.98, and has essentially no effect at ρ = 0.8. The FPI heuristic performs well in simulation,
but its only theoretical guarantee is it outperforms Random. Applying guardrails guarantees
optimal mean response time in heavy traffic, while maintaining or improving performance in
simulation.

We observe that the JSQ dispatching policy performs well even without guardrails. In fact,
guardrails can be seen as helping all the other dispatching policies to improve their performance
to approach JSQ. We do not know of any guarantees on JSQ’s performance with SRPT servers,
even under heavy traffic, unless we add guardrails to JSQ. Figures 3.6 and 3.7 show that adding
guardrails to JSQ does not affect its performance much.

In Section 3.7, we simulate guarded policies under a variety of alternative system conditions.
We simulate systems with more servers, systems with lighter load and systems with different job
size distributions.

3.6.2 Simulation Discussion and Intuition
Recall from Section 3.3.1 the intuition behind guardrails: Guardrails force the dispatching policy
to spread out small jobs across all of the servers. Guardrails thereby ensure that the maximum
possible number of servers are working on the smallest jobs available.

Let us consider this intuition in light of each of the dispatching policies. SITA-E does the
opposite of spreading small jobs: It clumps the smallest jobs onto the same server. Therefore,
G-SITA-E shows a massive improvement. In particular, we want g to be as low as possible
(g = 1), corresponding to the greatest guardrail control, to prevent SITA-E from doing what it
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was designed to do.
Random and RR are better at spreading jobs naturally, but they still make mistakes. In partic-

ular, Random and RR do not differentiate between jobs of different sizes and they do not observe
the state of the servers, so they only spread out the small jobs by chance. As a result, G-Random
and G-RR show sizable improvements. The tightest guardrails (g = 1) increase the spread of the
small jobs the most, and hence show the most improvement.

LWL does not spread out the small jobs. In fact, one huge job at a server can keep away all
of the small jobs for a long time. However, LWL is so efficient at using its servers that one does
not experience its shortcomings unless both load and job size variability are high. Under those
circumstances, LWL has very high mean response times. At load ρ = 0.98 with the Bimodal
size distribution shown in Figure 3.7, LWL’s mean response time is 7 times worse than that of
Random. Guardrails are particularly effective in these situations where LWL fails because they
force small jobs onto the servers with one large job. The tightest guardrails (g = 1) force small
jobs onto those servers most aggressively and hence show the lowest mean response time in
Figures 3.6 and 3.7.

3.6.3 Comparing Simulation to Analytical Bounds

In Theorem 3.4.1 we established an analytical upper bound on the mean response time of any
guarded policy. This bound is tight in the limit as load ρ → 1, and implies the heavy traffic
optimality of any guarded policy.

However, this bound is not tight under the more moderate loads simulated in this section.
Under the system conditions shown in Figure 3.6, at load ρ = 0.8 and guardrail tightness g = 1,
Theorem 3.4.1 implies that any guarded policy has mean response time at most 350, and that at
load ρ = 0.98 the mean response time is at most 700. The actual performance of guarded policies
is much better than this, as shown in Figure 3.6. Tightening our bound is a potential direction for
future research.

3.7 Additional Simulations
We include here some additional simulation results covering a wider range of cases than Sec-
tion 3.6. We only show the tightest guardrails (g = 1), as those guardrails generally yield the
lowest mean response times. We vary the parameters of the simulations in from Section 3.6 in
three different ways:

• adding many more servers (Figures 3.8 and 3.9),
• decreasing load (Figure 3.10), and
• varying the job size distribution (Figures 3.11 and 3.12).

In nearly every case guardrails improve or at least do not degrade mean response time of the
underlying policy. In particular, as a general rule, G-LWL is nearly always tied for minimum
mean response time among all dispatching policies simulated.

We omit the FPI heuristic from simulations involving the Bimodal job size distribution be-
cause Hyttiä et al. [118] only derive the policy for continuous job size distributions. We omit the
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Figure 3.8: Simulation with many servers: k = 100. Size distribution shown is Bounded Pareto
with α = 1.5 and range [1, 106]. C2 ∼ 333. 10 trials simulated, 95% confidence intervals shown.

FPI heuristic from the simulations of other job size distributions in Figures 3.11 and 3.12 due to
lack of time.

Figures 3.8 and 3.9 show simulations with many more servers. Specifically, they use k = 100
servers, as opposed to k = 10 in other simulations. The only setup where guardrails degrade
mean response time of the underlying policy is JSQ with Bounded Pareto job size distribution in
heavy traffic, shown in Figure 3.8 (a), but G-LWL and G-FPI have performance on par with JSQ
in that case.

Figure 3.10 shows simulations with light traffic, specifically ρ = 0.5. The trends are largely
the same as those in Section 3.6, but the differences in mean response time are smaller. This is
to be expected because a large fraction of jobs experience no delay. In fact, the mean response
time is nearly equal to the mean service time for many of the dispatching policies (E[T ] ≈ 30
in (a), E[T ] ≈ 15 in (b)). Guardrails are particularly effective in the Bimodal case shown in (b),
dispatching nearly every small job to a server with no other small jobs. In addition to the loads
shown, we have also simulated a range of loads from ρ = 0.2 to ρ = 0.9975. The trends are
consistent across all loads, but the differences are less pronounced at lower loads.

Figures 3.11 and 3.12 show simulations with different job size distributions. We specifi-
cally simulate with Hyperexponential and Exponential job size distributions, representing an-
other high-variance distribution and a low-variance distribution, respectively. In the Hyperexpo-
nential case shown in Figure 3.11, LWL performs particularly poorly without guardrails, similar
to the Bimodal case. Roughly speaking, this is because there again are two types of jobs, though
each has an exponential distribution instead of a deterministic one, and a job of the large type can
cause many jobs of the small type to be dispatched to a single server. But again, guardrails effec-
tively mitigate this problem, although JSQ slightly outperforms G-LWL in very heavy traffic. In
the Exponential case, LWL without guardrails performs well already, but adding guardrails does
not degrade its performance.
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Figure 3.9: Simulation with many servers: k = 100. Size distribution shown is Bimodal with
99.95% size 1 jobs and 0.05% size 1000 jobs. C2 ∼ 221. 10 trials simulated, 95% confidence
intervals shown.
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(a) Bounded Pareto job size distribution: α = 1.5,
range [1, 106], C2 ∼ 333.
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(b) Bimodal job size distribution: size 1 w.p.
99.95%, size 1000 w.p. 0.05%, C2 ∼ 221.

Figure 3.10: Simulation with light traffic: ρ = 0.5. Simulation uses k = 10 servers. Two job
size distributions shown. 10 trials simulated, 95% confidence intervals shown.
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Figure 3.11: Simulation with different size distribution: Hyperexponential with mean ∼ 1.5 and
C2 ∼ 444. Simulation uses k = 10 servers. 10 trials simulated, 95% confidence intervals shown.

SITA-E LWL Random RR JSQ-2 JSQ
Dispatching policy

0

20

40

60

80

100

120

M
ea

n
re

sp
on

se
tim

e
(E

[T
])

220.7 g=1
No guardrails

(a) ρ = 0.98

SITA-E LWL Random RR JSQ-2 JSQ
Dispatching policy

0

5

10

15

20

25

30

M
ea

n
re

sp
on

se
tim

e
(E

[T
])

g=1
No guardrails

(b) ρ = 0.80

Figure 3.12: Simulation with different size distribution: Exponential with mean 1. Simulation
uses k = 10 servers. 10 trials simulated, 95% confidence intervals shown.
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3.8 Practical Considerations

We now discuss several useful properties of guardrails that help when implementing them in
practical systems. We also extend guardrails to cover a broader range of applications.

3.8.1 Robustness to Network Delays

Guardrails are relatively simple to implement: the dispatcher stores work counters for each rank
and each server, increasing the appropriate work counter whenever it dispatches a job (see Al-
gorithm 1). For the most part, the dispatcher does not need to monitor the precise state of each
server. The only exception is that whenever a server becomes empty, the server resets, which
decreases all of the dispatcher’s work counters for that server. As we will explain shortly, this
complicates the implementation, particularly in settings with network delays.

Fortunately, resets are optional for the purposes of heavy-traffic optimality (see Remark 3.5.1).
However, resets are still desirable because they help decrease response time at lower loads.
Specifically, resets ensure that a guarded policy is always allowed to dispatch jobs to empty
servers. We thus do not want to ignore resets entirely.

To implement resets without the dispatcher needing to track the remaining work at each server
at all times, servers can send “reset messages” to the dispatcher when they become empty. This
works well so long as messages do not experience network delays, because our analysis (see
Lemmas 3.5.1 and 3.5.3) assumes that servers only reset when they are empty, which might not
be the case if a reset message is delayed.

In practice, reset messages may well experience network delays, To handle delays, the dis-
patcher should ignore reset messages from servers that might not be empty. One protocol for
doing so is:

• The dispatcher stores, for each server s, a hash of all the job IDs sent to s.
• Each server s stores a hash of all the job IDs it has received.
• When a server becomes empty, it sends a reset message to the dispatcher which contains

the currently stored hash.
• When the dispatcher receives a reset message from server s, it resets s if the reset message’s

hash matches the stored hash for s. Otherwise, the dispatcher ignores the reset message.

3.8.2 Multiple Dispatchers

Many large load balancing systems in practice have multiple dispatchers, each of which sends
jobs to the same set of servers. Communication between the dispatchers may be limited, in which
case they each have to make dispatching decisions independently. Fortunately, in systems with
multiple dispatchers, it suffices to have each dispatcher independently implement guardrails. As
explained below, we obtain the same theoretical guarantees for each of the following:

• A system with d dispatchers, each independently satisfying guardrails with tightness g.
• A system with a single dispatcher satisfying guardrails with tightness dg.
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Guardrails thus guarantee heavy-traffic optimality for systems with any constant number of dis-
patchers.

To see why it suffices to implement guardrails separately for each dispatcher, consider a
system with d dispatchers. Suppose each dispatcher separately keeps “local” guardrail work
counters, which only track arrivals to that dispatcher, and implements guardrails with tightness g.
We can also imagine what the “global” guardrail work counters, which track all arrivals at all
dispatchers, would look like, even though there is no physical device storing them. We ask: given
that the local counters have tightness g, what is the tightness of the global counters? Consider the
local and global rank r guardrail work counters for two servers s and s′. Each dispatcher’s local
counter pair has difference at most gcr+1 (see Definition 3.3.1), and there are d dispatchers, so
the global counter pair has difference at most dgcr+1. This means the global counters stay within
tightness dg.

Systems with multiple dispatchers tend to be large systems in which network delays are non-
negligible. The reset protocol from Section 3.8.1 can be easily adapted to multiple dispatchers
by having each server store a separate hash of job IDs for each dispatcher.

3.8.3 Scheduling Policies other than SRPT
We have shown that guarded dispatching policies provide theoretical guarantees and good em-
pirical performance for load balancing systems using SRPT scheduling at the servers. However,
in some settings it is impossible to use SRPT. For example, network hardware often allows
scheduling using only finitely many priority classes, in which case SRPT can only be approx-
imated [110, 160]. Systems may also choose a non-SRPT scheduling policy for other reasons,
such as fairness concerns [231].

Guardrails are sometimes suitable even when the servers are using a scheduling policy other
than SRPT. In particular, we can extend our theoretical guarantees to many preemptive size-
based scheduling policies that favor small jobs. We have already proven such a guarantee for the
Priority-c policy (see Theorem 3.4.2). Using bounds proved by Wierman et al. [233], one can
extend our results to all policies in their SMART class, which includes Preemptive-Shortest-Job-
First (PSJF) and Shortest-Processing-Time-Product (SPTP, also known as RS).

Guardrails can also provide guarantees for size-based policies with finitely many priority
classes, which are used in some computer systems to approximate SRPT [110, 160]. In this
setting, each priority class corresponds to an interval of job sizes. Here it is most natural to use
a slightly modified version of guardrails: a guarded policy is one ensuring that for any class i,
the maximum difference between two servers’ class i work counters never exceeds the upper
bound of class i’s size interval. If the job size distribution is bounded, these modified guardrails
guarantee a mean response time bound analogous to Theorem 3.4.1. This implies that in the
heavy traffic limit, the system’s performance approaches that of one large server using the same
scheduling policy.

So far, we have only considered policies that use job size information to favor small jobs. This
is the setting in which guardrails are most likely to be effective. We conjecture that guardrails
might also be useful for servers using PS or Foreground-Background (FB) scheduling, as these
policies also tend to favor small jobs, so they may benefit from spreading out small jobs across
the servers.
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3.8.4 Heterogeneous Server Speeds

We have thus far assumed that all servers in the system have the same speed, but this is not
always the case. Fortunately, guardrails can be adapted to systems with heterogeneous server
speeds. The key is to track each server’s guardrail work counter Gs(t) in units of time. That
is, when we dispatch job of size x to a server with speed µ, we increase the server’s guardrail
work counter by x/µ. It is simple to generalize our response time bound in Theorem 3.4.1 to this
setting by multiplying the bound’s last term by µmax/µmin, where µmin and µmax are the minimal
and maximal server speeds, respectively. This implies that any guarded policy paired with SRPT
service is heavy-traffic optimal with heterogeneous servers.

3.9 Technical Conclusion

We introduce load balancing guardrails, a technique for augmenting dispatching policies that
ensures low response times in load balancing systems using SRPT scheduling at the servers. We
prove that guardrails guarantee optimal mean response time in heavy traffic, and we show empir-
ically that guardrails reduce mean response time across a range of loads. Moreover, guardrails
are simple to implement and are a practical choice for large load balancing systems, including
those with multiple dispatchers and network delays.

One direction for future work could address a limitation of guardrails: they require the dis-
patcher to know each job’s exact size. Many computer systems only have access to noisy job
size estimates or have no size information at all. When exact size information is not avail-
able, minimizing mean response time becomes much more complex, as it is not even clear what
scheduling policy should be used at the servers. It is possible that a variation of guardrails could
be used to create good dispatching policies when using the celebrated Gittins index scheduling
policy [1, 72] at the servers.

Our analysis of guardrails constitutes the first closed-form mean response time bound for load
balancing systems with general job size distribution and complex dispatching and scheduling
policies. However, the bound is only tight in the heavy-traffic limit. Developing better analysis
tools for the light traffic case remains an important open problem.

3.10 General Conclusion

3.10.1 Summary

We start by summarizing the results proven in this chapter, as well as the key techniques behind
these results.

New class of dispatching policies: Guardrails We introduce a new class of dispatching
policies called guardrails policies (See Definition 3.3.1). The guardrails policies are designed for
use with SRPT scheduling at each server. Whenever a job arrives, a guardrails policy specifies a
restricted set of servers that the job must be dispatched to, then defers to a baseline dispatching
policy to select among the restricted set of servers. This restriction ensures that each server will
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have a similar amount of work of each possible size of job: Similar amounts of work of small
jobs, of medium jobs, and so forth.

Results: Guardrails/SRPT is optimal We prove that any guardrails dispatching policy,
when combined with SRPT scheduling at each server, achieves the best possible mean response
time when the load on the system is high and the queue lengths become long (See Corol-
lary 3.4.1).

We also prove an upper bound on the mean response time of any guardrails/SRPT combina-
tion, in the form of a clean mathematical formula (See Theorem 3.4.1). This upper bound proves
that guardrails/SRPT achieves similar mean response time to that of resource-pooled SRPT, in
which all k servers are combined into a single ultra-fast server using SRPT scheduling (See
Theorem 3.4.2). This bound becomes tight as load becomes high.

Simulation results: Guardrails/SRPT is near-optimal under moderate traffic While our
results focus on heavy traffic, we show via simulation in Figs. 3.6 and 3.7 that guardrails/SRPT
policies are also very good for moderate load. In particular, we see that under a variety of high-
variance job size distributions and a variety of loads, guardrails/SRPT policies achieve either the
lowest mean response time or near the lowest of the policies simulated. Further simulations in
Section 3.7 also confirm this result.

Key technique: Relevant work analysis To understand the response time of a specific job,
we need to understand the work at each server that is relevant to the specific job: that is, the work
that the job must wait behind before it can reach service: The work that is relevant to a specific
job of size x consists of other jobs with remaining size smaller than x.

The guardrails class of dispatching policies ensure that the amount of relevant work at each
server is close to equal to the amount at each other server. We then use a coupling analysis
involving a resource-pooled SRPT system. We prove that this amount of relevant work at each
server is always similar to 1/k of the amount of work at the resource-pooled system. Because
these bounds hold at each server, a given job will achieve good mean response time, regardless
of which server the job is dispatched to. The dispatching policy can therefore instead focus on
maintaining the similarity of the servers. We use this bound on relevant work, combined with
additional properties of the guardrails policies, to show that the guardrails/SRPT combination
achieves nearly the same mean response time as resource-pooled SRPT (See Theorem 3.4.1).

3.10.2 Generalizing our setting

In our setting, we assumed SRPT service and that the dispatcher knows the sizes of the jobs.
However, one could imagine three alternative scenarios:

A. The sizes of the jobs are unknown to both the scheduling and dispatching policy.

B. Estimates of the sizes are known, but not the exact sizes.

C. Size information is known for the purpose of dispatching, but due to legacy scheduling
systems jobs must be served in FCFS order.

We consider these settings in the remainder of Section 3.10.2.

98



Generalizing to unknown job sizes

In the single-server setting, the optimal way to handle unknown job sizes is the Gittins index
scheduling policy [72, 73, 199]. However, essentially nothing is known about dispatching in
combination with Gittins scheduling.

A natural choice of dispatching policy would be Join-the-Shortest-Queue (JSQ), as little is
known about the jobs at each server except for their number. However, the Gittins scheduling
policy often performs a significant amount of preemption. As a result, there may be many incom-
plete jobs at each server, giving additional information beyond the number of jobs at the server.
A partially complete job might be shorter or longer in expectation than a fresh job, depending on
the job size distribution.

We therefore ask:
What is the optimal dispatching policy to combine with Gittins scheduling when
dispatching jobs with unknown sizes?

We discuss the problem of optimal dispatching in combination with Gittins scheduling in Sec-
tion 8.3.3.

Generalizing to estimated job sizes

The Gittins index policy is also applicable in the setting where estimated job sizes are available.
As estimates become more and more accurate, Gittins simplifies to the SRPT scheduling policy.
How should we use size estimates to dispatch to servers using the Gittins scheduling policy? In-
tuitively, as estimates become more accurate, our dispatching policy should interpolate between
a low-information policy like JSQ, and a high-information policy such as guardrails. We discuss
this problem further in Section 8.3.3.

Size-based dispatching to servers using FCFS scheduling

In some settings, even though size information is available for dispatching, FCFS scheduling
may be used at the servers, for instance due to the use of legacy systems. While size-based
dispatching to servers using FCFS scheduling has been extensively studied [64, 108], optimal
size-based dispatching remains open.

In preliminary work in the k = 2 server setting, Xie and Scully [237] claim that their novel
Careful-Routing-to-Achieve-Bound (CRAB) dispatching policy achieves optimal mean response
time for certain job size distributions, in the limit as arrival rate approaches capacity. CRAB is a
load-imbalancing policy, in contrast to guardrails policies, which balance load. This optimality
result for CRAB would be the first optimality result in a setting with size-based dispatching and
non-size-based scheduling. We look forward to their full paper.

3.10.3 Potential Impact
We now explore potential directions in which our guardrails dispatching policies could be ap-
plied, and discuss ways of adapting guardrails to real-world environments. This section is in-
tended to complement Section 3.8, where we discuss several real-world considerations, including
multiple non-communicating dispatchers and network delays.
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Adopting Guardrails into Dispatching-based Computing Systems

Our analysis of the combination of guardrails dispatching and SRPT scheduling shows that
guardrails/SRPT can dramatically lower response times compared to other scheduling policies,
and that the guardrails/SRPT combination is in fact optimal for mean response time under suf-
ficiently heavy load. Our hope is that our results will lead computing system operators to adopt
guardrails/SRPT dispatching and scheduling in their systems.

However, the road from theoretical results to adoption requires overcoming several hurdles.
These include:
Dealing with size estimates. Often only approximate size information is known, rather than the

exact size information utilized by guardrails. Guardrails policies use size information in
two ways: To assign each job to a size class, and to track how much work has been sent to
each server. For assigning jobs to a size class, one can simply estimate which size class a
job should be in. In this approach, one should use a fairly large size class width c, to reflect
the uncertainty in the estimate. For tracking how much work has been sent to each server,
one can start with the estimated work sent, and update that estimate once the job runs and
its true size is clear.

Handling jobs with differing importance. In the real world, some jobs may be far more latency-
sensitive than others. This is naturally modeled by introducing a holding cost per second
waited for each job. In this setting, research has previously considered the case where a
job’s holding cost is known to the dispatching policy, but its size is unknown [50].
Let us instead consider the setting where both the job’s size and its holding cost are known.
The natural generalization of SRPT to this setting is to prioritize jobs according to the
ratio of holding cost to remaining size. To generalize guardrails dispatching policies to
this setting, one should simply assign jobs to an importance class, based on this ratio,
rather than a size class as in standard guardrails policies. The results of this chapter should
generalize to prove optimality in that setting as well, if the ratio of largest to smallest
holding cost is bounded.

Handling data locality. In many practical systems, data is housed at specific servers, and cannot
be migrated easily. Jobs require certain data to be served, and can only be served at servers
that have that data. These affinities can be modeled via a compatibility graph connecting
job types to servers. This model has received extensive study in size-unknown dispatching
settings [163, 189, 190, 243]. That line of research has demonstrated the importance of
spreading data across servers to equalize the total loads at the servers. To incorporate size-
based scheduling and dispatching, this chapter shows us the importance of additionally
balancing the load of small jobs, medium jobs, and large jobs across the servers.

Guardrails for Dispatching People to Multiple Servers

When dealing with people, size is not the only important quality of a job. Jobs can be differen-
tiated both by their sizes and by the time-sensitivity or value of the service. For instance, when
ambulances are bringing patients to hospitals, a patient undergoing a heart attack might have a
much higher value associated with being treated soon, as compared to a patient with a broken
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arm. An appropriate performance metric for this scenario is the mean product of value and re-
sponse time. Research has previously considered the dispatching setting in which a job’s value
is known to the dispatcher, but its size is not [50]. When dispatching people, it makes sense to
consider the setting where both size and value are known, or at least can be estimated.

In the single-server setting, if both value and size are known, the policy which minimizes the
product of value and response time is the “cµ-rule”, which serves the job with maximal ratio of
value to size. We would therefore use cµ scheduling at the servers in our dispatching setting.

Generalizing guardrails In the cµ-scheduling setting, we can generalize the guardrails
policies to handle both size and value information. For each job, calculate its ratio of value to
size. Split jobs into classes accordingly: High ratio jobs, medium ratio jobs, and so forth. We
would then dispatch jobs to ensure that the amount of high ratio work at each server is similar,
medium ratio work, etc.

However, it is not obvious that this dispatching policy would be optimal. In our bounds on
mean response time for the basic guardrails policy, we make key use of the fact that size and
importance are aligned. See Lemmas 3.5.1 and 3.5.2 in particular. In practice, with different
values for different jobs, size and importance may not be aligned, rendering optimality more
difficult to prove.

Additional consideration: Information delay Another wrinkle in dispatching people is
that there may be a significant delay between when we tell people which server to go to, and when
people actually arrive at that server. As a result, a queue which we previously recommended
may end up inundated with people, all of whom are responding to out-of-date instructions. If the
dispatching policy is not prepared for people to respond at a delay, this dynamic may result in
terrible performance [176]. To alleviate this behavior, we can look at a long history of workload
information when deciding which queues to recommend.
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Part III

Multiserver Jobs
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Chapter 4

First Multiserver-job Scheduling Response
Time Analysis: ServerFilling

This chapter is based on my paper “WCFS: A new framework for analyzing multiserver sys-
tems”, published in Queueing Systems in 2022, written with my coauthors Mor Harchol-Balter
and Alan Scheller-Wolf [84, 86].

4.1 General Introduction

Modeling large-scale computing systems Modern computing systems scale up in two impor-
tant ways. First, they contain huge numbers of servers, allowing them to process many jobs at
once. Second, the jobs in modern computing systems require vastly different amounts of re-
sources, ranging from a single CPU core to thousands of machines. The scheduling decision
in these systems consists of selecting a combination of jobs to serve at once. Improving the
scheduling policy can improve mean response time by orders of magnitude with no additional
resources.

To capture the behavior of these computing systems, we use a multiserver-job (MSJ) queue-
ing model, depicted in Fig. 4.1. Jobs arrive randomly over time, and wait in a central queue.
Each job has a server need, which specifies the number of servers the job requires in order to
enter service. The job requires a fixed number of servers throughout its time in service. All
servers are identical, so the scheduling policy can decide to serve any set of jobs with total server
need at most k, where k is the total number of servers in the system. An important scheduling
policy, which we depict in Fig. 4.1, is the First-Come First-Served (FCFS) policy. FCFS places
the oldest jobs in the system into service one-by-one, until a job is reached whose server need
exceeds the number of currently available servers. At this point, the blocked job, and all jobs
behind it in the queue, must wait until some of the jobs in service complete and more servers
become available. Some other scheduling policies allow preemption, which refers to pausing a
job in service, placing it back in the queue, and returning to that job later.

MSJ performance We are interested in the performance effects of different scheduling
policies. Two natural measures of a policy’s performance are its stability region, and its mean
response time. A policy’s stability region is the range of arrival rates of jobs for which the policy
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Figure 4.1: The FCFS scheduling policy in the multiserver-job setting. Each job has two char-
acteristics: A server need, the number of servers it requires in order to run, and a duration, the
amount of service time it requires. FCFS serves jobs in arrival order. If the next job in the queue
has larger server need than the number of available servers, that job, and all jobs behind it, must
wait in the queue.

can keep up with the arriving jobs, so that the queue length doesn’t diverge to infinity. If a
scheduling policy leaves servers idle while jobs wait in the queue, this diminishes its stability
region. A policy’s mean response time is the mean time from when a job arrives to when it
completes.

Theoretical understanding of stability region Much of the theoretical study of scheduling
in the MSJ model has focused on the stability region. Under the FCFS policy, the stability
region has been theoretically characterized in a variety of settings [83, 88, 187]. It is known that
FCFS never achieves the optimal stability region across all scheduling policies, except in trivial
settings. By contrast, the MaxWeight [148] and Randomized Timers [71] policies are known to
achieve optimal stability regions. By optimal stability region, we mean that these policies are
stable for the largest possible set of arrival rates, among all scheduling policies.

MSJ mean response time not understood Unfortunately, almost nothing is known about
mean response time in the multiserver-job setting. Mean response time has not been theoretically
characterized in closed form for any scheduling policy in the MSJ setting, except for FCFS
service in the extremely restrictive setting of k = 2 servers [31, 63].

Existing scheduling policies seem intractable to analysis, so we ask: Can we devise a novel
MSJ scheduling policy, for which we can analyze mean response time? Either an exact char-
acterization of mean response time or a proof of upper and lower bounds would be a major
breakthrough.

Key idea: Work conserving & finite skip Our key technique is to invent a class of schedul-
ing policies, which we call the work-conserving finite-skip (WCFS) policies, for which we can
analyze mean response time in a clean, unified fashion. “Work conservation” refers to keeping all
servers occupied, whenever a sufficient number of jobs are present. “Finite skip” refers to serv-
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Figure 4.2: The ServerFilling scheduling policy in the multiserver-job setting, alongside the
resource-pooled FCFS system. In the resource-pooled system, a job completes in a proportion-
ately shorter duration. For instance, if a 2-server job completes in 10 seconds in a k = 4 server
system, it would complete in 5 seconds in the resource-pooled system. In the resource-pooled
system, it receives twice the service rate, and completes in half of the time. We show that these
two systems have nearly identical mean response time.

ing jobs in near-FCFS order, only looking at finite number of the oldest jobs in the system when
deciding which jobs to serve. We invent two MSJ policies which fall in the WCFS class, Server-
Filling and DivisorFilling. Our unified analysis for the entire WCFS class of policies allows us
to characterize their mean response times. We also find WCFS policies in a variety of other mul-
tiserver and single-server scheduling settings (see Section 4.2), allowing us to characterize those
policies’ mean response times as well.

Key idea: Resource pooling We show that all WCFS policies, including the MSJ schedul-
ing policies ServerFilling and DivisorFilling, achieve mean response time nearly identical to that
of resource-pooled FCFS. In the resource-pooled system, all k servers are combined into one
ultra-fast server with k times the speed. Jobs speed up proportionately. For instance, a job that
took one hour on k/2 servers in the original system would only take half an hour in the resource-
pooled system. We show both systems in Fig. 4.2. Because WCFS policies such as ServerFilling
serve jobs in near-FCFS order, resource-pooled FCFS is a natural target to compare against.

4.2 Technical Introduction
Consider the following four queueing models, which are each important, practical models, but
which seem very different. We will refer to these models throughout this chapter as our four
motivating models:

• Heterogeneous M/G/k: A k-server system where servers runs at different speeds. Jobs are
held at a central queue and served in First-Come-First-Served (FCFS) order when servers
become available. If multiple servers are vacant, a server assignment policy such as Fastest
Server First is applied.

• Limited processor sharing: A single-server system where if at least k jobs are present,
the k earliest arrivals each receive an equal fraction of service. If fewer than k jobs are
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Figure 4.3: Scaled mean response time of our four motivating models, as well as the related
M/G/k and M/G/1 models. Our four motivating models will be further defined in Section 4.4.
In each case, the job size distribution S is distributed as Hyperexp(µ1 = 2, µ2 = 2

3
, p1 = 1

2
).

The black line is E[T ](1− ρ) = E[S2]
2E[S] , the heavy traffic behavior of M/G/1/FCFS and each of our

models of interest. 109 arrivals simulated. ρ ∈ [0, 0.96] to ensure accurate results.

present, the server is split equally among jobs.
• Threshold parallelism: A multiserver system where jobs are moldable, meaning they can

run on any number of servers, up to some threshold, with perfect speedup. We consider
FCFS service, where jobs are allocated a number of servers equal to their threshold, as
long as servers are available. The next job in FCFS order is then allocated the remaining
servers, which may be less than the job’s threshold.

• Multiserver-jobs under the ServerFilling policy: A multiserver system where the jobs
are called “multiserver jobs,” because each job requires a fixed number of servers, which it
holds concurrently throughout its service. We examine a service policy called ServerFill-
ing, which always fills all of the servers if enough jobs are available.

We define these models in more detail in Section 4.4.
We will show that, while our four motivating models appear quite different, their mean re-

sponse times, E[T ], are very similar, especially in the heavy-traffic limit. Specifically, we will
show that their behavior in the heavy traffic limit is identical to that of the M/G/1/FCFS model,
and in fact the mean response time of each of these disparate models only differs by an addi-
tive constant from that of M/G/1/FCFS for all loads, a much stronger result than convergence in
heavy traffic.

The similarity of these models is illustrated by Fig. 4.3, which shows mean response time,
E[T ], scaled by a factor of 1 − ρ, to help illustrate the asymptotic behavior in the ρ → 1 limit.
Observe that in each of our models of interest, as well as in the M/G/1 and the M/G/4, E[T ](1−ρ)
converges to E[S2]/2E[S], the mean of the equilibrium (excess) distribution, where S denotes
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Figure 4.4: Scaled mean response time of alternative models and policies. All of these models
and policies will be explained in Section 4.8. S ∼ Hyperexp(µ1 = 2, µ2 = 2

3
, p1 = 1

2
). Black

line is E[T ](1−ρ) = E[S2]
2E[S] . 10

9 arrivals simulated, ρ ∈ [0, 0.96] to ensure accurate results, except
MaxWeight: 1010 arrivals, ρ ∈ [0, 0.99].

the job size distribution and ρ = λE[S] < 1 is the system load.
This similarity is striking – to see just how notable it is, consider a variety of alternative

models and policies shown in Fig. 4.4. For these alternative models, scaled mean response time
either does not converge at all, or converges to a different limit entirely.

This contrast poses an intriguing question:
Why do our four motivating models converge to M/G/1/FCFS in heavy traffic?

To put it another way, we ask what crucial property our four motivating models share, that is not
shared by the alternative models in Fig. 4.4.

To answer this question, we define the “work-conserving finite-skip” framework (WCFS),
which applies to a broad class of models. The WCFS class contains our four motivating queueing
models, as well many others. We demonstrate that for any model in the WCFS class (which we
call a “WCFS model”), if the job size distribution S has bounded expected remaining size, then
its scaled mean response time converges to the same heavy traffic limit as the M/G/1/FCFS.
Specifically, we prove that
Theorem 4.6.1. For any model π ∈WCFS with bounded expected remaining size1,

lim
ρ→1

E[T π](1− ρ) =
E[S2]

2E[S]
.

Theorem 4.6.1 follows from an even stronger result: We prove that the difference in mean
response time between any WCFS model and M/G/1/FCFS is bounded by an explicit additive
constant, that may depend on the specific WCFS model.

1This assumption is defined in Section 4.3.3.
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Theorem 4.6.2. For any model π ∈WCFS with bounded expected remaining size,

E[T π] ≤ ρ

1− ρ

E[S2]

2E[S]
+ cπupper

E[T π] ≥ ρ

1− ρ

E[S2]

2E[S]
+ cπlower

for explicit constants cπupper and cπlower not dependent on load ρ.
Theorem 4.6.2 not only implies Theorem 4.6.1, it also guarantees rapid convergence of scaled

mean response time to the heavy traffic limit specified in Theorem 4.6.1.
In summary, this chapter makes the following contributions:
• We define the WCFS framework and our bounded expected remaining size assumption.

(Section 4.3)
• We prove that each of the four motivating models is a WCFS model. (Section 4.4)
• We discuss prior work on WCFS models. (Section 4.5)
• We prove that all WCFS models with bounded expected remaining size have the same

scaled mean response time as M/G/1/FCFS, and mean response time within an additive
constant of M/G/1/FCFS. (Section 4.6)

• We empirically validate our results, contrasting heavy traffic behavior of WCFS models
and non-WCFS models. (Section 4.8)

4.3 The WCFS Framework and WCFS Models
In Sections 4.3.1 and 4.3.2, we define the WCFS framework and resulting class of models. In
Section 4.3.3, we define our “bounded expected remaining size” assumption. In Section 4.3.4,
we define a few more concepts that will be used in this chapter.

Job sizes are sampled i.i.d. from a job size distribution. Once sampled, job sizes are fixed:
we assume we assume preempt-resume service if a job is preempted while in service. Intuitively,
the size of a job represents the amount of work associated with the job. Size will be defined in
more detail in Section 4.3.1.

4.3.1 WCFS Framework and WCFS Models
The WCFS framework applies to the class of models with Poisson arrivals at rate λ, and with the
following properties:

1. Finite skip (Section 4.3.1),

2. Work conserving (Section 4.3.1)

3. Non-idling (Section 4.3.1).

Finite skip

We first define the finite-skip property, which defines the class of finite-skip models. Consider
the jobs in the system in arrival order. Associated with each finite-skip model, there is a finite
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Figure 4.5: Diagram of a Finite-Skip Model

parameter n. We partition the jobs in the system into two sets: the (up to) n jobs which arrived
longest ago, which we call the front, and all other jobs, which we call the queue. The finite-skip
property specifies that, among all of the jobs in the system, the server(s) only serve jobs in the
front. In particular, no jobs beyond the first n jobs in arrival order receive any service. Fig. 4.5
shows a generic finite-skip model.
Definition 4.3.1. We call the front full if at least n jobs are present in the system, and therefore
exactly n jobs are at the front.

The intuition behind the term “finite skip” comes from imagining moving through the jobs
in the system in arrival order, skipping over some jobs and serving others. In a finite-skip model
only the first n jobs can be served, so only finitely many jobs can be skipped.

Work conserving

Now, we will specify what we mean by “work conserving,” which is a different concept here
than in previous work.

First, we normalize the total system capacity to 1, regardless of the number of servers in
the system. For instance, in a homogeneous k-server system, we would think of each server as
serving jobs at rate 1/k.

Whenever a job is in service, it receives some fraction of the system’s total service capacity,
which we call the job’s service rate. Let B(t) ≤ 1 denote the total service rate of all jobs in
service at time t, and let B be the stationary total service rate, assuming for now such a quantity
exists.

We define a job’s age at time t to be the total amount of service the job has received up to
time t: a job’s age increases at a rate equal to the job’s service rate whenever the job is in service.
Each job has a property called its size. When the job’s age reaches its size, the job completes.

In particular, we assume that every job j has a size sj and a class cj drawn i.i.d. from some
general joint distribution. Let (S,C) be the random variables denoting a job’s size and class
pair. A job’s class is static information known to the scheduler, while a job’s size is unknown to
the scheduler. For instance, in the threshold parallelism model defined in Section 4.4.3, a job’s
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parallelism threshold is its class.
Definition 4.3.2. We call the system maximally busy if the total capacity of the system is in use,
namely if the total service rate of jobs in service is 1.

We define a finite-skip model to be work conserving if whenever the front is full, the system is
also maximally busy.

In other words, a finite-skip model is work-conserving if, whenever there are at least n jobs
in the system, the total service rate is 1.

Now that we have defined a job’s size, we can also define the load of the system: ρ = λE[S].
Load ρ is the time-average service rate, or equivalently the time-average fraction of capacity in
use. Specifically, ρ = E[B]. We assume ρ < 1 to ensure stability.

Non-idling

We also assume that the total service rate B(t) is bounded away from zero whenever a job is
present. Specifically, whenever a job is present, we assume that B(t) ≥ binf , for some constant
binf > 0.

This assumption is key to bounding mean response time under low load. For an example, see
the batch-processing system in Section 4.3.2.

4.3.2 Examples and non-examples
To clarify which models fit within the WCFS framework, we give several examples, both positive
and negative.

• M/G/k/FCFS: This is a WCFS model with n = k.
• M/G/∞: This model is not finite skip. All jobs are in service, regardless of the number of

jobs in the system: there is no finite bound on the number of jobs in service.
• M/G/k/SRPT: In this model, the k jobs with smallest remaining size are served at rate
1/k. This model is not finite skip because the jobs with smallest remaining size can be
arbitrarily far back in the arrival ordering.

• Multiserver-job model: First, consider a multiserver system with k = 2 servers, and
where each job requires either 1 or 2 servers.
If jobs are served in FCFS order, with head-of-the-line blocking, this policy is finite-skip,
but not work-conserving. If the front consists of a job requiring 1 server followed by a job
requiring 2 servers, the system will only utilize one server. In this case, the system is full,
because n = k = 2 jobs are present in the system, and hence in the front, but the system is
not maximally busy.
In contrast, consider a service policy which serves a 2 server job if either of the jobs in
the front are 2 server jobs, or else serves each of the 1 server jobs at the front. This policy
is a special case of the ServerFilling policy, depicted in Fig. 4.3 and defined in general in
Section 4.4.4. This policy is finite-skip and work-conserving.

• Batch-processing M/G/k: If there are at least k jobs present, the oldest k jobs in the
system are each served at rate 1

k
. Otherwise, no service occurs. This model is finite-
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skip and work-conserving, but is not non-idling. To see why the non-idling property is
necessary for our main results, specifically Theorem 4.6.2, one can show that in the λ→ 0
limit, response times will grow arbitrarily large in the batch-processing M/G/k. To rule out
systems where E[T ] diverges in the λ→ 0 limit, we assume the non-idling property.

4.3.3 Bounded expected remaining size: Finite remsup

At a given point in time, let the state of a job j consist of its class cj and its age aj . Within our
WCFS framework, we allow service to be based on the states of the jobs in the front, but not on
the number or states of jobs in the queue.

A key assumption we make is that jobs have bounded expected remaining size from an arbi-
trary state. Let Sc be the job size distribution for jobs of class c ∈ C. We define remsup(S,C) to
be the supremum over the expected remaining sizes of jobs, taken over all states:

remsup(S,C) := sup
c∈C,a∈R+

E[Sc − a | Sc > a].

When size S is independent of class C, or when a model has no class information, we will simply
write remsup(S).

In this chapter, we focus on job size distributions for which remsup(S,C) is finite. To better
understand the finite remsup(S,C) assumption, let’s walk through a couple of examples. In all of
these examples, let’s suppose that the class information is independent of the job size distribution
S, so we can simply write remsup(S).

Consider a job size distribution S that is hyperexponential:

S =


Exp(µ1) w.p. p1
Exp(µ2) w.p. p2
Exp(µ3) w.p. p3

For all ages a, the expected remaining size is bounded:

E[S − a | S > a] ≤ 1

min(µ1, µ2, µ3)
= remsup(S).

More generally, an arbitrary phase type job size distribution S ′ must have finite remsup.
On the other hand, Pareto job size distributions do not have finite remsup. Let S ′′ ∼ Pareto(α =

3, xmin = 1), which has finite first and second moments.

E[S ′′ − a | S ′′ > a] =
a

2
,∀a ≥ 1

lim
a→∞

E[S ′′ − a | S ′′ > a] =∞

remsup = sup
a

E[S ′′ − a | S ′′ > a] =∞

In general, finite remsup roughly corresponds to service time having an exponential or sub-
exponential tail, though there are some subtleties. For instance, a Weibull distribution with
P {S ≥ a} = a−k for some k < 1 has infinite remsup, while for k ≥ 1, remsup is finite.
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As a final example, suppose the WCFS scheduling policy was a known-size policy, such as
a policy which serves the job with least remaining size among the n jobs in the front, at rate
1. Because we require that service is based only on the age and class of a job, we model this
situation by saying that a job’s class is its original size. In this case, S = C, and the distribution
Sx is simply the constant x. As a result, remsup(S,C) = sup(S). Therefore, in a known-size
setting, remsup is finite only if S is bounded.

4.3.4 Work, Number, Response Time

Let the work in the system be defined as the sum of the remaining sizes of all jobs in the system;
a job’s remaining size is its size minus its age.

Let W (t) be the total work in the system at time t. Let WQ(t) and WF (t) be the work in
the queue and the work at the front, respectively, at time t. (We will generally use the subscripts
Q and F to denote the queue and the front.) Let W,WQ, and WF denote the corresponding
time-stationary random variables.

Recall from Section 4.3.1 that B(t) is the total service rate at time t. Note that d
dt
W (t) =

−B(t), except at arrival instants.
Let N(t) be the number of jobs in the system at time t. Note that NF (t) = n whenever

N(t) ≥ n, because the front is full, and NF (t) = N(t) otherwise.
Let T be a random variable denoting a job’s time-stationary response time: the time from

when a job arrives to when it completes.

4.4 Important WCFS Models

Here we define in more detail the four motivating models mentioned in the introduction and
depicted in Fig. 4.3, and show that each is a WCFS model.

4.4.1 Heterogeneous M/G/k

The heterogeneous M/G/k/FCFS models multiserver systems where servers have different speeds.
This scenario commonly arises in datacenters, which are often composed of servers with a wide
variety of different types of hardware [150, 165]. In the mobile device setting, the big.LITTLE
architecture employs heterogeneous processors to improve battery life [37].

Let each server i have speed vi > 0, scaled so that
∑

i vi = 1. While a job is being served by
server i, the job’s age increases at a rate of vi, completing when its age reaches its size.

If there are multiple servers open when a job arrives, a server is chosen according to an
arbitrary server assignment policy. We only assume that jobs are served in FCFS order, and that
no job is left waiting while a server is idle. Under these assumptions, all assignment policies fit
within the WCFS framework.

As an example, in Fig. 4.3 we show the scaled mean response time of a heterogeneous M/G/4
with server speeds 0.4, 0.3, 0.2, 0.1, and the Preemptive Fastest Server First assignment policy.
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Heterogeneous M/G/k is a WCFS model

To show that the heterogeneous M/G/k is a WCFS model, we must verify the three properties
from Section 4.3.1.
Finite skip: Jobs enter service in FCFS order. As a result, the jobs in service are exactly the (up

to) k oldest jobs in the system. The model is finite skip with parameter n = k.

Work conserving: The system has total capacity
∑

i vi = 1. Whenever at least k jobs are
present in the system, all servers are occupied, and the total service rate is 1. In other
words, whenever the front is full, the system is maximally busy.

Positive service rate when nonempty: If a job is present, the job will be in service on some
server. The system will therefore have minimum service rate binf ≥ vmin, where vmin =
mini vi.

4.4.2 Limited Processor Sharing
The Processor Sharing policy for the M/G/1 is of great theoretical interest, and has been exten-
sively studied [238]. However, in real systems, running too many jobs at once causes a significant
overhead. A natural remedy is to utilize a policy is known as Limited Processor Sharing (LPS)
[91, 170, 216, 240].

The LPS policy is parameterized by some Multi-Programming Level k. If at most k jobs are
present in the system, then the policy is equivalent to Processor sharing, serving all jobs at an
equal rate, with total service rate 1. When more than k jobs are present, the k oldest jobs in FCFS
order are each served at rate 1/k. Limited Processor Sharing is a WCFS model with n = k.

As an example, in Fig. 4.3 we show the scaled mean response time of a LPS system with
MPL 4.

Heterogeneous M/G/k is a WCFS model

To show that the heterogeneous M/G/k is a WCFS model, we must verify the three properties
from Section 4.3.1.
Finite skip: Jobs enter service in FCFS order. As a result, the jobs in service are exactly the (up

to) k oldest jobs in the system. The model is finite skip with parameter n = k.

Work conserving: The system has total capacity
∑

i vi = 1. Whenever at least k jobs are
present in the system, all servers are occupied, and the total service rate is 1. In other
words, whenever the front is full, the system is maximally busy.

Positive service rate when nonempty: If a job is present, the job will be in service on some
server. The system will therefore have minimum service rate binf ≥ vmin, where vmin =
mini vi.

4.4.3 Threshold Parallelism
In modern datacenters, it is increasingly common for jobs to be parallelizable across a variety of
different numbers of servers, where the level of parallelism is chosen by the scheduler [48, 178].
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The Threshold Parallelism setting models this scenario by assuming that for each job the user
gives the ideal, maximum number of servers that the job can utilize.

Under Threshold Parallelism, a job j has two characteristics: Its size sj and its parallelism
threshold ℓj , where ℓj is some number of servers. Job j may be parallelized across up to ℓj
servers, with linear speedup. The pair (sj, ℓj) is sampled i.i.d. from some joint distribution
(S, L). Note that ℓj is the class of the job j.

Let k be the total number of servers. Note that ℓj ∈ [1, k]. If a job j is served on q ≤ ℓj
servers, then it receives service rate q

k
and would complete after ksj

q
time in service. The number

of servers a job receives can change over time, correspondingly changing its service rate.
We focus on the FCFS service policy. Under this policy, jobs are placed into service in arrival

order until their total parallelism thresholds sum to at least k, or all jobs are in service. Any job j
which is not the newest job in service is served by ℓj servers. The newest job in service is served
by the remaining servers. Under FCFS service, Threshold Parallelism fits the WCFS framework.

As an example, in Fig. 4.3 we show the scaled mean response time of a Threshold Parallelism
model where the joint distribution (S, L) is (Exp(2), 1) with probability 1

2
, and (Exp(2

3
), 4) with

probability 1
2
, and with FCFS service.

As a comparison, in Fig. 4.4, we show Threshold Parallelism models with the same joint
distribution (S, L), but with different service policies: “Elastic First,” prioritizing jobs with L =
1, and “Inelastic First,” prioritizing jobs with L = 4. These policies do not fit within the WCFS
framework.

Threshold Parallelism with FCFS service is a WCFS model

Finite skip: The jobs in service are the initial set of jobs in arrival order whose parallelism
thresholds sum to at least k. This initial set can contain at most k jobs, because every job
has parallelism threshold at least 1. As a result, the model is finite skip with parameter
n = k.

Work conserving: Whenever jobs are present in the system whose parallelism thresholds sum
to at least k, all servers are occupied, and the system is maximally busy. Whenever k jobs
are present, the system must be maximally busy.

Positive service rate when nonempty: If a job is present in the system, at least one server must
be occupied, and so the service rate is at least 1/k. Hence binf ≥ 1/k.

4.4.4 Multiserver-jobs under the ServerFilling policy

First, we will describe the multiserver-job setting. Then we will specify the ServerFilling policy.

Multiserver-Job Setting

When we look at jobs in cloud computing systems [148] and in supercomputing systems [33, 61,
210], jobs commonly require an exact number of servers for the entire time the job is in service.
To illustrate, in Fig. 4.6 we show the distribution of the number of CPUs requested by the jobs in

116



100 101 102 103 104 105

Normalized CPUs requested

100

10−1

10−2

10−3

10−4Fr
a
ct

io
n
 o

f 
jo

b
s

Figure 4.6: The distribution of number of CPUs requested in Google’s recently published Borg
trace [218]. Number of CPUs is normalized to the size of the smallest request observed, not an
absolute value.

Google’s recently published trace of its “Borg” computation cluster [83, 218]. The distribution
is highly variable, with jobs requesting anywhere from 1 to 100,000 normalized CPUs2.

The Multiserver-Job (MSJ) model is a natural model for these computing systems – it is a
multiserver queueing model where each job requires a fixed number of servers.

Specifically, in an MSJ model, a job j has two requirements: A number of servers vj and an
amount of time xj , which are sampled i.i.d. from some joint distribution (V,X). If job j requires
vj servers, then it can only be served when exactly vj servers are allocated to it. The job will
complete after xj time in service.

Let a job j’s size be defined as

sj =
vjxj

k
S =

V X

k
.

There are a wide variety of possible service policies for placing jobs at open servers, including
FCFS, MaxWeight, Most Servers First and many others. (We formally define these policies in
Section 4.8.) As examples, in Fig. 4.4, we show the scaled mean response time of Multiserver-
Job models under a variety of service policies, where the joint distribution (V,X) is (1, Exp(1

2
))

with probability 1
2
, and (4, Exp(2

3
)) with probability 1

2
.

Unfortunately, no existing policies fit within the WCFS framework – all existing policies,
including those shown in Fig. 4.4, are either non-finite-skip, such as Most Servers First, or non-
work-conserving, such as FCFS. Correspondingly, in Fig. 4.4, we see that no existing policy has
its scaled mean response time converge to the same limit as M/G/1/FCFS.

We therefore define a novel service policy called ServerFilling which yields a WCFS model.
The scaled mean response time of this service policy is depicted in Fig. 4.3, with the same joint
distribution (V,X) as the policies shown in Fig. 4.4.

2The data was published in a scaled form [218]. We rescale the data so the smallest job in the trace uses one
normalized CPU.
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ServerFilling

For simplicity, we initially define the Server Filling policy for the common situation in computer
systems where all jobs require a number of servers which is a power of 2 (V is always a power
of 2), and where k is also a power of 2. We discuss generalizations in Section 4.4.4.

First, ServerFilling designates a candidate set M , consisting of the minimal prefix (i.e. initial
subset) of the jobs in the system in arrival order which collectively require at least k servers. If
all jobs in the system collectively require fewer than k servers, then all are served. Note that
|M | ≤ k because all jobs require at least 1 server.

For instance, if k = 8 and the jobs in the system require [1, 2, 1, 1, 4, 2, 2, 1] servers, in arrival
order (reading from left to right), then M would consist of the first 5 jobs: [1, 2, 1, 1, 4], which
collectively require 9 servers.

Next, the jobs in M are ordered by their server requirements vj , from largest to smallest,
tiebroken by arrival order. Jobs are placed into service in that order until no more servers are
available. For instance, if k = 8 and M contains jobs requiring [1, 2, 1, 1, 4] servers, then jobs
requiring 4, 2, 1, and 1 server(s) would be placed into service.

To show that ServerFilling fits within WCFS with n = k, we must show that ServerFilling
always utilizes all k servers if at least k jobs are in the system.
Lemma 4.4.1. Let M be a set of jobs such that

∑
j∈M vj ≥ k, where each vj = 2i for some i

and k = 2i
′

for some i′. Label the jobs m1,m2, . . . in decreasing order of server requirement:
vm1 ≥ vm2 ≥ . . .. Then there exists some index ℓ ≤ |M | such that

ℓ∑
j=1

vmj
= k.

Proof. Let REQ(z) count the number of servers required by the first z jobs in this ordering:

REQ(z) =
z∑

j=1

vmj
.

We want to show that REQ(ℓ) = k for some ℓ. To do so, it suffices to prove that:

There exists no index ℓ′ such that both REQ(ℓ′) < k and REQ(ℓ′ + 1) > k. (4.1)

Equation (4.1) states that REQ(z) cannot cross from below k to above k without exactly equalling
k. Because REQ(0) = 0 and REQ(|M |) ≥ k, REQ(ℓ) must exactly equal k for some ℓ.

To prove (4.1), let us examine the quantity k − REQ(z), the number of remaining servers
after z jobs have been placed in service. Because all vjs are powers of 2, k − REQ(z) carries an
important property:

For all z, k − REQ(z) is divisible by vmz+1 . (4.2)

We write a|b to indicate that a divides b.
We will prove (4.2) inductively. For z = 0, k − REQ(0) = k. Because k is a power of 2,

and vm1 is a power of 2 no greater than k, the base case holds. Next, assume that (4.2) holds for
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some index z, meaning that vmz+1|(k− REQ(z)). Note that REQ(z+1) = REQ(z) + vmz+1 . As a
result, vmz+1 |(k − REQ(z + 1)). Now, note that vmz+2|vmz+1 , because both are powers of 2, and
vmz+2 ≤ vmz+1 . As a result, vmz+2|(k − REQ(z + 1)), completing the proof of (4.2).

Now, we are ready to prove (4.1). Assume for contradiction that there does exist such an ℓ′.
Then k − REQ(ℓ′) > 0, and k − REQ(ℓ′ + 1) < 0. Because REQ(ℓ′ + 1) = REQ(ℓ′) + vmℓ′+1

,
we therefore know that vmℓ′+1

> k − REQ(ℓ′). But from (4.2), we know that vmℓ′+1
divides

k − REQ(ℓ′). A larger positive integer cannot divide a smaller positive integer, so this is a
contradiction, as desired.

ServerFilling for the Multiserver-Job system is a WCFS policy

Finite skip: The jobs in service are a subset of the candidate set M , the initial set of jobs in
arrival order whose server requirements vj sum to at least k. This initial set must contain
at most k jobs, because every job requires at least 1 server. As a result, the model is finite
skip with parameter n = k.

Work conserving: By Lemma 4.4.1, whenever jobs are present in the system whose server
requirements vj sum to at least k, all servers are occupied, and the system is maximally
busy. Thus, whenever k jobs are present, the system must be maximally busy.

Positive service rate when nonempty: If a job is present in the system, at least one server must
be occupied, and so the service rate is at least 1/k. Hence binf ≥ 1/k.

Generalizations of ServerFilling

The ServerFilling policy can be generalized, as long as all server requirements divide k. We
describe the corresponding scheduling policy, which we call DivisorFilling, in Section 4.7.

DivisorFilling is the most general possible WCFS policy for the MSJ setting. If some server
requirement does not divide k, then no policy fits within the WCFS framework, because the
system is not be work conserving if all jobs present require that non-divisible number of servers,
for any number of jobs present.

4.5 Prior Work

4.5.1 M/G/k

Fixed k

In this regime, the best known bounds on response time either require much stronger assumptions
on the job size distribution S than we assume [144], or prove much weaker bounds on mean
response time [132, 133].

A paper by Loulou [144] bounds mean work in system in the M/G/k to within an additive gap,
under the strong assumption that the job size distribution S is bounded. This result is comparable
to our Lemma 4.6.2, but in a simpler setting and under stronger assumptions. While the paper
mostly focuses on the overload regime (ρ > 1), their equations (9) and (10) apply in our setting
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(ρ < 1) as well. They couple the multiserver system with a single-server system on the same
arrival sequence. They show that

0 ≤ WM/G/k(t)−WM/G/1(t) ≤ k max
1≤i≤A(t)

Si,

where A(t) is the number of jobs that have arrived by time t. In the case of a bounded job size
distribution S, one can therefore show that

0 ≤ WM/G/k(t)−WM/G/1(t) ≤ k sup(S). (4.3)

One could then use this workload bound to prove a bound on mean response time in the M/G/k.
These bounds are comparable to those in our Lemma 4.6.2, but our bounds require a much

weaker assumption on the job size distribution S.
Köllerström [132] proves convergence of queueing time to an exponential distribution in the

GI/GI/k. Specialized to the M/G/k, the result states that in the ρ→ 1 limit, TM/G/k
Q converges to

an exponential distribution with mean

ρ

1− ρ

E[S2]

2E[S]
− 1

λ
= E[TM/G/1

Q ]− 1

λ
.

Köllerström [133] improves upon [132] by characterizing the rate of convergence and thereby
derives explicit moment bounds. However, unlike prior single-server results [128], these bounds
are quite weak. Specialized to the M/G/k, Köllerström [133]’s bounds state that

E[TM/G/k
Q ]− E[TM/G/1

Q ] ≥ clower

(1− ρ)1/2
(4.4)

E[TM/G/k
Q ]− E[TM/G/1

Q ] ≤ chigher
1− ρ

(4.5)

for constants clower, chigher not dependent on ρ.
The Θ( 1

1−ρ
) scaling in (4.5) is especially poor: this bound is too weak to give any explicit

bound on the convergence rate of E[TM/G/k
Q ](1− ρ) to the previously established limit of E[S2]

2E[S] .
Our bounds are tighter in that they are constants not depending on ρ, but we assume S has

finite remsup, while Köllerström [133] merely assumes that S has finite second moment.

Scaling k

Recent work has focused on regimes where both ρ and k scale asymptotically, such as the Halfin-
Whitt regime. These results are not directly comparable to ours; they indicate that the limiting
behavior in the Halfin-Whitt regime depends in a complex way on the job size distribution S
[6, 43, 69].

Turning to the more general case of scaling k, in work currently under submission, Goldberg
and Li [75] prove the first bounds on E[TQ] that scale as c

1−ρ
for an explicit constant c and

arbitrary k as a function of ρ. Unfortunately, the constant c is enormous, scaling as 10450E[S3].
In contrast, we focus on the regime of fixed k, and prove tight and explicit bounds on mean
response time. Goldberg and Li [75] also provide a highly detailed literature review on bounds
on E[TQ] and related measures in the M/G/k and related models.

120



4.5.2 Heterogeneous M/G/k

Heterogeneous M/M/k

Much of the previous work on multiserver models with heterogeneous service rates has focused
on the much simpler M/M/k setting, where jobs are memoryless [8, 54, 55, 139]. In this model,
one can analyze the preemptive Fastest-Server-First policy to derive a natural lower bound on the
mean response time of any server assignment policy. One can similarly analyze the preemptive
Slowest-Server-First policy to derive an upper bound. These two policies each lead to a single-
dimensional birth-death Markov chain, allowing for straightforward analysis [8]. One can think
of our bounds as essentially extending these bounds for the M/M/k to the much more complex
setting of the M/G/k.

Heterogeneous M/Hm/k

Van Harten and Sleptchenko [221] primarily study a homogeneous multiserver setting with hy-
perexponential job sizes. However, in their conclusion, they mention that their methods could be
extended to a setting with heterogeneous servers, but at the cost of making their Markov chain
grow exponentially. This exponential blowup seems inevitable when applying exact Markovian
methods to a heterogeneous setting with differentiated jobs.

M/(M+G)/2 Model

Another intermediate model is the M/(M+G)/2 model of Boxma et al. [28]. In this model, jobs
are not differentiated. Instead, the service time distribution is entirely dependent on the server.
Server 1, the first server to be used, has an exponential service time distribution, while server 2
has a general service time distribution. Boxma et al. [28] derive an implicit expression for the
Laplace-Stieltjes transform of response time in this setting, which they are only able to make
explicit when the general service time distribution has rational transform. Subsequent work has
fully solved the M/(M+G)/2 model, under both FCFS service and related service disciplines
[123, 184, 192].

Our results are not directly applicable to the M/(M+G)/2 setting, because the servers have
different distributions of service time, not just different speeds. However, the slow progress on
this two-server model illustrates the immense difficulty in solving even the simplest heteroge-
neous multiserver models. In contrast, our WCFS framework handles both differentiated jobs
and an arbitrary number of servers with no additional effort.

4.5.3 Limited Processor Sharing

The Limited Processor Sharing policy has been studied by a wide variety of authors [91, 170,
216, 240–242], but none bound mean response time for all loads ρ.
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Asymptotic Regimes

A series of papers by Zhang, Dai and Zwart [240–242] derive the strongest known results on
Limited Processor Sharing in a variety of asymptotic regimes. These authors derive the measure-
valued fluid limit [241], the diffusion limit [242] and a steady-state approximation [240], which
they prove is accurate in the heavy traffic limit (ρ → 1). The most comparable of their results
to our work is their steady-state approximation. When specialized to mean response time in the
M/G/1/LPS, their approximation states that

E[T ] ≈ E[S]
1− ρ

(1− ρk) +
E[S2]

2E[S]
ρk

1− ρ

They prove that this approximation is accurate in the heavy-traffic limit; they do not provide
specific error bounds, but empirically show the approximation performs well at all load ρ [240].
Our results therefore complement the results of Zhang et al., by proving concrete error bounds,
in contrast to their approximation.

State-dependent Server Speed

To model the behavior of databases, Gupta and Harchol-Balter [91] introduce a variant of the
Limited Processor Sharing model, where the total server speed is a function of the number of
jobs in service. In their setting server speed increases to a peak, and then slowly declines as
more jobs enter service. They derive a two-moment approximation for mean response time,
and use it to derive a heuristic policy for choosing the Multi-Programming Level (MPL). While
this two-moment approximation is not known to be tight, it indicates that the optimal MPL for
minimizing mean response time may be significantly larger than the service-rate-maximizing
MPL, if job size variability is large and load is not too high.

Using our WCFS framework it is possible to derive bounds on mean response time for the
state-dependent server speeds setting. For MPL parameters less than or equal to the service-rate-
maximizing MPL, both our upper and lower bounds apply, while if the MPL parameter is greater
than the service-rate-maximizing MPL, only our upper bounds apply, because the system only
partially fulfills our definition of work conservation.

Subsequently, Telek and Van Houdt [216] derive the Laplace-Stieltjes transform of response
time in the LPS model with state-dependent server speed, under phase-type job sizes. Unfortu-
nately, the transform takes the form of a complicated matrix equation, making it difficult to derive
general insights across general job size distributions. Instead, the authors numerically invert the
Laplace transform for a handful of specific distributions to derive empirical insights. This is in
contrast to our simple, explicit and tight bounds on mean response time in Theorem 4.6.2.

4.5.4 Threshold Parallelism

Berg et al. [19] [18] introduce the concept of “speedup functions” to capture the common sit-
uation in Machine Learning and other highly parallel computing settings where different jobs
can be parallelized to different degrees. One important kind of speedup function is the Threshold
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Parallelism model, where the service rate of a job is proportionate to the number of servers. How-
ever, results are only known for models with at most two speedup functions, and where the job
size distribution is exponential, which corresponds to exactly two parallelism thresholds. In this
setting, the optimal policy is shown to be one called “GREEDY*,” which corresponds to the pol-
icy which preemptively prioritizes the jobs with smaller parallelism threshold. Even with these
restrictions, no analytic bounds on response time are known. Our bounds apply to Threshold
Parallelism with general job size distributions and arbitrary parallelism thresholds, under FCFS
service.

Elastic and Inelastic Jobs

A special case of Threshold Parallelism the Elastic/Inelastic model of Berg et al. [20]. This
model assumes that all jobs are either “inelastic,” with parallelism threshold 1, or “elastic,” with
parallelism threshold k. They also assume that inelastic jobs have size distributed as Exp(µI),
and elastic jobs have size distributed as Exp(µE), with sizes unknown to the scheduler. They
focus on two preemptive-priority service policies for this setting: Inelastic First (IF) and Elastic
First (EF). They prove that if µI ≥ µE , then IF minimizes mean response time. They empirically
show that if µI < µE , then EF often has lower mean response time than IF. They also perform
an approximate response time analysis of EF and IF using a combination of the Busy-Period
Transitions technique and Matrix-Analytic methods, to evaluate their multidimensional Markov
chain. This gives a numerical approximation that is empirically within 1% of simulation.

Our bounds on Threshold Parallelism with FCFS service are the first analytic bounds for
any service policy and any parallelism thresholds, subsuming the Elastic/Inelastic setting. Our
bounds thus form a baseline for judging the performance of policies like IF and EF. Moreover,
we handle arbitrary parallelism thresholds, not just 1 and k.

4.5.5 Multiserver Jobs
The Multiserver-Job model has been extensively studied, in both practical [33, 61, 210] and
theoretical settings [31, 71, 113, 115, 147, 148, 180, 181, 187]. It captures the common scenario
in datacenters and supercomputing where each job requires a fixed number of servers in order to
run. Characterizing the stability region of policies in this model is already a challenging problem,
and there were no bounds on mean response time for any scheduling policy, prior to our bound
on ServerFilling.

FCFS Scheduling

The most natural policy is FCFS, where the oldest jobs are placed into service until a job requires
more servers than remain, at which point the queue is blocked. Therefore, the FCFS policy can
leave a large number of servers idle even when many jobs are present. As a result, FCFS does
not in general achieve an optimal stability region. Even worse, deriving the stability region of
FCFS is an open problem, and has only been found in a few special cases [31, 187].

One technique that may be useful for characterizing this stability region is the saturated sys-
tem approach [13, 65]. The saturated system is a system in which additional jobs are always
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available, so the front is always full, only the composition of jobs in the front varies. The com-
pletion rate of the saturated system exactly matches the stability region of the equivalent open
system, under a wide variety of arrival processes. Unfortunately, solving the general Multiserver-
job FCFS saturated system seems intractable.

Given the difficulty of proving results under FCFS scheduling, finding policies with better
theoretical guarantees, such as ServerFilling, is desirable.

MaxWeight Scheduling

One natural throughput-optimal policy is the MaxWeight policy [148]. To express this policy,
divide all jobs into classes based on server requirements, with Ni(t) denoting the number of jobs
requiring i servers in the system at time t. Next, consider the set Z of all packings of jobs onto
servers. Let z be one particular packing, with zi the number of jobs requiring i servers served by
packing z.

The MaxWeight service policy picks the packing z which maximizes

max
z

∑
i

Ni(t)zi.

While MaxWeight is throughput optimal, it is very computationally intensive to implement,
requiring the scheduler to solve an NP-hard optimization problem whenever a job arrives or
departs. For comparison, ServerFilling is also throughput-optimal given our assumptions on the
server requirements V , but it is far computationally simpler, requiring approximately linear time
as a function of k. Moreover, no bounds on mean response time are known for MaxWeight, due
in part to its high complexity.

Nonpreemptive Scheduling

In certain practical settings such as supercomputing, a nonpreemptive service policy is preferred.
In such settings, a backfilling policy such as EASY backfilling or conservative backfilling is
often used [33, 61, 210]. These start by serving jobs in FCFS order, until a job is reached that
requires more servers than remain. At this point, jobs further back in the queue that require
fewer servers are scheduled, but only if they will not delay older jobs, based on user-provided
service time upper bounds. While these policies are popular in practice little is known about
them theoretically, including their response time characteristics.

Finding any nonpreemptive throughput-optimal policy is a challenging problem. Several
such policies have been designed [71, 147, 181], typically by slowly shifting between different
server configurations to alleviate overhead. Because such policies can have very large renewal
times, many jobs can back up while the system is in a low-efficiency configuration, which can
empirically lead to very high mean response times. However, no theoretical mean response time
analysis exists for any policy in the Multiserver-Job setting. As a result, there is no good baseline
policy to compare against novel policies, Our bounds on the mean response time of ServerFilling
can serve as such a baseline, albeit in the more permissive setting of preemptive scheduling.
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4.6 Theorems and Proofs
We perform a heavy traffic analysis within our WCFS framework, assuming finite remsup(S,C).
Specifically, we prove that the scaled mean response time of any WCFS model converges to the
same constant as an M/G/1/FCFS:
Theorem 4.6.1 (Heavy Traffic response time). For any model π ∈ WCFS, if remsup(S,C) is
finite,

lim
ρ→1

E[T π](1− ρ) =
E[S2]

2E[S]
.

To prove Theorem 4.6.1, we prove a stronger theorem, tightly and explicitly bounding E[T π]
up to an additive constant, for any π ∈WCFS.
Theorem 4.6.2 (Explicit response time bounds). For any model π ∈ WCFS, if remsup(S,C) is
finite,

E[T π] ≤ ρ

1− ρ

E[S2]

2E[S]
+ cπupper

E[T π] ≥ ρ

1− ρ

E[S2]

2E[S]
+ cπlower

for explicit constants cπupper and cπlower not dependent on load ρ.

Proof deferred to Section 4.6.1.

From Theorem 4.6.2, Theorem 4.6.1 follows via a simple rearrangement:

ρ

1− ρ

E[S2]

2E[S]
=

E[S2]
2E[S]

1− ρ
− E[S2]

2E[S]
.

Theorem 4.6.2 also implies rapid convergence of scaled mean response time to its limiting
constant for any WCFS policy:
Corollary 4.6.1. For any model π ∈ WCFS, if remsup(S,C) is finite,

E[T π](1− ρ) =
E[S2]

2E[S]
+O(1− ρ).

4.6.1 Outline of Proof of Theorem 4.6.2
We will prove Theorem 4.6.2 where

cπupper = (n− 1)remsup(S,C) +
nE[S]
binf

,

cπlower = −(n− 1)remsup(S,C) + E[S],

where n denotes the size of the front, and where binf is defined in Section 4.3.1.
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Our goal is simply to prove the bounds in Theorem 4.6.2 for some constants cπupper, c
π
lower

independent of ρ; we have made no effort to optimize these constants, leaving that to future
work. Specifically, for our motivating models, the n

binf
term scales as O(n2) as the front size n

grows. For these models this term is unnecessarily loose, and could easily be lowered to an O(n)
bound by using a more detailed view.

We start our proof of Theorem 4.6.2 in Section 4.6.2 by discussing two different views of a
WCFS system: The omniscient view and the limited view. We will make use of these two views
throughout our proof. Next, we split response time T into two pieces, queueing time TQ and
front time TF , and bound the expectation of each separately.

We first bound E[TQ], which forms the bulk of our proof. The two key ideas come from the
intuition that a WCFS model behaves like a FCFS M/G/1 system. In Lemma 4.6.1, we prove that
E[TQ] = E[W ] + c, for some constant c; in a WCFS model, jobs progress through the system in
essentially FCFS order, and as ρ→ 1 work is completed essentially at rate 1.

In Lemma 4.6.2, we prove that E[W ] = E[WM/G/1] + c, for some constant c. The key idea
here is that in a WCFS model, if W is large, work arrives and completes in exactly the same way
as in an M/G/1. In particular, in a WCFS model, if the front is not full, then W cannot be large.

In Lemma 4.6.3, we combine Lemma 4.6.1 and Lemma 4.6.2 to prove that E[TQ] = E[TM/G/1]+
c for some constant c.

In Lemma 4.6.4, we prove that work W is indeed stationary with finite mean. This is a
technical lemma that rules out pathological scenarios, which is necessary because our WCFS
class of models is very general. Lemma 4.6.4 is used by both Lemma 4.6.1 and Lemma 4.6.2.

Finally, in Lemma 4.6.5, we bound E[TF ], utilizing Little’s law.
Combining Lemmas 4.6.3 and 4.6.5 proves Theorem 4.6.2.

4.6.2 Two Views

At several steps in our proof of Theorem 4.6.2, we will make use of two different views of the
queueing system, corresponding to two different state descriptors:
Omniscient view: In the omniscient view the state descriptor consists of the remaining size and

class of all jobs in the system; we sample jobs’ sizes and classes when the jobs enter the
system. For a given system state, work is a deterministic quantity.

Limited view: In the limited view, the state descriptor consists of the age and class of the jobs
in the front, and the number of jobs in the queue. We sample jobs’ classes when they enter
the front, and determine whether jobs complete according to the hazard rate of the job size
distribution, as the job ages. For a given system state, work is a random variable.

We will make it clear which view of the system we are using in each step of the proof. Generally,
the omniscient view is useful when analyzing total work in the system, and the limited view is
useful when analyzing work at the front.

4.6.3 Lemma 4.6.1: E[TQ] and E[W ]

First, we prove that mean queueing time and mean work are similar:
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Lemma 4.6.1 (Queueing time and work). For any model π ∈ WCFS, if remsup(S,C) is finite,

E[W ]− (n− 1)remsup(S,C) ≤ E[TQ] ≤ E[W ].

Proof. start by writing time in queue TQ in terms of work in system. Let us consider the omni-
scient view of the system, so work W is a deterministic quantity given the system state. Consider
an arbitrary tagged job j. When j arrives, let WA(j) be the amount of work j sees in the system,
and let W F

F (j) be the amount of work j sees in the front other than j itself, when j leaves the
queue and enters the front. In W F

F , the subscript F indicates that we are looking at the amount
of work at the front, and the superscript F indicates that we are looking at the moment when j
enters the front.

Because the model is finite-skip, jobs move from the queue to the front in arrival order, so
all of the WA(j) work that was in the system when j arrived is either complete or in the front
when j enters the front. As a result, the amount of work which is completed while j is in the
queue is exactly WA(j) − W F

F (j). Note that if j enters the front upon arrival to the system,
WA(j) = W F

F (j), and no work is completed while j is in the queue.
While j is in the queue, the front must be full; the system must be maximally busy during

this time, completing work at rate 1. Job j is in the queue for TQ(j) time, so the system must
complete TQ(j) work during that time. We can therefore conclude that

WA(j)−W F
F (j) = TQ(j).

Because j is an arbitrary job, we can write W F
F (j) as W F

F , a random variable over all jobs that
pass through the system. Likewise, TQ(j) is simply TQ. Because Poisson arrivals see time
averages, WA(j) ∼ W , the time-stationary amount of work in the system. Combining these
equivalencies, we find that

W −W F
F = TQ, (4.6)

where W F
F represents the work seen at the front when a job enters the front. Note that W is

time-stationary, while W F
F and TQ are event-stationary.

To rigorously demonstrate (4.6), we need to prove that the system converges to a stationary
distribution, which we prove in Lemma 4.6.4.

To give bounds on W F
F , we switch to the limited view of the system, where the state of the

front consists of the classes and ages of the jobs at the front. We have two simple bounds on W F
F :

First, W F
F ≥ 0. Next, since W F

F (j) is the work of at most n− 1 jobs, (the jobs at the front when
a given job enters the front),

E[W F
F ] ≤ (n− 1)remsup(S,C).

Combining these bounds with (4.6), we can bound E[TQ] in terms of E[W ]:

E[W ]− (n− 1)remsup(S,C) ≤ E[TQ] ≤ E[W ].
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4.6.4 Lemma 4.6.2: Bounding E[W ]

Lemma 4.6.2. (Work bounds) For any model π ∈ WCFS, if remsup(S,C) is finite,

ρ

1− ρ

E[S2]

2E[S]
≤ E[W ] ≤ ρ

1− ρ

E[S2]

2E[S]
+ (n− 1)remsup(S,C).

Proof. Consider the stationary random variable W 2 in the omniscient view, so work is a deter-
ministic quantity at a given time on a given sample path. W 2 evolves in two ways: continuous
decrease as work is completed, and stochastic jumps as jobs arrive. Because W 2 is a station-
ary random variable, the expected rate of decrease and increase must be equal, due to the rate
conservation law [157] with respect to W 2.

To calculate the expected rate of decrease, note that, ignoring moments where jobs arrive,
d
dt
W (t) = −B(t), by definition, where B(t) is the total service rate of the system at time t. As

a result, d
dt
W (t)2 = −2W (t)B(t), ignoring arrival epochs. This expected rate of decrease is a

well-defined random variable, because the system converges to stationarity. Thus the expected
rate of decrease of W 2 is 2E[WB].

To calculate the expected rate of increase, let t− be the time just before a job arrives to
the system. When the job arrives, W 2 increases from W (t−)2 to (W (t−) + S)2, a change of
2W (t−)S + S2. Note that W (t−) is distributed as W , by PASTA. Note also that W and S
are independent, because S is sampled i.i.d.. As a result, the expected increase per arrival is
2E[W ]E[S] + E[S2]. Arrivals occur at rate λ. As a result, the expected rate of increase is
2λE[W ]E[S] + λE[S2].

To show that these rates are equal, we must show that the rates are finite. This follows from
the fact that E[W ] is finite, which we prove in Lemma 4.6.4.

As a result, the rates of increase and decrease of W 2 are equal:

2E[WB] = 2λE[W ]E[S] + λE[S2]

E[WB] = λE[W ]E[S] +
λ

2
E[S2]

E[WB] = ρE[W ] +
λ

2
E[S2]

E[W ]− E[W (1−B)] = ρE[W ] +
λ

2
E[S2]

E[W ](1− ρ) = E[W (1−B)] +
λ

2
E[S2]

E[W ] =
E[W (1−B)]

1− ρ
+

λE[S2]

2(1− ρ)
(4.7)

Now, we merely need to bound E[W (1 − B)]. We do so by switching to the limited view.
Note that

E[W (1−B)] = E[W (1−B)1{B = 1}] + E[W (1−B)1{B < 1}]
= E[W (1−B)1{B < 1}]
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Because the model is work-conserving, if B < 1, the front is not full, and there are at most
n − 1 jobs in the system. Taking expectations over the future randomness of these jobs, at any
time t for which B(t) < 1,

E[W (t)] ≤ (n− 1)remsup(S,C)

Therefore,

E[W (1−B)1{B < 1}] ≤ (n− 1)remsup(S,C)E[(1−B)1{B < 1}]
= (n− 1)remsup(S,C)E[1−B]

= (n− 1)remsup(S,C)(1− ρ)

E[W (1−B)] ≤ (n− 1)remsup(S,C)(1− ρ).

Substituting this into (4.7), our equation for E[W ], we find that

E[W ] ≤ λE[S2]

2(1− ρ)
+ (n− 1)remsup(S,C).

Dropping the first term of (4.7), we also get a lower bound:

E[W ] ≥ λE[S2]

2(1− ρ)
.

One might alternatively try to prove Lemma 4.6.2 via a coupling argument, by coupling the
WCFS system to an M/G/1 with the same arrival process. Unfortunately, this proof strategy does
not succeed, for a subtle reason.

One can show that the difference in work between the two systems during an interval when
the WCFS system has a full front is bounded by the amount of work in the WCFS system at the
beginning of the interval. This is analogous to the many-jobs interval argument used by Grosof
et al. [81] to analyze relevant work in the M/G/k/SRPT. The key difference is that in the WCFS
setting, we consider total work, not relevant work, meaning that job sizes are not bounded. As a
result, while the expected work at the beginning of a full-front interval is bounded, the realization
of that work may be arbitrarily large.

A coupling argument would therefore need to bound the relative length of full-front intervals
started by different amounts of work, to prove a time-average bound on the gap between E[W ]
and E[WM/G/1]. This seems intractable, given the generality of WCFS policies.

Instead, by using a Palm Calculus approach, we directly connect the small expected amount
of work in a WCFS system with non-full front to a small expected difference in work between
the two systems. We therefore prove Lemma 4.6.2, while avoiding all of the complications of a
coupling-based argument.

4.6.5 Lemma 4.6.3: Bounding E[TQ]

Now, we can bound E[TQ] by combining Lemmas 4.6.1 and 4.6.2:
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Lemma 4.6.3 (Queueing time bounds). For any model π ∈ WCFS, if remsup(S,C) is finite,

E[T π
Q] ≤

ρ

1− ρ

E[S2]

2E[S]
+ (n− 1)remsup(S,C)

E[T π
Q] ≥

ρ

1− ρ

E[S2]

2E[S]
− (n− 1)remsup(S,C)

4.6.6 Lemma 4.6.4: Finite E[W ]

Lemma 4.6.4 (Finite mean work). For any model π ∈ WCFS, if remsup(S,C) is finite, for any
load ρ < 1, W is a well-defined stationary random variable and E[W ] is finite.

Proof. Recall that W = WF +WQ; we first focus on WF . There are at most n jobs in the front
at any time. In the limited view, each job has expected remaining size at most remsup(S,C), so
E[WF ] ≤ nremsup(S,C). We now turn to WQ.

To prove that WQ is stationary and well-defined with finite mean, we will apply the “inventory
process” results of Sigman and Yao [206], and Scheller-Wolf [193]’s refinement of those results.

We upper bound WQ byW , which we will write as an inventory process.

W := W1{WQ > 0}.

Here we will use the omniscient view, soW(t) is a specific value. By provingW is stationary
and well-defined with finite mean, we also show the same is true of WQ.

To see why, recall from Section 4.3.3 our assumption that the service policy is dependent
only on the class and age of jobs at the front. The front therefore evolves in a self-contained,
Markovian fashion, except for the process by which jobs move from the queue to the front. To
show that WF is stationary, it suffices to show that the indicator 1{WQ > 0} is stationary. Only
the indicator of whether the queue is occupied influences the state of the front, not the specific
number of jobs in the queue. As a result, the stationarity of W also implies the stationarity of
WF . Because WQ = (W −WF )

+, the stationarity ofW also implies the stationarity of WQ.
To writeW as an inventory process as in [206], we must define a process X(t) with stationary

and ergodic increments, such that

W(t) = X(t) + L(t),

where

L(t) := sup
0≤s≤t

(−min{0, X(s)})

Here X(t) represents the potential workload process, and L(t) corrects for the fact that the
queue can empty.

We will apply [193, Theorem 2.2.1], for the special case of the first moment. Note by Re-
marks 1 and 3, for the first moment of an inventory process, it suffices to show:
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• Negative drift: There exists an amount of work w < ∞ and a drift rate δ > 0 such that
conditioned onW(t) ≥ w,

lim
ϵ→0

EFt [X(t+ ϵ)−X(t)]

ϵ
≥ −δ

[Isaac: Define Ft]
• Finite second moment of positive jumps: There exists a constant k1 <∞ such that

lim
ϵ→0

EFt [((X(t+ ϵ)−X(t))+)2] ≤ k1

Now, we define the potential workload process X(t) based on W (t) and WQ(t).
During intervals when WQ(t) = 0, X(t) is constant. If t0 is the beginning of an interval

where WQ(t) > 0, X(t) jumps up by W (t+0 ) at time t0. During an interval where WQ(t) > 0,
X(t) mimics W (t): X(t) rises by S when a job arrives, and decreases at rate 1. If t1 is the end
of an interval where WQ(t) > 0, X(t) jumps down by W (t−1 ) at time t1.

By construction, X(t) generatesW(t) as an inventory process. For example, let t1 be the end
of an interval where WQ(t) > 0. Assume that the desired relationship between X(t) andW(t)
holds up to time t−1 . In particular,W(t−1 ) = W (t−1 ). ThenW(t+1 ) = 0, as desired.

Next, we show that X(t) has stationary and ergodic increments. X(t) has two types of
increments: First, Poisson arrivals cause increments sampled i.i.d. from S, which are clearly
stationary and ergodic. Second, the beginning and end of intervals where WQ(t) = 0 cause
increments equal to WF (t). To prove these increments are stationary and ergodic it suffices to
show that the state of the front is stationary and ergodic. This follows from two assumptions we
made in Section 4.3.3. First, we assumed that the service policy is dependent only on the state
of the front. Second, the front must empty and thereby undergo renewals, because the service
rate B(t) is at least binf whenever the system is nonempty. Thus, X(t) has stationary and ergodic
increments.

To demonstrate negative drift, let w be an arbitrary nonzero amount of work. Whenever
W(t) ≥ w, X(t) has two types of increments: jumps of size S occurring at rate λ, and continuous
decrease at rate 1. As a result, the drift of X(t) is ρ− 1 < 0.

To demonstrate finite second moment of positive jumps, note that X(t) has two kinds of
positive jumps: Jumps of size S, when WQ(t) > 0, and jumps of size W (t), at the beginning of
such an interval.

Switching back to the limited view, note that the latter kind of jump consists of the remaining
size of at most n jobs. These remaining sizes are distributed as

R(a, c) ∼ [Sc − a | Sc > a]

for some age a and class c.
It therefore suffices to show that there exists a constant r such that for all a, c,

E[R(a, c)2] ≤ r <∞

To do so, note that we can write R(a, c)e, the excess of the remaining size distribution, as a
mixture of remaining size distributions for different ages. Note that for any distribution Y , the
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excess Ye is equivalent to

Ye ∼ [Y − Ye | Y > Ye].

This holds because the forward and backwards renewal times are distributed identically [104,
Chapter 23]. By using this construction for R(a, c), we find that

R(a, c)e ∼ [R(a, c)−R(a, c)e | R(a, c) > R(a, c)e]

= [Sc − (a+R(a, c)e) | Sc > a+R(a, c)e].

As a result, a+R(a, c)e is the desired age distribution.
For any age a′, E[R(a′, c)] ≤ remsup(S,C). Because R(a, c)e can be written as a mixture of

such distributions, E[R(a, c)e] ≤ remsup(S,C), which is finite by assumption.
We can now bound E[R(a, c)2]:

E[R(a, c)e] =
E[R(a, c)2)]

2E[R(a, c)]

E[R(a, c)2] = 2E[R(a, c)]E[R(a, c)e] ≤ 2remsup(S,C)2

Thus, the requirements of [193, Theorem 2.2.1] are satisfied, so bothW and WQ are station-
ary and well-defined, and have finite mean.

4.6.7 Lemma 4.6.5: Bounding E[TF ]

Lemma 4.6.5 (Front time bounds). For any model π ∈WCFS,

E[S] ≤ E[T F ] ≤ nE[S]
binf

Proof. First, to prove that E[T F ] ≥ E[S], note that if a job receives service at the maximum
possible rate of 1 for the entire time it is in the front, then the job will complete in time S. As a
result, E[T F ] ≥ E[S].

To prove the upper bound, recall that by the non-idling assumption from Section 4.3.1, in all
states of the front s where NF (s) ≥ 1, the service rate B(s) ≥ binf . Because NF (s) ≤ n, we can
bound the ratio B(s)/NF (s) in all NF (s) ≥ 1 states:

B(s)

NF (s)
≥ binf

n
.

Therefore, in all states,

B(s) ≥ binf
n

NF (s).

In expectation, the same must hold:

E[B] ≥ binf
n

E[NF ]
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Note that E[B] = ρ and E[NF ] = λE[TF ] by Little’s Law. Thus,

ρ ≥ binf
n

λE[TF ]

nE[S]
binf

≥ E[TF ]

Note that Lemma 4.6.5 proves a relatively weak bound on E[T F ], because we have only made
the weak assumption that binf is positive. In many models, one can prove a stronger bound on
E[T F ] by using more information about the model’s dynamics when the front is not full.

From Lemma 4.6.3 and Lemma 4.6.5, Theorem 4.6.2 follows immediately, with explicit
formulas for cπupper and cπlower.

4.7 DivisorFilling

The DivisorFilling policy is a Multiserver-job service policy which assumes that all server re-
quirements vj divide the total number of servers k. The DivisorFilling policy is a WCFS policy
with front size n = k, as we will show. Finite-skip will be straightforward, the main difficulty is
showing work-conservation.

We first define the DivisorFilling policy. DivisorFilling is a preemptive policy, in that when
a job completes, the set of jobs in service may change, removing partially-complete jobs from
service. The DivisorFilling policy is defined recursively. The policy’s behavior with respect
to larger k is defined based on its behavior for smaller k. In particular, we will prove work
conservation inductively.

Let M be the set of jobs at the front.
To define DivisorFilling, we split into three cases:
• M contains at least k/6 jobs with server requirement vj = 1.
• k = 2a3b for some integers a, b, and M contains < k/6 jobs with vj = 1.
• k has a prime factor p ≥ 5 and M contains < k/6 jobs with vj = 1.

4.7.1 At least k/6 jobs requiring 1 server

First, assume that M contain at least k/6 jobs requiring 1 server.
Just as in the ServerFilling policy, label the jobs f1, f2, . . . in decreasing order of server

requirement. Let i∗ be defined as

i∗ = argmax
i

i∑
ℓ=1

vfℓ ≤ k.
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In this case, the DivisorFilling policy serves jobs f1, . . . fi∗ , as well as any jobs requiring 1
server that fit in the remaining servers. Specifically, DivisorFilling serves

k −
i∗∑
ℓ=1

vfℓ .

additional jobs that require 1 servers, or all jobs requiring 1 server if fewer are available.

Work conservation

We want to show that if M contains k jobs, DivisorFilling serves jobs requiring k servers in this
case.

Let us write SUMi∗ :=
∑i∗

ℓ=1 vfℓ . Because we have at least k/6 jobs requiring 1 server, it
suffices to show that SUMi∗ ≥ 5k/6. The remaining servers are filled by the jobs requiring 1
server.

First, note that SUMk ≥ k, because there are k jobs, each requiring at least 1 server. Next,
note that k − SUMi∗ < fi∗+1, because the i∗ + 1 job does not fit in service. Because the labels
f1, f2, . . . are in decreasing order of server requirement, k − SUMi∗ < fi∗ .

Therefore, to prove that k− SUMi∗ ≤ k/6, we need only consider sequences of the i∗ largest
server requirements in M in which all such requirements are greater than k/6. We need only
consider requirements equal to k, k/2, k/3, k/4, k/5.

We enumerate all such sequences. Note that if k is not divisible by all of {2, 3, 4, 5}, some
entries will not apply. This only tightens the resulting bound on k − SUMi∗ for such k.

We list i∗ requirements if SUMi∗ = k, and i∗ + 1 otherwise. We write gi∗ as a shorthand for
k − SUMi∗ .

Sequence gi∗ Sequence gi∗

k 0 k/2, k/2 0
k/2, k/3, k/3 k/6 k/2, k/4, k/4 0
k/2, k/4, k/5, k/5 k/20 k/2, k/5, k/5, k/5 k/10
k/3, k/3, k/3 0 k/3, k/3, k/4, k/4 k/12
k/3, k/3, k/5, k/5 2k/15 k/3, k/4, k/4, k/4 k/6
k/3, k/4, k/5, k/5, k/5 k/60 k/3, k/5, k/5, k/5, k/5 k/15
k/4, k/4, k/4, k/4 0 k/4, k/4, k/4, k/5, k/5 k/20
k/4, k/4, k/5, k/5, k/5 k/10 k/4, k/5, k/5, k/5, k/5 3k/20
k/5, k/5, k/5, k/5, k/5 0

In all cases, k − SUMi∗ ≤ k/6. As a result, DivisorFilling is work conserving in this case.

4.7.2 k = 2a3b

Suppose that k is of the form 2a3b, for some integers a and b, and that the number of jobs in M
that require 1 server is less than k/6.

134



Let M2 be the set of jobs requiring an even number of servers in M , and let Mr be the
remaining jobs:

M2 := {j | j ∈M, vj is even}
Mr := {j | j ∈M, vj is odd, vj > 1}

Note that because 2 and 3 are the only prime factors of k, all jobs in Mr have server require-
ments divisible by 3.

How we now schedule is based on which is larger: 2|M2|, or 3|Mr|. In this case of a tie,
either would be fine, so we arbitrarily select M2.

If 2|M2| is larger, we will only serve jobs from among M2. To do so, imagine that we combine
pairs of servers, reducing k by a factor of 2, and reducing the server requirement of every job in
M2 by a factor of 2. We now compute which jobs from M2 DivisorFilling would serve, in this
simplified subproblem. DivisorFilling serves the corresponding jobs.

If 3|Mr| is larger, we do the same, except that we combine triples of jobs.

Work conservation

If at least k jobs are present, we will show that this process fills all of the servers.
Because there are < n/6 jobs requiring 1 server, |M2| + |M3| ≥ 5k/6. As a result, either

2|M2| ≥ k or 3|Mr| ≥ k. Consider the case where 2|M2| ≥ k. The constructed subproblem
has k/2 servers and |M2| ≥ k/2 jobs, so by induction DivisorFilling fills all of the servers in the
subproblem. That property is carried over in the main problem. The case where 3|Mr| ≥ k is
equivalent.

4.7.3 k has a prime factor k ≥ 5

Finally, suppose that k has a prime factor p ≥ 5, and that M contains < k/6 jobs requiring 1
server. Specifically, let p be k’s largest prime factor.

Let us form the set Mp consisting of the jobs in M whose server requirements are multiples
of p, and Mr consisting of jobs which require more than 1 server, but not a multiple of p. As in
Section 4.7.2, if |Mp| ≥ k/p, we can recurse by combining groups of p servers to fill all of M .

Otherwise, we turn to Mr. Note that all jobs in Mr have server requirements which are
divisors of k/p, because their requirements are divisors of k which are not multiples of p.

If |Mr| ≥ k/p, let us apply the DivisorFilling policy on an arbitrary subset of Mr of size
k/p. By induction, DivisorFilling finds a subset of these jobs requiring exactly k/p servers. Let
us extract this subset from Mr, creating M1

r . We repeat this process until we have extracted p
subsets, or |M i

r| < k/p for some i. DivisorFilling serves the extracted subsets.

Work conservation

We must show that the extraction procedure always successfully extracts p subsets, if |M | = k.
In the extraction case, note that |Mp| < k/p ≤ k/5, and that there are ≤ k/6 jobs requiring

1 server. Mr consists of the remaining jobs. As a result,

|Mr| ≥ k − k/6− k/5 = 19k/30.
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Figure 4.7: ∆π for WCFS models. Job size distribution S is hyperexponential: Exp(2) w.p. 1/2,
Exp(2/3) otherwise. 109 arrivals simulated. ρ > 0.96 omitted due to the large amount of random
noise under high load. Specific settings: Heterogeneous M/G/k with speeds [0.4, 0.3, 0.2, 0.1].
Limited Processor Sharing with Multi-programming Level 4. Threshold Parallelism FCFS with
joint random variable (S, L) of (Exp(2), 1) w.p. 1/2, (Exp(2/3), 4) otherwise. Multiserver-
job ServerFilling with joint random variable (V,X) of (1, Exp(1/2)) w.p. 1/2, (4, Exp(2/3))
otherwise.

Note also that every job in Mr requires at least 2 servers, so at most k/2p jobs are extracted
at each step. To prove that p subsets can be extracted, we must show that at least k/p jobs remain
after p− 1 subsets have been extracted.

|Mp−1
r | ≥ 19k

30
− (p− 1)k

2p
=

19k

30
− k

2
+

k

2p
=

2k

15
+

k

2p

To prove that |Mp−1
r | ≥ k/p, we just need to show that 2k/15 ≥ k/2p. But p ≥ 5, so 2k/15 >

k/10 ≥ k/2p.

Thus, we can always extract p disjoint subsets of jobs, each requiring a total of k/p servers,
from Mr. Combining these subsets fills all k servers, as desired.
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4.8 Empirical Comparison: WCFS and non-WCFS
We have proven tight bounds on mean response time for all WCFS policies. To quantify the
tightness of our bounds, we define the mean response time difference ∆π for a given policy π:

∆π = E[T π]− ρ

1− ρ

E[S2]

2E[S]
= E[T π]− E[TM/G/1

Q ].

For instance, ∆M/G/1 = E[S].
This definition is useful, as we have shown in Theorem 4.6.2 that for any load ρ, ∆π ∈

[cπlower, c
π
upper], for constants cπlower, c

π
upper not dependent on ρ, but potentially depending on the

model π.
To investigate the behavior of ∆π, we turn to simulation. We simulate both WCFS models,

to confirm our results, as well as non-WCFS models, to show that non-WCFS models typically
do not have constant ∆π in the ρ→ 1 limit.

In Fig. 4.7, we simulate WCFS models: our four motivating models from Section 4.4, as well
as the simpler M/G/k and M/G/1 models. In each case, we find that ∆π remains bounded quite
close to 0. In particular, we find that Theorem 4.6.2 holds with constants very close to 0.

In Fig. 4.7, we see that for some models, ∆π increases with ρ, while for others, ∆π decreases
with ρ. Intuitively, this depends on which jobs tend to be prioritized as ρ → 1. Policies which
serve many jobs at once, such as the M/G/4 and Limited Processor Sharing systems, typically
have ∆π decrease as ρ→ 1, because they allow small and large jobs to share service. As a result,
small jobs can complete faster than in an M/G/1, lowering ∆π if ρ is large enough that many jobs
are typically in the system.

In contrast, policies which reorder large jobs ahead of small jobs typically have ∆π increase
as ρ → 1, by the same principle. For example, Multiserver-Job ServerFilling prioritizes jobs in
the front which require 4 servers. In the setting depicted in Fig. 4.7, such jobs have mean size
3/2 in this system, compared to the overall mean size E[S] = 1.

In all of the settings simulated in Fig. 4.7, ∆π > 0. This is merely a coincidence, not a
general rule, as can be seen in Fig. 4.9b.

Regardless of the different reordering behavior of these different WCFS policies, ∆π does
not diverge as ρ→ 1, as predicted by Theorem 4.6.2.

In contrast, in Fig. 4.8, we simulate several non-WCFS models, which we depicted earlier in
Fig. 4.4. These models are:

• Threshold Parallelism Inelastic First: This is the Threshold Parallelism model from
Section 4.4.3, but rather than serving jobs in FCFS order, we prioritize jobs j with smaller
parallelism threshold pj [19].

• Threshold Parallelism Elastic First: This is the Threshold Parallelism model from Sec-
tion 4.4.3, but we prioritize jobs j with larger parallelism threshold pj .

• M/G/k/SRPT: This is an M/G/k, where each of the k servers runs at speed 1/k, and we
prioritize jobs of least remaining size.

• Multiserver-job FCFS: This is the Multiserver-job model from Section 4.4.4, but we
serve jobs in FCFS order. If the next job to be served doesn’t “fit” in the remaining servers,
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Figure 4.8: ∆π for non-WCFS models. Same job sizes and specific settings as in Fig. 4.7. Same
number of arrivals and range of ρ except MaxWeight: 1010 arrivals, ρ ∈ [0, 0.99].

those servers remain idle until other jobs complete, idling sufficient servers to allow the
job to fit.

• Multiserver-job Least Servers First: This is the Multiserver-job model from Section 4.4.4,
but we prioritize jobs j with smaller server requirements vj . Again, if the next job doesn’t
fit, the remaining servers remain idle until the job can fit.

• Multiserver-job Most Servers First: This is the Multiserver-job model from Section 4.4.4,
but we prioritize jobs j with larger server requirements vj .

• Multiserver-job MaxWeight: This is the Multiserver-job model from Section 4.4.4, but
we serve jobs according to the “MaxWeight” policy, from the prior literature which we
describe in Section 4.5.5.

In all cases, prioritization is preemptive.
Our empirical results in Fig. 4.8 indicate that for these non-WCFS policies, ∆π diverges as

ρ→ 1. Specifically, for Threshold Parallelism Elastic First, Multiserver-job FCFS, Multiserver-
job Least Servers First, and Multiserver-job Most Servers First, ∆π appears to diverge in the
positive direction. For Threshold Parallelism Inelastic First, M/G/k/SRPT, and Multiserver-job
ServerFilling, ∆π appears to diverge in the negative direction. Note the expanded scale of Fig. 4.8
as compared to Fig. 4.7. For Multiserver-job MaxWeight, we performed additional simulation,
which indicated that ∆π diverged in the negative direction as ρ→ 1.

This demonstrates that the bounded ∆π property observed for WCFS models in Fig. 4.7 and
proven in Theorem 4.6.2 is highly non-trivial.
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(b) Varying job size distributions. Heterogeneous
M/G/4 with speeds [0.4, 0.3, 0.2, 0.1]. S distributed
hyperexponential: Exp(1/x) with probability 1/2x,
else Exp((2x − 1)/x), for x ∈ [1, 2, 4, 8]. E[S] =
1, C2 ≊ [1, 1.67, 3.57, 7.53].

Figure 4.9: ∆π under WCFS models with varying conditions. Up to 109 arrivals simulated.

Next, we explore the behavior of ∆π for WCFS models, as we vary the front size n and the
job size distribution S.

First, in Fig. 4.9a, we investigate the effects of varying front size n on ∆π for the Multiserver-
job model with our ServerFilling policy; under this model, the front size n is equal to the number
of servers k. In this setting, the difference ∆π empirically grows approximately linearly with
the number of servers k, and is nearly constant as ρ → 1. This matches the behavior of our
bounds proven in Theorem 4.6.2, which expand linearly with n. Our simulations indicate that
other WCFS policies similarly experience linear relationships between n and ∆π.

In Fig. 4.9b we investigate the effects of varying job size distribution S on ∆π in the Hetero-
geneous M/G/k where the job size distribution S is parameterized by a real value x. Each S is
a hyperexponential distribution with E[S] = 1. At large ages a, the remaining size distributions
[S − a | S > a] of these job size distributions converge to Exp(1/x), the larger exponential
branch. From this, it is straightforward to show that remsup(S) = x.

In Fig. 4.9b, we see that as x increases, ∆π at loads near 1 falls linearly, with more negative
slope for larger x. However, for each specific x, it does not appear that ∆π is diverging to positive
or negative infinity. For instance, consider the red curve, x = 8: as ρ → 1, ∆π converges to a
value near −3, rather than diverging.

Broadly, Fig. 4.9b matches the behavior of our bounds proven in Theorem 4.6.2, which ex-
pand linearly with remsup(S), which here is x. We have empirically found that other WCFS
policies similarly experience linear relations between remsup(S) and ∆π, for hyperexponential
job size distributions S, and we believe that similar behavior will occur for other common job
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size distributions.

4.9 Technical Conclusion
We introduce the work-conserving finite-skip (WCFS) framework, and use it to analyze many
important queueing models which have eluded analysis thus far. We prove that the scaled mean
response time E[T π](1 − ρ) of any WCFS model π converges in heavy traffic to the same limit
as M/G/1/FCFS. Moreover, we prove that the additive gap ∆π = E[T π] − E[TM/G/1

Q ] remains
bounded by explicit constants at all loads ρ, proving rapid convergence to the heavy traffic limit.

A possible direction for future work would be to to tighten the explicit constants on ∆π.
Doing so will likely require use of more detailed properties of the WCFS models being analyzed,
but seems quite doable.

This chapter considers models which are finite skip and work conserving relative to the FCFS
service ordering. Another interesting direction would be to investigate policies which are “finite-
skip” relative to other base service orderings. Hopefully, one could prove bounds on mean re-
sponse time of models in this new class relative to an M/G/1 operating under the base service
ordering.

Finally, one could try to characterize other metrics of response time for WCFS policies, such
as tail metrics. One possible approach to doing so would be to generalize the rate-conservation
technique used in Lemma 4.6.2.

4.10 General Conclusion

4.10.1 Summary

We start by summarizing the results proven in this chapter, as well as the key techniques behind
these results.

Results: ServerFilling mean response time analysis We prove tight upper and lower
bounds on the mean response time of the ServerFilling and DivisorFilling scheduling policies,
in the form of a clean mathematical formula (See Theorem 4.6.2). These bounds prove that
ServerFilling and DivisorFilling achieve similar mean response time to that of resource-pooled
FCFS, in which all k servers are combined into a single ultra-fast server, which runs single-server
FCFS. This bound becomes tight as load becomes high (See Theorem 4.6.1). These are the first
closed-form bounds on mean response time for any MSJ scheduling policy.

Simulation result: Tight approximation at all loads While our results are tightest in heavy
traffic, we show via simulation in Fig. 4.7 that ServerFilling’s mean response time consistently
lies close to the mean response time of resource-pooled FCFS, across all loads. The same is
not true for prior MSJ scheduling policies, as we show via simulation in Fig. 4.8. We further
demonstrate the improvement in mean response time of ServerFilling over prior MSJ policies in
follow-up work [80].

Results: Other settings We prove similar tight bounds for the entire work-conserving
finite-skip (WCFS) class of scheduling policies. The WCFS class includes policies of interest
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in a wide variety of settings: FCFS scheduling in the Heterogeneous M/G/k (Section 4.4.1),
Limited Processor Sharing (Section 4.4.2), and FCFS scheduling in the threshold parallelism
system (Section 4.4.3). Our bounds proven in Theorems 4.6.1 and 4.6.2 apply to all WCFS
systems.

Key technique: Work-squared Our key technique is the “work-squared” (W 2) method,
where W is the random variable denoting the total amount of work in the system. We use the
W 2 method to prove Lemma 4.6.2, a key lemma towards our main result. The W 2 method
involves calculating the rate of increase and rate of decrease of W 2. In stationarity, the expected
rate of increase and expected rate of decrease must be equal. Using this fact, we can relate relate
the overall mean amount of work, E[W ], to the waste E[W (1 − B)], the expected product of
work and the fraction of idle servers. Here B is a random variable representing the fraction of
active servers, so 1−B measures the fraction of idle servers.

Because WCFS scheduling policies such as ServerFilling fill all of the servers whenever
enough jobs are present, the mean waste of the system is very small. Using the W 2 method,
we can therefore show that the overall mean amount of work in the ServerFilling MSJ system
is close to the mean work in a resource-pooled M/G/1, where all k servers are combined into a
single ultra-fast server.

4.10.2 Subsequent results

The techniques discussed in Section 4.10.1 form the basis for the next two chapters of this thesis,
which study more advanced problems in the MSJ setting.

Optimal MSJ scheduling This chapter’s main result is devising MSJ scheduling policies
whose mean response time can be analyzed. As we show in Chapter 5, one can apply the same
ideas to devise scheduling policies with optimal mean response time, in the limit as the load on
the system approaches its capacity. The policies in this chapter serve jobs in near-FCFS order,
and their performance resembles that of resource-pooled FCFS. By contrast, the ServerFilling-
SRPT policy, which we consider in Chapter 5, serves jobs in near-SRPT (Shortest Remaining
Processing Time) order. We prove that its performance resembles that of resource-pooled SRPT,
which by the single-server optimality of SRPT [194], implies our MSJ optimality result.

Analyzing MSJ FCFS While the ServerFilling policy studied in this chapter has many
advantageous policies, there are also good reasons to study the FCFS policy. FCFS performs
no preemption, and it is used in practice, either standalone or as a component of other MSJ
scheduling policies. However, MSJ FCFS is challenging, as it is a non-work-conserving policy:
FCFS wastes servers, regardless of how many jobs are present. In Chapter 6, we derive the first
mean response time analysis of FCFS in the MSJ setting. In doing so, we derive a much more
powerful version of the W 2 method, which can accommodate non-work-conserving settings.

4.10.3 Future Direction: General MSJ Scheduling

This chapter invents the ServerFilling scheduling policy and proves tight bounds on its mean
response time. However, the ServerFilling policy is limited to the setting where all jobs’ server
needs are powers of 2, and where k, the total number of servers, is also a power of 2. Even
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the more general DivisorFilling policy is limited to the setting where all jobs’ server needs are
divisors of k.

As we discuss in Section 8.3.4, in the general MSJ scheduling setting, much less is known
about mean response time. This is true even in settings where 100% server utilization (i.e. full
server utilization) is achievable. For instance, consider a system with k = 3 servers, server
needs 1, 2, and 3, and where the load of 1-server jobs exceeds that of 2-server jobs. Full server
utilization can be achieved by pairing 1-server jobs with 2-server jobs for service, to ensure
that servers are never wasted. With full server utilization, the MSJ system starts to look like a
resource pooled system. If we pair 1-server and 2-server jobs in arrival order, can we design
a MSJ scheduling policy whose mean response time matches that of a resource-pooled single-
server scheduling policy, such as resource-pooled FCFS?

We pose the following open problem:
Under what MSJ workloads can we design a scheduling policy whose mean response
time is nearly identical to that of resource-pooled FCFS?

4.10.4 Potential Impact

We now explore potential directions in which the ServerFilling and DivisorFilling MSJ schedul-
ing policies could be applied.

Adopting ServerFilling into Modern Computing Systems

Our analysis of the ServerFilling scheduling policy in the MSJ model shows that ServerFilling
achieves consistent, low mean response times, when compared to other common MSJ schedul-
ing policies [80]. Our hope is that our results will lead computing system operators to adopt
ServerFilling scheduling in their systems.

However, the road from theoretical results to adoption requires overcoming several hurdles.
These include:
Restrictions on server needs. The key idea behind ServerFilling and DivisorFilling is that when

the jobs’ server needs are easy to pack onto the k servers, we can guarantee mean response
time near that of resource-pooled FCFS. This guarantee typically translates to low mean
response times, when compared to other common MSJ scheduling policies [80]. Server-
Filling and DivisorFilling focus on the scenario where jobs’ server needs are perfect divi-
sors of the total number of servers k. However, the primary obstacles to packing jobs onto
servers are jobs whose server needs are just over a divisor of the total number of servers
k. For instance, in a k = 1000 server system, if many 501-server jobs are present, no two
such jobs can be served at once. As a result, it would be difficult to consistently utilize all
1000 servers. By contrast, jobs with server need just under a divisor, such as a 499-server
job, do not pose a severe obstacle to full utilization.

Judicious use of preemption. In real systems, preemption can be difficult or expensive, either
from an implementation perspective or because of performance overheads. To design a
scheduling policy with a lower preemption rate, one could expand the pool of jobs that are
under consideration for service, in contrast to ServerFilling. For instance, a policy could
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consider for service the 10k oldest jobs in the system. A scheduling policy could prioritize
keeping servers occupied while avoiding preemption, only performing preemption if jobs
with the right server needs are not available in the pool of 10k jobs. With a finite limit on
the pool size, the resulting policy is still be a WCFS policy, and the methods of this chapter
still bound its mean response time.

Avoiding “starvation”. If 1-server jobs are very rare, and only one such job is among the oldest
jobs in the system, the ServerFilling policy will not serve that job until another 1-server
job comes along, or the system empties out. This will lead to to very long response times
for those rare jobs. This undesirable dynamic is referred to as “starvation” in the computer
systems community. One approach to alleviate this starvation would be to use a policy
which is a hybrid of the ServerFilling policy and a policy which strictly prioritizes the
oldest job in the system, such as FCFS or a backfilling policy. Using the methods of this
chapter and Chapter 6, one could bound prove strong bounds on the mean response time
of each type of job in that system, including rare 1-server jobs.

Multidimensional resources. In real systems, jobs often require a variety of resources, such
as CPU cores, GPUs, memory, network bandwidth, disk IO, and more. These can be
modeled as multidimensional resource requirements, in contrast to the single-dimensional
server need model considered in this chapter. In a general multidimensional setting, full
utilization is not attainable. There is no equivalent of the power-of-2 server need assump-
tion which can ensure that any assortment of jobs will always be able to use all of the
system’s resources. Jobs will use more of one resource or another, inevitably wasting
some resources. The more flexible “finite-skip” class of policies which we study in Chap-
ter 6 can handle such non-work-conserving settings. If a single bottleneck resource exists,
then we can focus on fully utilizing that one resource, and this chapter’s policies may be
applicable. We discuss scheduling under multidimensional resource constraints further in
Section 8.3.4.

ServerFilling for Scheduling People to Handle Group Tasks

Given how good ServerFilling is at delivering consistently low mean response time for computing
systems, it is natural to apply it to handling people. For example, in a contracting-based business,
different contracts might require different sizes of teams, and a ServerFilling approach could be
employed to schedule those contracts. A landscaping company might have a variety of lawns to
tend to, requiring different numbers of people based on the size of the job. Here contracts are
modeled as jobs, while people are modeled as servers.

However, challenges arise when scheduling people. Preemption must be handled carefully,
as people cannot effectively hop on and off of different projects without significant training and
delay. Moreover, people are typically not interchangeable: Each person has different skills and
needs. To employ the ServerFilling approach in an employment context, it makes sense to form
groups of people who can complete a variety of jobs, including many of the oldest jobs in the
system. This ad-hoc team formation allows for the consideration of individual skills. The group
should stick together through those jobs, ensuring that no preemption is needed and no one is
left with nothing to do. Teams ideally will only be reformed after a significant number of jobs
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are completed.
As long as everyone’s abilities are consistently being employed, and jobs are completed in

near-FCFS order, the WCFS results of this section indicate that the resulting policy will achieve
mean response times similar to that of resource-pooled FCFS, which is often better than prior
MSJ scheduling policies [80].
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Chapter 5

Optimal Multiserver-job Scheduling:
ServerFilling-SRPT

This chapter is based on my paper “Optimal Scheduling in the Multiserver-job Model under
Heavy Traffic”, published in SIGMETRICS in 2023, written with my coauthors Ziv Scully, Mor
Harchol-Balter, and Alan Scheller-Wolf [87].

5.1 General Introduction

Modeling large-scale computing Modern computing systems scale up in two important ways.
First, they contain huge numbers of servers, allowing them to process many jobs at once. Second,
the jobs in modern computing systems require vastly different amounts of resources, ranging
from a single CPU core to thousands of machines. As a result, the amount of work that a single
job represents can vary enormously, both in terms of the amount of resources required at one
time, and in terms of the duration for which those resources are required. In order to handle this
variability and achieve good performance, good scheduling decisions are critical. The scheduling
decision consists of selecting a combination of jobs to serve at once. Improving the scheduling
policy can improve mean response time by orders of magnitude with no additional resources.

To capture the behavior of these computing systems, we use a multiserver-job (MSJ) queue-
ing model, depicted in Fig. 5.1, which was introduced in Chapter 4. Jobs arrive randomly over
time, and wait in a central queue. Each job has a server need, which specifies the number of
servers the job requires in order to enter service. The job requires a fixed number of servers
throughout its time in service. All servers are identical, so the scheduling policy can decide to
serve any set of jobs with total server need at most k, where k is the total number of servers in
the system. An example of a scheduling policy is the First-Come-First-Served (FCFS) policy,
which we depict in Fig. 5.1. FCFS places the oldest jobs in the system into service one-by-one,
until a job is reached whose server need exceeds the number of currently available servers. At
this point, the blocked job, and all jobs behind it in the queue, must wait until some of the jobs
in service complete and more jobs become available.

In this chapter, we allow the scheduling policy to know the service duration of each job in
advance. We also allow the scheduling policy to perform preemption, which refers to pausing
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Figure 5.1: The FCFS and ServerFilling scheduling policies in the multiserver-job setting. Each
job has two characteristics: A server need, the number of servers it requires in order to run, and
a duration, the amount of time in service it requires. The height of each rectangle represents the
job’s size, the total amount of work necessary to complete the job, which is the product of the
job’s server need and its duration. FCFS serves jobs in arrival order. If the next job in the queue
has larger server need than the number of available servers, that job, and all jobs behind it, must
wait in the queue. The ServerFilling policy is defined in Section 4.4.4.

a job in service, placing it back in the queue, and returning to that job later. To measure a
scheduling policy’s performance, we are interested in studying the policy’s mean response time,
the mean time from when a job arrives to when it completes.

Optimizing MSJ mean response time In Chapter 4, we introduce and analyze the Server-
Filling scheduling policy, depicted in Fig. 5.1. This analysis of ServerFilling is the first closed-
form mean response time analysis of any MSJ scheduling policy. We now want to find a MSJ
scheduling policy that we can prove achieves optimal mean response time.

Prioritizing small jobs To achieve optimal mean response time, we need to prioritize small
jobs. In particular, we’d like to serve jobs in near-SRPT order. SRPT refers to the Shortest-
Remaining-Processing-Time policy, which is known to achieve minimal mean response time in
the single-server setting [194], and for which we proved an optimality result in the one-server-
per-job multiserver setting in Chapter 2. Even properly defining small jobs in the MSJ setting
is not immediately obvious: Short duration? Small server need? A combination of the two? As
we show in this chapter, the right notion of “small jobs” are jobs with a small amount of overall
inherent work, i.e. a small size, defined as the product of server need and service duration.

Filling all servers However, it is not sufficient to merely prioritize small jobs. We must
also ensure that we fill all of the servers with jobs, rather than wasting servers. Policies which
prioritize small jobs but waste servers achieve poor mean response times, as we show in Fig. 5.4.
A useful tool for filling the servers is the ServerFilling policy from Chapter 4. ServerFilling
always fills all k servers, whenever a sufficient number of jobs are present in the system. Thus, it
is natural to combine the ServerFilling policy with the prioritization of small jobs, giving rise to
the ServerFilling-SRPT scheduling policy, which is the primary focus of this chapter. We depict
ServerFilling-SRPT in Fig. 5.2.

146



Figure 5.2: The ServerFilling-SRPT scheduling policy in the multiserver-job setting. It starts
with the SRPT service order, then fills jobs into service in the same manner as ServerFilling. We
define ServerFilling-SRPT in Section 5.4.2.

5.2 Technical Introduction

5.2.1 The multiserver-job model

Traditional multiserver queueing theory focuses on models, such as the M/G/k, where every job
occupies exactly one server. For decades, these models remained popular because they captured
the behavior of computing systems, while being amenable to theoretical analysis. However, such
one-server-per-job models are no longer representative of many modern computing systems.

Consider today’s large-scale computing centers, such as the those of Google, Amazon and
Microsoft. While the servers in these data centers still resemble the servers in traditional models
such as the M/G/k, the jobs have changed: Each job now requires many servers, which it holds
simultaneously. While some jobs require few servers, other jobs require many more servers.
For instance, in Fig. 5.3, we show the distribution of the number of CPUs requested by jobs in
Google’s recently published trace of its “Borg” computation cluster [86, 218]. The distribution is
highly variable, with jobs requesting anywhere from 1 to 100,000 normalized CPUs. Throughout
this chapter, we will focus on this “multiserver-job model” (MSJ), by which we refer to the
common situation in modern systems where each job concurrently occupies a fixed number of
servers (typically more than one), throughout its time in service.

The multiserver-job model is fundamentally different from the one-server-per-job model.
In the one-server-per-job model, any work-conserving scheduling policy such as First-Come
First-Served (FCFS) can achieve full server utilization. In the multiserver-job model, a naı̈ve
scheduling policy such as FCFS will waste more servers than necessary. As a result, server
utilization and system stability are dependent on the scheduling policy in the multiserver-job
model. While finding throughput-optimal scheduling policies is a challenge, several such policies
are known, including MaxWeight [148], Randomized Timers [71, 181], and ServerFilling [86].
However, none of these policies give consideration to optimizing mean response time; each
policy solely focuses on optimizing throughput. In fact, the empirical mean response time of
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Figure 5.3: The distribution of number of CPUs requested by jobs in Google’s recently published
Borg trace [218]. Number of CPUs is normalized so that the smallest job in the trace uses one
normalized CPU.

such policies can be very poor [71], motivating our goal of finding throughput-optimal policies
which moreover minimize mean response time.

5.2.2 The challenges of minimizing MSJ mean response time

In the M/G/k setting, where each job requires a single server, it was recently proven that the
SRPT-k (Shortest Remaining Processing Time-k) scheduling policy minimizes mean response
time in the heavy-traffic limit [81]. SRPT-k is a very simple policy: serve the k jobs of least
remaining duration (service time).

Unfortunately, in the multiserver-job system, trying to simply adapt the SRPT-k policy does
not result in an optimal policy for two reasons:

• Prioritizing by remaining job duration is not the right way to minimize mean response
time. We will show that an optimal policy must prioritize by remaining size, which we
define to be proportional to the product of a job’s duration and its server need, the number
of servers the job requires. We define these terms in more detail in Section 5.4.

• Even with this concept of size, a prerequisite for minimizing mean response time in the
heavy-traffic limit is throughput-optimality, which requires a policy to efficiently utilize
all of the servers whenever possible. Unfortunately, greedily prioritizing the job of least
remaining size, as in SRPT-k, is not throughput optimal. Our policy must be throughput-
optimal, while also prioritizing small jobs.

We therefore ask:

What scheduling policy for the multiserver-job model should we use to minimize
mean response time in the heavy-traffic limit?

By “heavy-traffic” we mean as load ρ → 1, while the number of servers, k, stays fixed. The
precise definition of load ρ and the heavy-traffic limit will be explained in detail in Section 5.4.
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5.2.3 ServerFilling-SRPT and ServerFilling-Gittins
To answer this question, we introduce the ServerFilling-SRPT scheduling policy, the first schedul-
ing policy to minimize mean response time in the multiserver-job model in the heavy traffic limit.

ServerFilling-SRPT is defined in the setting where k is a power of 2, and all server needs
are powers of 2. This setting is commonly seen in practice in supercomputing and other highly-
parallel computing settings [38, 53].

To define ServerFilling-SRPT, imagine all jobs are ordered by their remaining size. Select
the smallest initial subset M of this sequence such that the jobs in M collectively require at least
k servers. Finally, place jobs from M into service in order of largest server need. This procedure
is performed preemptively, whenever a job arrives or completes. As we show in Section 5.4.2,
whenever jobs with total server need at least k are present in the system, this procedure will fill
all k servers. We use this property to prove in Section 5.5 that ServerFilling-SRPT minimizes
mean response time in the heavy-traffic limit.

ServerFilling-SRPT requires the scheduler to know job durations, and hence sizes, in ad-
vance. Sometimes the scheduler does not have duration information. In the M/G/1 setting, when
job sizes are unknown, the Gittins policy [72] is known to achieve optimal mean response time.
We therefore introduce the ServerFilling-Gittins policy in Section 5.6. We prove similar heavy-
traffic optimality results for ServerFilling-Gittins.

5.2.4 A generalization: DivisorFilling-SRPT and DivisorFilling-Gittins
While ServerFilling-SRPT requires that the server needs are powers of 2, we have developed a
more general scheduling policy which requires only that the server needs all divide k. We call
this generalization DivisorFilling-SRPT. The DivisorFilling-SRPT policy is more complex than
ServerFilling-SRPT, and hence we defer its discussion to Section 5.7. In Section 5.7, we define
both DivisorFilling-SRPT and DivisorFilling-Gittins. We then show that all of our results about
ServerFilling-SRPT and ServerFilling-Gittins hold for DivisorFilling-SRPT and DivisorFilling-
Gittins.

5.2.5 A Novel Proof Technique: MIAOW
In recent years, there have been a plethora of proof techniques developed to handle the analysis
of multiserver systems. These include:

• Multiserver tagged job analysis [81, 82, 204],
• Worst-case work gap [81, 82, 204],
• WINE (Work Integral Number Equality) [198, 202],
• Work Decomposition law [202].

Unfortunately, none of these techniques suffice to handle the analysis of ServerFilling-SRPT and
DivisorFilling-SRPT. As we discuss in Section 5.5.2, the analysis of ServerFilling-SRPT requires
bounding the waste relative to a resource-pooled single-server SRPT system, where waste is the
expected product of work and unused system capacity. In order to analyze waste, we introduce
a new technique called MIAOW, Multiplicative Interval Analysis of Waste. MIAOW subdivides
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Table 5.1: Comparison of multiserver-job scheduling policies

Maximize throughput Minimize mean response time
Policies Attempted Proven Attempted Proven
MaxWeight [148] ✓ ✓
Randomized Timers [71, 181] ✓ ✓
ServerFilling [86] ✓ ✓
FCFS [60, 120, 187]
Simple backfilling heuristics: First-
Fit, BestFit, etc. [120, 225]

✓

Size-aided backfilling: EASY, con-
servative, dynamic, etc. [33, 120]

✓

Size-based heuristics: GreedyS-
RPT, FirstFitSRPT, etc. [33]

✓1

Size & learning heuristics [90] ✓ ✓
ServerFilling-SRPT (Section 5.5)
& DivisorFilling-SRPT (Sec. 5.7)

✓ ✓ ✓ ✓

jobs into multiplicative intervals based on their remaining sizes, and bounds the waste in each
interval.

5.2.6 Comparison with other policies

In Table 5.1, we compare our ServerFilling-SRPT and DivisorFilling-SRPT policies and our
asymptotic optimality results with prior work in the multiserver-job setting. Prior work broadly
falls into two categories: theoretical results focusing on throughput-optimality, and good heuris-
tic policies. Our result is the first to theoretically study the problem of minimizing mean response
time.

Fig. 5.4 compares the mean response time of ServerFilling-SRPT to that of prior throughput-
optimal policies, as well as naı̈ve size-based heuristic policies. These selected policies are repre-
sentative of the empirical behavior of a wide variety of prior policies: Some of the policies shown
have SRPT-like behavior, some policies are throughput-optimal, but only our ServerFilling-
SRPT policy achieves both. Correspondingly, in this simulation and others we have performed,
ServerFilling-SRPT has the best mean response time at all loads ρ, often by huge margins.

5.2.7 Summary of our contributions and outline
• In Section 5.4, we introduce the ServerFilling-SRPT scheduling policy.
• In Section 5.5, we bound the mean response time of ServerFilling-SRPT. We introduce

MIAOW, a new technique for bounding the total “relevant” work in the system. Using that

1Because these heuristics are not throughput optimal, they are only competitive for mean response time at low
to moderate load ρ.
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Figure 5.4: Simulated mean response time E[T ] as a function of load ρ in a multiserver-job
setting with k = 8 total servers. Server need is sampled uniformly from {1, 2, 4, 8}. Size is
exponentially distributed, independent of the number of servers required. Policies defined in
Section 5.8. Simulations use 107 arrivals. Loads ρ ∈ [0, 0.999] simulated.

bound, we prove that ServerFilling-SRPT has asymptotically optimal mean response time
as load ρ→ 1.

• In Section 5.6, we introduce the ServerFilling-Gittins scheduling policy, in the setting
of unknown or partially-known job sizes and durations. We prove a similar bound and
asymptotic optimality result for ServerFilling-Gittins.

• In Section 5.8, we empirically evaluate ServerFilling-SRPT using simulation, showing that
it outperforms prior policies on realistic distributions over a variety of loads, not just the
ρ→ 1 limit.

All of our results for ServerFilling-SRPT and ServerFilling-Gittins also extend to DivisorFilling-
SRPT and DivisorFilling-Gittins.

5.3 Prior work

There are no prior optimality or asymptotic optimality results for mean response time in the
multiserver-job system. The most similar system where such results have been proven is the
M/G/k, a multiserver system with single-server jobs, and those results build off of classical
results in the M/G/1.
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5.3.1 Single-server-job models (one server per job)

In the single-server setting, the Shortest Remaining Processing Time policy (SRPT), which pri-
oritizes the job of least remaining size, has been proven to minimize mean response time in the
known-size M/G/1, as well as the worst-case single-server system [194, 196]. Note that in the
single-server setting, a job’s size is simply its duration. In the unknown- and partially-known-size
settings, the Gittins policy is known to minimize mean response time in the M/G/1 [72, 199].

In the M/G/k, where jobs require a single server, [81] proves that the SRPT-k scheduling
policy, the natural analogue of SRPT in the M/G/k, asymptotically minimizes mean response
time in the known-size M/G/k in the heavy-traffic limit. There, as in this chapter, load ρ is defined
as the long-term average fraction of busy servers; ρ → 1 is the heavy-traffic limit. Specifically,
the paper shows that

lim
ρ→1

E[T SRPT -k]

E[TOPT -k]
= 1.

This is proven despite the fact that the optimal policy OPT-k is unknown.
In the unknown job size setting, similar asymptotic optimality results for mean response time

have been proven for the Gittins-k policy [202] and a monotonic variant thereof [204]. Moreover,
for the Gittins-k policy, these results generalize to the partially-known job size setting, such as a
setting with imperfect job size estimates.

5.3.2 Multiserver-job model (many servers per job)

Theoretical results in the multiserver-job model are limited. The blocking model, where arriving
jobs either immediately receive service or are dropped, has received significant attention, with
many strong results [11, 217, 220, 229] such as the exact steady state distribution. However,
without any queue these models don’t fit most real computing systems well. In the queueing MSJ
model, which we focus on, results are much more limited [106]. The best-studied scheduling
policy is the first-come first-served (FCFS) policy. Stability region results for FCFS are known
in several limited settings [187, 188], and steady state results are only known in the case of two
servers [31, 63, 125].

Recently, the Work Conserving Finite Skip (WCFS) framework has been used to analytically
characterize response time under the ServerFilling and DivisorFilling scheduling policies [86],
both of which serve jobs in near-FCFS order. We modify the ServerFilling and DivisorFilling
policies to prioritize jobs of shortest remaining size (SRPT). We then use a novel proof tech-
nique called MIAOW to demonstrate that ServerFilling-SRPT and DivisorFilling-SRPT achieve
asymptotically similar mean response time to SRPT in an analogous M/G/1 setting.

There has also been work in the scaling multiserver-job model, where one analyzes a se-
quence of multiserver-job systems with jointly increasing arrival rate, number of servers, and
server needs [113, 226]. The regimes investigated include multiserver-job analogues of the
Halfin-Whitt regime. Our results complement these, as we study a system with a fixed num-
ber of servers k in the heavy-traffic limit.
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5.3.3 Supercomputing
Supercomputing centers are one of the originators of the multiserver-job model: Supercomputing
jobs closely resemble the jobs in the multiserver-job model. Jobs commonly demand anywhere
from one core to thousands of concurrent cores [119, 224]. Unfortunately, all of the papers in this
area focus on simulation or empirical results, rather than analytical results [10, 58, 60, 61, 120,
214, 215]. These papers study a variety of scheduling policies, such as FCFS, various backfilling
policies, and other more novel policies. Backfilling policies considered include simpler, no-
duration-information policies such as FirstFit and BestFit [120, 225], as well as more complex,
duration-information-based policies such as EASY backfilling [210], conservative backfilling
[210], Smallest Area2 First-backfilling [33], Dynamic Backfilling [120], and many more.

Often the primary goal of these papers is achieving high utilization, with secondary goals
including minimizing mean response time and ensuring fairness between different types of jobs.
However, their settings are sometimes more restrictive than our setting: preemption may be
either limited or impossible. When preemption is impossible, maximum utilization is lower,
often around ρ = 70%, and mean response times are often high near the utilization threshold.

Our scheduling policies, such as ServerFilling-SRPT, can only be defined for the subset of
settings where preemption is possible, and our policies leverage preemption to achieve much
stronger results in those settings.

5.3.4 Virtual Machine Scheduling
In the field of cloud computing, the Virtual Machine (VM) scheduling problem is essentially a
multi-resource generalization of the multiserver-job model. In this model, rather than a single
requirement like server need, each job requires concurrent utilization of several different limited
resources, such as RAM, CPU, GPU, network bandwidth, etc. Of course, any results in this more
general setting also apply to the multiserver-job setting. In the VM scheduling literature, papers
typically focus on finding a throughput-optimal policy. Two major categories of such policies are
the preemptive MaxWeight [148] and non-preemptive Randomized Timers [71, 181] scheduling
frameworks.

These papers focus entirely on achieving throughput optimality, and the mean response time
of the resulting policies can be poor, as several of the above papers note. Work on optimal mean
response time in the VM scheduling literature has been limited to heuristic policies and empirical
evaluation [90].

5.4 Setting

5.4.1 Multiserver-job Model
The multiserver-job (MSJ) model is a multiserver queueing model where each job requires a
fixed number of servers concurrently over its entire time in service. The jobs are therefore called
“multiserver jobs.”

2The term “area” used in [33] is equivalent to our “size”.
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A job j has two requirements: A server need kj and a service duration dj . These requirements
are sampled i.i.d. from some joint distribution with random variables (K,D). Note that K and
D can be correlated. A job’s server need kj is at most the total number of servers, k. The total
server need of the jobs in service at any time must sum to at most k. The job j will complete
after dj time in service.

We assume Poisson arrivals with rate λ, and we assume preemption is allowed with no loss
of progress.

Let a job j’s size sj be defined as kjdj/k, and likewise define the job size distribution S =
KD/k. Job j’s size can be viewed as the area of a rectangle with height equal to the job’s
duration dj and width equal to kj/k, the fraction of the total service capacity occupied by job j.
Likewise, a job’s remaining size rj is its remaining duration multiplied by kj/k. We define a job
j’s service rate to be kj/k, the rate at which the job’s remaining size decreases during service.
We define a job’s age aj to be sj−rj , which increases at rate kj/k whenever the job is in service.

A resource-pooled M/G/1 is defined to be a system with a single server with the same capacity
as all k original servers pooled together, and the same arrival rate λ and job size distribution S as
the original MSJ system. We allow the resource-pooled M/G/1 to divide its capacity arbitrarily
among the jobs in the system. In particular, while jobs in the MSJ system have fixed service
rates depending on their server needs, in the resource-pooled system any combination of service
rates is allowed, decreasing remaining sizes accordingly. Note that the resource-pooled system is
strictly more flexible than the MSJ system, so the optimal policy in the resource-pooled system
is superior to the optimal policy in the MSJ system.

Let W (t) be the total work in the system at time t: The sum of the remaining sizes rj of all
job’s in the system at time t. Let B(t) be the “busyness” of the system at time t: The fraction
of servers that are occupied at time t. Note that B(t) is also the total service rate of all jobs in
service at time t, and so B(t) = − d

dt
W (t), outside of arrival moments. We also define W and B

to be the corresponding stationary random variables.
Let load ρ = λE[S] be the long-run average rate at which work arrives to the system. We

assume ρ < 1 as a necessary condition for stability. We will focus on settings where ρ < 1 is
also sufficient for stability for some feasible scheduling policy. Note that ρ is a constant and that
ρ = E[B], under any scheduling policy for which the system is stable.

Next, let us define an r-relevant job, where r is a remaining size threshold. A job j is
r-relevant if rj ≤ r. This terminology is in reference to the tagged job analysis used in study-
ing SRPT in the M/G/1 and M/G/k settings [81, 196]; in those settings, the service of a job
with remaining size r is only affected by the presence of r-relevant jobs in the system. The
multiserver-job system is not as simple, so we do not employ a tagged-job approach, but we
reuse the terminology.

Correspondingly, let the r-relevant work Wr(t) be the total remaining size of all r-relevant
jobs in the system at time t, and let Br(t) be the fraction of servers which are serving r-relevant
jobs at time t. Define Br and Wr correspondingly. The core of our proof lies in bounding expec-
tations of random variables involving Br and Wr, and combining these with a characterization
of mean response time E[T ] in terms of Br and Wr.

Next, let us define the r-relevant load ρr to be the long-run average r-relevant busyness of
the system. A job with size sj receives min(sj, r) service while having remaining size ≤ r. As
a result, ρr = λE[min(S, r)] = E[Br]. We further divide the r-relevant load based on whether
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the job in question has initial size ≤ r. Let the arrival load ρAr = λE[S1{S < r}], and let the
recycled load ρRr = λrP {S > r}. Note that ρr = ρAr + ρRr . Note also that ρr, ρAr , and ρRr are all
not dependent on the policy π.

Finally, let us define an r-recycling moment to be a moment when a job j with initial size
sj > r reaches remaining size rj = r. Let Er[·] be an expectation taken over r-recycling
moments, just prior to the job recycling.

5.4.2 ServerFilling-SRPT

This chapter considers two settings of server needs:
• The “power of two” setting: k is power of two, and all server needs kj are powers of two.
• The “divisible” setting: k is general, and all server needs kj are divisors of k.

Corresponding to these two settings, we have two policies of interest: ServerFilling-SRPT for the
power of two setting, and DivisorFilling-SRPT for the divisible setting. We define ServerFilling-
SRPT here, and DivisorFilling-SRPT in Section 5.7. When writing equations throughout this
chapter, we abbreviate ServerFilling-SRPT as SFS-k.

To implement SFS-k, start by ordering jobs in increasing order of remaining size rj , breaking
ties arbitrarily. Define j1, j2, . . . such that

rj1 ≤ rj2 ≤ . . . .

Next, consider initial subsets of this ordering:

{j1}, {j1, j2}, {j1, j2, j3} . . . .

We are interested in the smallest initial subset M in which the total server need is at least k. In
other words, let i∗ be the smallest index such that

i∗∑
i=1

kji ≥ k.

If there is no such index, then ServerFilling-SRPT serves all jobs in the system simultaneously.
Otherwise, ServerFilling-SRPT will serve a subset of M = {j1, j2, . . . , ji∗}. Among this

subset, ServerFilling-SRPT prioritizes jobs of largest server need, placing jobs into service in
descending order of server need, until no servers remain or the next job cannot fit, breaking ties
by smallest remaining size, and further ties arbitrarily.

In the power-of-two setting, ServerFilling-SRPT guarantees the following strong property:
At all times, either all servers are busy, or all jobs are in service. This was proven for the
ServerFilling policy [86, Lemma 1], which is identical to ServerFilling-SRPT, except that jobs
are ordered in arrival order, rather than SRPT order. For completeness, we reprove this result
here:
Lemma 5.4.1. Under the ServerFilling-SRPT policy, in the power-of-two setting, if the total
server need of jobs in the system is at least k servers, all k servers are busy.
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Proof. Recall that M is a set of jobs, each with server need a power of two, which have a total
server need of at least k. Label the jobs m1,m2, . . . in decreasing order of server need, tiebroken
by least remaining size.

km1 ≥ km2 ≥ . . .

Let NEED(z) represent the total server need of the first z jobs in this ordering:

NEED(z) =
z∑

i=1

kmi
.

The set of jobs served by ServerFilling-SRPT is an initial sequence of this server need ordering:
{mi | i ≤ ℓ} for some ℓ. Specifically, the index ℓ up to which ServerFilling-SRPT serves jobs
is the largest index z such that NEED(z) ≤ k. To prove Lemma 5.4.1, it suffices to show that
NEED(ℓ) = k.

Note that NEED(0) = 0 and NEED(|M |) ≥ k. As a result, NEED(z) must cross k at some
point. To prove that NEED(ℓ) = k, it suffices to prove that:

There exists no index ℓ′ such that NEED(ℓ′) < k and NEED(ℓ′ + 1) > k. (5.1)

To prove (5.1), let us define REMAIN(z), the number of servers remaining after z jobs have been
placed into service:

REMAIN(z) = k − NEED(z).

Because all server needs kj are powers of two, we will show that REMAIN(z) carries an important
property:

REMAIN(z) is divisible by kmz+1 for all z. (5.2)

We will use (5.2) to prove (5.1). We write a|b to indicate that a divides b.
We will prove (5.2) by induction on z. For z = 0, REMAIN(0) = k. Because k is a power

of two, and km1 is a power of two no greater than k, the base case holds. Next, assume that
(5.2) holds for some index z, meaning that kmz+1|REMAIN(z). Note that REMAIN(z + 1) =
REMAIN(z) − kmz+1 . As a result, kmz+1|REMAIN(z + 1). Now, note that kmz+2|kmz+1 , because
both are powers of two, and kmz+2 ≤ kmz+1 . As a result, kmz+2|REMAIN(z + 1), completing the
proof of (5.2).

Now, we are ready to prove (5.1). Assume for contradiction that such an ℓ′ exists. Then
REMAIN(ℓ′) > 0, and REMAIN(ℓ′ + 1) < 0. Because REMAIN(ℓ′ + 1) = REMAIN(ℓ′) − kmℓ′+1

,
we therefore know that kmℓ′+1

> REMAIN(ℓ′). But from (5.2), we know that kmℓ′+1
divides

REMAIN(ℓ′), which is a contradiction.

Note that Lemma 5.4.1 remains true if the power-of-two setting is replaced by the power-of-
x setting, for any integer x. In fact, the only condition on the server needs necessary to prove
Lemma 5.4.1 is that all server needs divide k, and all server needs divide all larger server needs.

An important corollary of Lemma 5.4.1 is a property which we call “relevant work effi-
ciency”:
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Corollary 5.4.1 (Relevant work efficiency). Under the ServerFilling-SRPT policy, in the power-
of-two setting, if there are k or more r-relevant jobs in the system, all servers are occupied by
r-relevant jobs, meaning that Br = 1.

Proof. Note that |M | ≤ k, because M is the smallest initial subset of the SRPT ordering with
total server need at least k, and all jobs have server need at least 1. Therefore, if there are k or
more r-relevant jobs in the system, then all jobs in M are r-relevant, so ServerFilling-SRPT fills
all k servers with r-relevant jobs, meaning that Br = 1.

Corollary 5.4.1 is the sole property of ServerFilling-SRPT that we will use to prove our main
theorems, Theorems 5.5.1 and 5.5.2.

DivisorFilling-SRPT in the divisible setting also satisfies the relevant work efficiency prop-
erty: If there are k or more r-relevant jobs in the system, then Br = 1, as we discuss in Sec-
tion 5.7. As a result, our main theorems, Theorems 5.5.1 and 5.5.2, also hold for DivisorFilling-
SRPT.

5.5 ServerFilling-SRPT: Asymptotically Optimal Mean Re-
sponse Time

5.5.1 Summary of Results and Proofs

To prove the optimality of ServerFilling-SRPT, we will compare ServerFilling-SRPT’s mean
response time against a resource-pooled M/G/1/SRPT system with the same size distribution S.
Let “SRPT-1” denote the M/G/1/SRPT system. Recall that SRPT-1 combines the power of all k
servers into a single server, which can work on any job or any mixture of jobs. This resource-
pooled system is strictly more flexible than the multiserver-job system, so the optimal policy
in the resource-pooled system forms a lower bound on the optimal policy in the MSJ system.
Because SRPT minimizes mean response time in the M/G/1, SRPT-1 yields a lower bound on
the optimal mean response time in the MSJ system.

We will upper bound the gap in mean response time between ServerFilling-SRPT and SRPT-1
for all loads ρ, and prove that the gap asymptotically grows slower than E[T SRPT -1]. By doing so,
we will show that ServerFilling-SRPT is asymptotically optimal in the multiserver-job system.

First, we prove a bound on the gap in mean response time between ServerFilling-SRPT and
SRPT-1:
Theorem 5.5.1. For all loads ρ, in the power-of-two setting, the mean response time gap between
ServerFilling-SRPT and SRPT-1 is at most

E[T SFS-k]− E[T SRPT -1] ≤ (e+ 1)(k − 1)

λ
ln

1

1− ρ
+

e

λ
.

The same is true of DivisorFilling-SRPT in the divisible setting.

Proof deferred to Section 5.5.3.
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We use this bound to prove that ServerFilling-SRPT yields optimal mean response time in
the heavy-traffic limit:
Theorem 5.5.2. If E[S2(logS)+] < ∞, then ServerFilling-SRPT is asymptotically optimal in
the multiserver-job system:

lim
ρ→1

E[T SFS-k]

E[T SRPT -1]
= lim

ρ→1

E[T SFS-k]

E[TOPT -k]
= 1.

The same is true of DivisorFilling-SRPT in the divisible setting.

Proof deferred to Section 5.5.3.

The condition E[S2(logS)+] <∞ is very slightly stronger than finite variance.
In Section 5.6, we generalize both results to the settings of unknown- and partially-known

job duration.

5.5.2 A Novel Proof Technique: MIAOW
Challenges of multiserver-job analysis

As mentioned in Section 5.2, mean response time analysis in the multiserver-job system is a
difficult problem, with no size- or age-based scheduling policies having previously been ana-
lyzed. The difficulty arises from two sources: First, analyzing the mean response time of any
system with multiple servers under a size- or age-based scheduling policy is already very diffi-
cult, even in a single-server-job setting such as the M/G/k. New techniques based on relevant
work have recently been developed to handle this challenge. The first such analysis is as recent
as 2018, when the SRPT-k policy was analyzed in the M/G/k [81], followed by the analysis of
the monotonic-Gittins-k and Gittins-k policies in the M/G/k in 2020 and 2021 [202, 204].

Unfortunately, the multiserver-job system presents a major additional challenge. We will
show in Section 5.5.2 that these recent techniques for multiserver systems break when dealing
with our multiserver-job system. As a result, we need a new technique to analyze the multiserver-
job systems, which we introduce in Section 5.5.2.

Key idea of previous approaches: Relevant work similarity

The first step in applying relevant-work-based techniques [81, 202, 204] is to prove a property
which we call “relevant work similarity”:
Definition 5.5.1. A policy π achieves relevant work similarity (RWS) if, for all remaining sizes
r (or ranks3 r), the policy π system and the optimal resource-pooled system OPT-1 (e.g. SRPT-1
or Gittins-1) have similar expected r-relevant work:

E[W π
r ]− E[WOPT -1

r ] ≤ O(r).

The RWS property holds for all three policies and systems analyzed previously [81, 202,
204], as well as for ServerFilling-SRPT. Unfortunately, the RWS property is not sufficient on
its own to tightly bound mean response time, or to prove asymptotically optimal mean response
time.

3Rank is the analogue of remaining size under the Gittins policy.
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First attempt: Tagged job approach

One way to build on the RWS property to prove asymptotic optimality is to use the tagged job
approach, employed by the SRPT-k [81] and monotonic-Gittins-k [204] results. The tagged job
approach combines the RWS property with an additional property, which we call “relevant work
implies response time”:
Definition 5.5.2. A policy π achieves relevant work implies response time (RW→RT) if the
following holds: If a generic tagged job of size r sees some amount x of r-relevant work in each
of the policy π system and the optimal resource-pooled system OPT-1, then its expected response
must be similar (within O(r)) in the two systems.

If the RWS and RW→RT properties can both be proven for some policy π, it is relatively
straightforward to tightly bound mean response time and prove that the policy π has asymp-
totically optimal mean response time. Unfortunately, for our ServerFilling-SRPT policy, the
RW→RT property fails, meaning that the tagged-job approach cannot be used.

For a counterexample to the RW→RT property for ServerFilling-SRPT, consider a scenario
where the tagged job requires 1 server and has the smallest size of any job in the system, and
where it sees many jobs on arrival, all of which require an even number of servers and have larger
remaining sizes. Furthermore, assume that arriving jobs rarely require 1 server. The resource-
pooled SRPT-1 system will quickly complete the tagged job, as it has the smallest remaining size
of any job in the system.

In contrast, the ServerFilling-SRPT system will not quickly complete the tagged job, because
ServerFilling-SRPT prioritizes the jobs of largest server need among the initial subset M , as
defined in Section 5.4.2. The tagged job will need to wait until the system empties or additional
1-server jobs arrive to be served. Clearly, similar relevant work does not imply similar response
time.

This is an inherent difficulty of the multiserver-job system: Serving the tagged job any earlier
would require leaving at least one server empty, as the tagged job is the only job with an odd
server need, given the power-of-two setting. This could endanger throughput-optimality. As a
result, the tagged-job approach cannot be used to effectively analyze the multiserver-job system.

Second Attempt: Gittins-k

The analysis of the Gittins-k policy for the M/G/k [202] also relies on the RWS property, which
again is insufficient alone to prove asymptotically optimal mean response time in their setting. As
in our setting, for the Gittins-k system, the RW→RT property fails, so the tagged-job approach
cannot be employed.

The authors take a different approach: They introduce WINE [202, Theorem 6.3], our Lemma 5.5.1,
a new identity that relates response time and relevant work in all systems.4 WINE implies

E[T π-k]− E[TOPT -1] =
1

λ

∫ ∞

0

E[W π-k
r ]− E[WOPT -1

r ]

r2
. (5.3)

4The name “WINE”, short for “work integral number equality” [198], is more recent than [202], but refers to
their Theorem 6.3.
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WINE is more general than the RW→RT property, because RW→RT only holds in certain sys-
tems.

We can see from (5.3) that the RWS property is almost enough to bound mean response
time, but the O(r) bound is too loose to show that the integral converges. The authors therefore
prove a stronger version of the RWS property at sufficiently low and high ranks r. Combining
their strengthened bounds with WINE, they prove that Gittins-k achieves asymptotically optimal
mean response time in the M/G/k.

However, their proof of a stronger version of RWS at low ranks r relies on the fact that under
Gittins-k in the M/G/k, the job of least rank is guaranteed to be served. This fails when applied to
ServerFilling-SRPT, because in our multiserver-job system the job of least rank is not guaranteed
to receive service. See the counterexample given in Section 5.5.2.

Our approach

Our key idea is to directly focus on the integrated relevant work difference given in (5.3). This
circumvents the need to strengthen the RWS property (like in Section 5.5.2) or prove an RW→RT
property (like in Section 5.5.2).

We start with a key property of the ServerFilling-SRPT system, which we call “relevant work
efficiency” (RWE). RWE states that if there are k or more r-relevant jobs in the system, then all
servers are occupied by r-relevant jobs. We prove in Section 5.4.2, specifically in Corollary 5.4.1,
that ServerFilling-SRPT satisfies the RWE property.

While one can show that RWE implies RWS, RWS alone is not enough, as discussed in
Section 5.5.2. Instead, we use the RWE property to directly bound the integrated relevant work
difference given in (5.3), thereby directly bounding the mean response time difference. We prove
this result in Theorem 5.5.3. This forms the core of our proof that ServerFilling-SRPT achieves
asymptotically optimal mean response time.

Theorem 5.5.3 is our key technical theorem; it provides a novel bound on the waste in any
system which satisfies RWE. By waste, we refer to the quantity E[Wr(1 − Br)], the expected
product of r-relevant work and the fraction of system capacity not working on r-relevant jobs.
Note that the SRPT-1 system never has any waste: If any r-relevant job is present the entire
system capacity is working on such a job.

To bound waste, we use a novel technique which we call MIAOW: Multiplicative Interval
Analysis of Waste. Intuitively, MIAOW makes use of the fact that both Wr and Br change
slowly as a function of r. We use this fact to bound the integrated waste over a generic interval
of remaining sizes [rℓ, rh]. This contrasts with the prior waste-based technique [202], which
focused on bounding waste at individual remaining sizes r, an approach which does not imply a
useful bound in the MSJ setting. We then carefully select a sequence of remaining size intervals
with multiplicatively diminishing spare capacity 1 − ρAr . Applying our bound to each interval
completes Theorem 5.5.3.

We note that MIAOW is stronger than the techniques used to prove asymptotically optimality
in the M/G/k for SRPT-k and Gittins-k [81, 202]. In particular, one could use our technique to
reprove all of the asymptotic optimality results in those papers. This follows from the fact that
the multiserver-job model is a generalization of the M/G/k: A multiserver-job setting where all
server needs are 1 is simply an M/G/k.
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5.5.3 Proof of Main Results
Our goal is to bound the mean response time of the ServerFilling-SRPT policy, relative to the
resource-pooled SRPT-1 policy.

To bound mean response time, we start by applying the “work integral number equality”
(WINE) technique [198, 202] to write mean response time E[T π] for a general policy π in terms
of expected relevant work E[W π

r ]. This technique was introduced in [202, Theorem 6.3], but we
reprove it here for completeness.
Lemma 5.5.1 (WINE Identity [202]). For an arbitrary scheduling policy π, in an arbitrary
system,

E[T π] =
1

λ
E[Nπ] =

1

λ

∫ ∞

r=0

E[W π
r ]

r2
dr.

Proof. We will prove that at every moment in time,

Nπ(t) =

∫ ∞

r=0

W π
r (t)

r2
dr. (5.4)

Recall that r-relevant work W π
r (t) is simply a sum over the r-relevant jobs in the system. As a

result, we can consider the integral in (5.4) as a sum over the jobs in the system.
Consider a general job j, with remaining size rj . The contribution of j to the r-relevant work

W π
r (t) is rj , for thresholds r such that rj ≤ r, and 0 otherwise.

Therefore, the contribution of job j to the integral in (5.4) is∫ ∞

r=0

rj1{rj ≤ r}
r2

dr =

∫ ∞

r=rj

rj
r2
dr = rj

∫ ∞

r=rj

1

r2
dr = rj

1

rj
= 1.

Because the contribution of an arbitrary job is 1, the integral in (5.4) simply counts the number
of jobs in the system at time t, giving Nπ(t) as desired.

Note that E[T π] = 1
λ
E[Nπ], by Little’s Law [104].

Now that we have written mean response time in terms of relevant work, we need to under-
stand E[W π

r ] − E[W SRPT -1
r ], the difference in r-relevant work between a general policy π and

the resource pooled SRPT-1 system. To do so, we employ the work-decomposition law. This
technique was introduced in [202], and we specialize it here to the SRPT setting.
Lemma 5.5.2. [202, Theorem 7.2] For an arbitrary scheduling policy π, in an arbitrary known-
size system,

E[W π
r ]− E[W SRPT -1

r ] =
E[(1−Bπ

r )W
π
r ] + ρRr Er[W

π
r ]

1− ρAr
.

Proof. We will employ the rate conservation law, applied to the random variable (W π
r )

2, the
square of the stationary distribution of r-relevant work in the system. The rate conservation
law states that, because (W π

r )
2 is a stationary random variable, its expected rate of increase and

decrease must be equal. This argument can be formalized further using Palm Calculus.
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To find these rates of increase and decrease, let us first examine W π
r . W π

r decreases contin-
uously as work completes, and increases by jumps whenever jobs arrive. W π

r decreases at rate
Bπ

r , the fraction of servers that are occupied by r-relevant jobs. When a job arrives with size S,
it contributes [S1{S ≤ r}] relevant work, increasing W π

r by that amount. Such arrivals occur at
rate λ. Finally, whenever a job recycles, by being served until its remaining size falls to r, it adds
r relevant work to W π

r .
Using these rates, we can calculate the expected rates of increase and decrease of (W π

r )
2.

Increase due to arrivals: λE[(S1{S ≤ r})2] + 2ρAr E[W π
r ]

Increase due to recycling: λR
r r

2 + 2ρRr Er[W
π
r ]

Decrease due to service: 2E[Bπ
rW

π
r ]

Equating these rates, we find that

2E[Bπ
rW

π
r ] = λE[(S1{S ≤ r})2] + 2ρAr E[W π

r ] + λR
r r

2 + 2ρRr Er[W
π
r ].

E[Bπ
rW

π
r ] =

λ

2
E[(S1{S ≤ r})2] + ρAr E[W π

r ] +
λR
r

2
r2 + ρRr Er[W

π
r ].

E[W π
r ] = E[(1−Bπ

r )W
π
r ] +

λ

2
E[(S1{S ≤ r})2] + ρAr E[W π

r ] +
λR
r

2
r2 + ρRr Er[W

π
r ].

E[W π
r ](1− ρAr ) = E[(1−Bπ

r )W
π
r ] +

λ

2
E[(S1{S ≤ r})2] + λR

r

2
r2 + ρRr Er[W

π
r ].

E[W π
r ](1− ρAr ) = E[(1−Bπ

r )W
π
r ] + ρRr Er[W

π
r ] +

λ

2
E[(S1{S ≤ r})2] + λR

r

2
r2. (5.5)

Let us evaluate (5.5) in the case where the policy π is SRPT-1. The first two terms of the right-
hand side are nonnegative terms depending on the policy π, while the second two terms are the
same for all policies.

Let us start with the first term on the right-hand side, E[(1−Bπ
r )W

π
r ]. Note that under SRPT-

1, if W π
r is nonzero, i.e. if a r-relevant job is present, then SRPT-1 will serve a r-relevant job on

its single server, and so BSRPT -1
r = 1. As a result, either W SRPT -1

r or 1− BSRPT -1
r must always

be zero, so this term is equal to 0.
Next, consider the second term, ρRr Er[W

π
r ]. Recall that Er[·] is an expectation over system

states at times when r-relevant jobs recycle. In the SRPT-1 system, if a job is recycling by falling
down to remaining size r, there must be no jobs in the system with remaining size less than r.
As a result, Er[W

π
r ] = 0.

We therefore conclude that

E[W SRPT -1
r ](1− ρAr ) =

λ

2
E[(S1{S ≤ r})2] + λR

r

2
r2. (5.6)

As an aside, note that this argument shows that SRPT-1 has the least value of E[W π
r ] for any

policy π. This fact, combined with Lemma 5.5.1, provides an alternative proof that SRPT-1 is
the optimal scheduling policy in the M/G/1.
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Subtracting (5.6) from (5.5), we find that

E[W π
r ](1− ρAr )− E[W SRPT -1

r ](1− ρAr ) = E[(1−Bπ
r )W

π
r ] + ρRr Er[W

π
r ]

E[W π
r ]− E[W SRPT -1

r ] =
E[(1−Bπ

r )W
π
r ] + ρRr Er[W

π
r ]

1− ρAr
.

Combining Lemma 5.5.1, and specifically its implication (5.3), with Lemma 5.5.2, we arrive
at the following characterization of the mean response time difference between a general policy
π and SRPT-1:
Lemma 5.5.3. For any scheduling policy π, in any system,

E[T π]− E[T SRPT -1] =
1

λ

∫ ∞

0

E[(1−Bπ
r )W

π
r ]

r2(1− ρAr )
dr (5.7)

+
1

λ

∫ ∞

0

ρRr Er[W
π
r ]

r2(1− ρAr )
dr. (5.8)

Intuitively, (5.7) and (5.8) measure the inefficiency of the policy π relative to the ideal SRPT-1
system, through the lens of W π

r , the r-relevant work under policy π.
The first term (5.7) measures the extent to which r-relevant work is present, but not being

worked on. In the multiserver-job system, not all of the system can be devoted to a single job, so
the waste E[(1−Bπ

r )W
π
r ] will typically be nonzero.

The second term (5.8) measures the extent to which jobs r-recycle while r-relevant work is
present in the system. In the multiserver-job system, not all of the system can be devoted to
a single job, so jobs with remaining size above r will be worked on, and will r-recycle, while
r-relevant work is present, so Er[W

π
r ] will also typically be nonzero.

Our goal is to bound the magnitude of (5.7) and (5.8) under the ServerFilling-SRPT policy,
in the power-of-two setting. We do so by making use of the key property of ServerFilling-SRPT,
relevant work efficiency (Corollary 5.4.1): If there are k or more r-relevant jobs in the system,
then Br = 1.

We bound (5.7) in Theorem 5.5.3 using our novel MIAOW technique, and we bound (5.8) in
Theorem 5.5.4.
Theorem 5.5.3 (Bound waste). Under the ServerFilling-SRPT policy, in the power-of-two set-
ting, ∫ ∞

r=0

E[(1−Br)Wr]

r2(1− ρAr )
dr ≤ e(k − 1)

⌈
ln

1

1− ρ

⌉
.

The same is true of DivisorFilling-SRPT in the divisible setting.

Proof. First, we make use of the key fact about ServerFilling-SRPT (and DivisorFilling-SRPT),
relevant work efficiency: If there are at least k jobs with rank ≤ r in the system, then Br = 1.
This is proven in Corollary 5.4.1 for ServerFilling-SRPT, and in Section 5.7 for DivisorFilling-
SRPT.
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Let us define W ∗
r to be the r-relevant work of the k − 1 jobs of least remaining size in the

system. Note that if Br < 1, then Wr = W ∗
r , for ServerFilling-SRPT and DivisorFilling-SRPT.

As a result, ∫ ∞

r=0

E[(1−Br)Wr]

r2(1− ρAr )
dr =

∫ ∞

r=0

E[(1−Br)W
∗
r ]

r2(1− ρAr )
dr.

Next, we will break up the range of remaining sizes r ∈ [0,∞) into a finite set of buckets.
Let {r0, r1, . . . , rm} be a list of m different remaining sizes, where r0 = 0. We will specify the
list {ri} later. Implicitly, we will say that rm+1 =∞. We can rewrite the above integral as:∫ ∞

r=0

E[(1−Br)W
∗
r ]

r2(1− ρAr )
dr =

m∑
i=0

∫ ri+1

r=ri

E[(1−Br)W
∗
r ]

r2(1− ρAr )
dr. (5.9)

Next, we replace r with either ri or ri+1, selectively, to simplify things. Note that Br is increasing
as a function of r, because as we increase the rank r, more servers are busy with r-relevant jobs.
Likewise, ρAr is increasing as a function of r. Thus, for any r ∈ [ri, ri+1],

Bri ≤ Br, ρAr ≤ ρAri+1
.

Substituting into the integral from (5.9), we find that∫ ri+1

r=ri

E[(1−Br)W
∗
r ]

r2(1− ρAr )
dr ≤

∫ ri+1

r=ri

E[(1−Bri)W
∗
r ]

r2(1− ρAri+1
)

dr.

Next, let us perform some algebraic manipulation:∫ ri+1

r=ri

E[(1−Bri)W
∗
r ]

r2(1− ρAri+1
)

dr = E

[∫ ri+1

r=ri

(1−Bri)W
∗
r

r2(1− ρAri+1
)
dr

]
= E

[
1−Bri

1− ρAri+1

∫ ri+1

r=ri

W ∗
r

r2
dr

]
.

(5.10)

Now, let us make use of the definition of W ∗
r . Recall that W ∗

r is the total remaining size of the
k − 1 jobs of least remaining size in the system.

W ∗
r =

k−1∑
j=1

rj1{rj ≤ r}

Substituting this into (5.10), we find it is equal to

= E

[
1−Bri

1− ρAri+1

k−1∑
j=1

∫ ri+1

r=ri

rj1{rj ≤ r}
r2

dr

]
. (5.11)

Now, we will bound the integral in (5.11). As noted in Lemma 5.5.1, for an arbitrary remaining
size rj , ∫ ∞

r=0

rj1{rj ≤ r}
r2

dr = rj

∫ ∞

r=rj

1

r2
dr = rj

1

rj
= 1.
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As a result, ∫ ri+1

r=ri

rj1{rj ≤ r}
r2

dr ≤ 1.

Substituting in this bound into (5.11), we find that

E

[
1−Bri

1− ρAri+1

k−1∑
j=1

∫ ri+1

r=ri

rj1{rj ≤ r}
r2

dr

]
≤ E

[
1−Bri

1− ρAri+1

(k − 1)

]

= (k − 1)E

[
1−Bri

1− ρAri+1

]
= (k − 1)

1− ρri
1− ρAri+1

≤ (k − 1)
1− ρAri
1− ρAri+1

.

Returning all the way back to the beginning, we find that∫ ∞

r=0

E[(1−Br)Wr]

r2(1− ρAr )
dr ≤ (k − 1)

m∑
i=0

1− ρAri
1− ρAri+1

. (5.12)

We are now ready to construct the list {ri}. Our goal in doing so is to minimize the sum

m∑
i=0

1− ρAri
1− ρAri+1

.

Our only constrains are that r0 = 0 and rm+1 =∞. In particular,

1− ρAr0 = 1− ρA0 = 1, 1− ρArm+1
= 1− ρA∞ = 1− ρ.

All other ri thresholds are ours to choose.
We will set ri such that the values 1− ρAri form a geometric progression. In particular, define

r1, r2, . . . to satisfy the following:

1− ρAr1 =
1

e
, 1− ρAr2 =

1

e2
, . . . 1− ρAri =

1

ei
∀i ≤ m. (5.13)

If the size distribution S is continuous, we choose ri to exactly satisfy (5.13). If S is discontinu-
ous, then ρAr is discontinuous, so exact equality is not necessarily possible. However, it suffices
to choose ri such that

1

ei
∈ [1− ρA

r+i
, 1− ρA

r−i
] ∀i ≤ m,

which is always possible. By + and −, we refer to the one-sided limits.
We then set m = ⌈ln 1

1−ρ
⌉ − 1. This choice of {ri} ensures that

1− ρAri
1− ρAri+1

≤ e ∀i ≤ m (5.14)

m∑
i=0

1− ρAri
1− ρAri+1

≤ e(m+ 1) = e

⌈
ln

1

1− ρ

⌉
. (5.15)
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For i ≤ m− 1, (5.14) follows immediately from (5.13). For i = m, (5.14) follows from the fact
that 1− ρArm+1

= 1− ρ.
Applying (5.12), we find that∫ ∞

r=0

E[(1−Br)Wr]

r2(1− ρAr )
dr ≤ e(k − 1)

⌈
ln

1

1− ρ

⌉
.

Now, it remains to bound (5.8):
Theorem 5.5.4 (Bound recycled work). Under the ServerFilling-SRPT policy, in the power-of-
two setting, ∫ ∞

r=0

ρRr Er[Wr]

r2(1− ρAr )
dr ≤ (k − 1) ln

1

1− ρ
.

The same is true of DivisorFilling-SRPT in the divisible setting.

Proof. First, recall the key property of ServerFilling-SRPT and DivisorFilling-SRPT, relevant
work efficiency: If there are at least k jobs with remaining size ≤ r in the system, then Br = 1.
This is proven in Corollary 5.4.1 for ServerFilling-SRPT, and in Section 5.7 for DivisorFilling-
SRPT.

When a job r-recycles, it must have been in service despite having remaining size > r. As
a result, there are at most k − 1 other jobs with remaining size ≤ r present in the system at an
r-recycling moment. Each such job contributes at most r work to Wr. As a result, Er[Wr] ≤
(k − 1)r. ∫ ∞

r=0

ρRr Er[Wr]

r2(1− ρAr )
dr ≤

∫ ∞

r=0

(k − 1)rρRr
r2(1− ρAr )

dr = (k − 1)

∫ ∞

r=0

ρRr
1− ρAr

1

r
dr.

To bound the integrand, we will expand the definitions of ρRr and ρAr in the SRPT setting.

ρRr = λrP {S > r}
ρAr = λE[S1{S ≤ r}].

We therefore bound as follows:

ρRr
1− ρAr

1

r
=

λrP {S > r}
1− λE[S1{S ≤ r}]

1

r
=

λP {S > r}
1− λE[S1{S ≤ r}]

.

Now, note that P {S > r} = d
dr
E[min(S, r)], and that E[min(S, r)] ≥ E[S1{S ≤ r}]. As a

result,

λP {S > r}
1− λE[S1{S ≤ r}]

≤ λP {S > r}
1− λE[min(S, r)]

=
λ d

dr
E[min(S, r)]

1− λE[min(S, r)]
= − d

dr
ln

1

1− λE[min(S, r)]
.

Integrating over all r ∈ [0,∞), we find that∫ ∞

r=0

ρRr
1− ρAr )

1

r
dr ≤

[
− ln

1

1− λE[min(S, r)]

]∞
r=0

= ln
1

1− ρ
.
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Now, we’re ready to put it all together. We derive a bound on mean response time:
Theorem 5.5.1. In any multiserver-job system, the difference in mean response time between
ServerFilling-SRPT and SRPT-1 is at most

E[T SFS-k]− E[T SRPT -1] ≤ (e+ 1)(k − 1)

λ
ln

(
1

1− ρ

)
+

e

λ
.

The same is true of DivisorFilling-SRPT in the divisible setting.

Proof. From Lemma 5.5.3, we know that

E[T SFS-k]− E[T SRPT -1]

=
1

λ

∫ ∞

0

E[(1−BSFS-k
r )W SFS-k

r ]

r2(1− ρAr )
dr +

1

λ

∫ ∞

0

ρRr Er[W
SFS-k
r ]

r2(1− ρAr )
dr.

We apply Theorem 5.5.3 and Theorem 5.5.4 to bound the two terms:

E[T SFS-k]− E[T SRPT -1] ≤ 1

λ
e(k − 1)

⌈
ln

1

1− ρ

⌉
+

1

λ
(k − 1) ln

1

1− ρ
.

We use the bound ⌈x⌉ ≤ x+ 1 to simplify the resulting expression.

Now, we use this bound to prove asymptotic optimality:
Theorem 5.5.2. If E[S2(logS)+] <∞,

lim
ρ→1

E[T SFS-k]

E[T SRPT -1]
= lim

ρ→1

E[T SFS-k]

E[TOPT -k]
= 1.

The same is true of DivisorFilling-SRPT in the divisible setting.

Proof. From Theorem 5.5.1, we know that the gap E[T SFS-k]−E[T SRPT -1] grows as O(log 1
1−ρ

)

in the ρ → 1 limit. It is known that if E[S2(logS)+] < ∞, then E[T SRPT -1] = ω(log 1
1−ρ

) in
the ρ → 1 limit. This is proven in [202, Appendix B.2], and specifically in the proof of [202,
Theorem 1.3].

5.6 ServerFilling-Gittins: Asymptotic Optimality with Unknown
Sizes

We generalize our results to the setting of unknown sizes or of partially known sizes (e.g. size
estimates). To do so, we replace the SRPT job ordering with the Gittins job ordering, thus
creating the ServerFilling-Gittins (SFG-k) and DivisorFilling-Gittins policies.

167



5.6.1 Background

The Gittins policy is the optimal scheduling policy for minimizing mean response time in the
M/G/1 in the unknown and partially-known size settings [72, 199], filling the same role as SRPT
in the known-size setting.

The Gittins policy is an age-based index policy, meaning that it assigns each job a rank
according to the job’s age and static characteristics (e.g. server need), as well as any other
information the scheduler may have, and serves the job of least rank. In the blind MSJ setting,
the Gittins rank function can be defined as follows: Let Si be the job size distribution of jobs
with server need i. Then a job with server need i and age a has rank:

inf
b>a

E[min(Si, b)− a | Si > a]

P [Si ≤ b|Si > a]
.

The definition of the Gittins rank in settings where the server has more information is similar,
but more complicated. For more details, see [199, 202].

We define the ServerFilling-Gittins policy by ordering jobs in increasing order of Gittins rank,
and then applying the same ServerFilling procedure as described in Section 5.4.2. We define
DivisorFilling-Gittins similarly, based on the DivisorFilling procedure given in Section 5.7.

5.6.2 Notation

Our notation follows [202]. We start by defining a job state space X of all possible job states
x. For instance, in the unknown size setting, a job’s state is simply its age a. In the known-size
setting, a job’s state was its remaining size. Every state x is mapped to rank(x). We call a job in
state x r-relevant if rank(x) < r.

Next, we need to adjust the concept of “remaining size” slightly. We define Sr(x), the r-
relevant remaining size of a job in state x, to be the random variable denoting the amount of
service the job needs in order to reach an r-irrelevant state or complete. In the known-size case,
this amount of service was deterministic, but here it is a random variable.

We can now define Wr, the r-relevant work in the system, to be the total of all jobs’ r-relevant
remaining size in steady state. Likewise, Br is the fraction of servers occupied by r-relevant jobs.

We also define two state distributions: XA, the state of arriving jobs, and XR
r , the state of

jobs recycling relative to rank r. In the known-size case, XR
r is deterministic, and in the unknown

size case, XA is deterministic, but in general both are random variables. We also define λR
r to be

the rate at which jobs recycle relative to rank r. This is equal to λ times the expected number of
r-recyclings per job.

We can now define the two constituents of r-relevant load, ρAr and ρRr .

ρAr := λE[Sr(X
A)]

ρRr := λR
r Er[Sr(X

R
r )]

Now, we are ready to state our main result for ServerFilling-Gittins.
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5.6.3 ServerFilling-Gittins: Proof Outline
Our main result for ServerFilling-Gittins is an analogous bound on mean response time to Theo-
rem 5.5.1, our bound on mean response time for ServerFilling-SRPT:
Theorem 5.6.1. For all loads ρ, in the power-of-two setting, the mean response time gap between
ServerFilling-Gittins and Gittins-1 is at most

E[T SFG-k]− E[TGittins-1] ≤ (e+ 1)(k − 1)

λ
ln

1

1− ρ
+

e

λ
.

The same is true of DivisorFilling-Gittins in the divisible setting.
Note that this bound is in some ways stronger than the bound on Gittins-k given in [202].

Our bound is the first uniform bound on multiserver Gittins, meaning that our bound doesn’t
depend on S except via E[S], unlike the bound on Gittins-k in [202]. Note also that the M/G/k
is a special case of the multiserver-job system when server needs are all 1, and that in this
special case, ServerFilling-Gittins specializes to Gittins-k. As a result, Theorem 5.6.1 is a strict
improvement upon the bound given in [202].

We use this bound to prove that ServerFilling-Gittins yields optimal mean response time in
the heavy-traffic limit:
Theorem 5.6.2. If E[S2(logS)+] < ∞, then ServerFilling-Gittins is asymptotically optimal in
the multiserver-job system:

lim
ρ→1

E[T SFG-k]

E[TGittins-1]
= lim

ρ→1

E[T SFG-k]

E[TOPT -k]
= 1.

The same is true of DivisorFilling-Gittins in the divisible setting.
Theorem 5.6.2 follows from Theorem 5.6.1 just as Theorem 5.5.2 follows from Theorem 5.5.1.
To prove Theorem 5.6.1, an analogous proof to the proof of Theorem 5.5.1 given in Sec-

tion 5.5.3 suffices. We simply must replace certain quantities used in Section 5.5.3 with the
equivalent quantities for the Gittins policy. Specifically, rather than thinking of a job as r-relevant
if it has remaining size≤ r, we instead think of a job as r-relevant if it has rank≤ r under the Git-
tins policy. We redefine W π

r , Bπ
r , and ρr, ρAr , and ρRr accordingly, as described in Section 5.6.2.

For full details, see Section 5.6.4.
The recycling term of our key background lemma Lemma 5.6.1 is likewise slightly different:

Lemma 5.6.1. For any scheduling policy π,

E[T π]− E[TGittins-1] =
1

λ

∫ ∞

0

E[(1−Bπ
r )W

π
r ]

r2(1− ρAr )
dr (5.16)

+
1

λ

∫ ∞

0

λR
r Er[Sr(X

R
r )W

π
r ]

r2(1− ρAr )
dr. (5.17)

Here ρrREr[W
π
r ] from Lemma 5.5.3 becomes λR

r Er[Sr(X
R
r )W

π
r ]. Note that in the SRPT case,

Sr(X
R) = r, because under SRPT, a job r-recycles when its remaining size is r. Lemma 5.6.1

follows from [202, Theorem 7.2].
Bounding the waste term involving E[(1 − Bπ

r )W
π
r ] proceeds completely analogously to

Theorem 5.5.3. Bounding the recycled work term involving λR
r Er[Sr(X

R
r )W

π
r ] is likewise com-

pletely analogous to Theorem 5.5.4. For the full details, see Section 5.6.4.
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5.6.4 ServerFilling-Gittins: Full Proof

Our results for ServerFilling-Gittins follow near-identical proofs as given in Section 5.5.3 for
ServerFilling-SRPT. We give the proofs here for completeness.

Our starting point is the “work integral number equality” (WINE) identity [198, 202].
Theorem 5.6.3 (Theorem 6.3, [202]). The mean number of jobs and mean response time in an
arbitrary system, under an arbitrary scheduling policy, is

E[N ] = λE[T ] =
∫ ∞

0

E[Wr]

r2
dr.

Now, we can state the work-decomposition law in a Gittins system.
Theorem 5.6.4 (Theorem 7.2, [202]). For all r ≥ 0, the mean r-relevant work gap between an
arbitrary policy π and M/G/1/Gittins is

E[W π
r ]− E[WGittins-1

r ] =
E[(1−Bπ

r )W
π
r ] + λR

r Er[Sr(X
R
r )W

π
r ]

1− ρAr
. (5.18)

We will handle the two numerator terms of (5.18) separately. Let us start by combining
Theorem 5.6.3 with Theorem 5.6.4, and try to bound the resulting integral.

We must bound

E[T π]− E[TGittins-1] =
1

λ

∫ ∞

0

E[(1−Bπ
r )W

π
r ]

r2(1− ρAr )
+

1

λ

∫ ∞

0

λR
r Er[Sr(X

R
r )W

π
r ]

r2(1− ρAr )
.

We bound the first term in Lemma 5.6.2 and the second term in Lemma 5.6.4.
Lemma 5.6.2. ∫ ∞

r=0

E[(1−Br)Wr]

r2(1− ρAr )
dr ≤ e(k − 1)⌈ln 1

1− ρ
⌉.

Proof. First, we make use of the key fact about ServerFilling-Gittins (and DivisorFilling-Gittins):
If there are at least k jobs with rank ≤ r in the system, then Br = 1. Thus, we can replace Wr

by W ′
r, the work of the k − 1 jobs of least rank in the system:∫ ∞

r=0

E[(1−Br)Wr]

r2(1− ρAr )
dr =

∫ ∞

r=0

E[(1−Br)W
′
r]

r2(1− ρAr )
dr.

Next, we will break up the ranks r ∈ [0,∞) into a finite set of buckets. Let R = [r1, r2, . . .]
be a list of ranks, where r1 = 0. We will specify the list R later. Implicitly, we will say that
r|R|+1 =∞. We can rewrite the above integral as:

∫ ∞

r=0

E[(1−Br)W
′
r]

r2(1− ρAr )
dr =

|R|∑
i=1

∫ ri+1

r=ri

E[(1−Br)W
′
r]

r2(1− ρAr )
dr. (5.19)
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Next, we replace r with either ri or ri+1, selectively, to simplify things. Note that Br is increas-
ing as a function of r - as we increase the rank r, more servers are busy with r-relevant jobs.
Likewise, ρAr is increasing as a function of r. Thus,

Bri ≤ Br

ρAr ≤ ρAri+1
.

Substituting into the integral from (5.9), we find that∫ ri+1

r=ri

E[(1−Br)W
′
r]

r2(1− ρAr )
dr ≤

∫ ri+1

r=ri

E[(1−Bri)W
′
r]

r2(1− ρAri+1
)

dr.

Next, let us perform some algebraic manipulation:∫ ri+1

r=ri

E[(1−Bri)W
′
r]

r2(1− ρAri+1
)

dr = E

[∫ ri+1

r=ri

(1−Bri)W
′
r

r2(1− ρAri+1
)
dr

]
= E

[
1−Bri

1− ρAri+1

∫ ri+1

r=ri

W ′
r

r2
dr

]
.

Note that Bri and W ′
r are conditionally independent because given X⃗ , the current states of the

jobs in the system, the busyness Bri is deterministic. We can make this explicit:

E

[
1−Bri

1− ρAri+1

∫ ri+1

r=ri

W ′
r

r2

]
dr = E

[
1−Bri

1− ρAri+1

∫ ri+1

r=ri

E[W ′
r | X⃗]

r2
dr

]
. (5.20)

Next, let us recall the definition of W ′
r:

W ′
r =

k−1∑
j=1

Sr(Xj),

E[W ′
r | X⃗] =

k−1∑
j=1

E[Sr(Xj)|Xj].

Following [202], let us define SERVICE(Xj, r) to be E[Sr(Xj)|Xj], the expected r-relevant work
of a job Xj .

Substituting this into (5.20), we find that

E

[
1−Bri

1− ρAri+1

∫ ri+1

r=ri

E[W ′
r | X⃗]

r2
dr

]

=E

[
1−Bri

1− ρAri+1

k−1∑
j=1

∫ ri+1

r=ri

SERVICE(Xj, r)

r2
dr

]
. (5.21)

Now, let us make use of the basic fact about SERVICE(Xj, r) from [202] which underlies Theo-
rem 5.6.3:
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For any job state Xj which is not the empty job,∫ ∞

r=0

SERVICE(Xj, r)

r2
dr = 1.

For the empty job, service is 0.
This provides a loose bound on the integral in (5.11), which integrates over a smaller interval

of ranks. Substituting in this bound, we find that

E

[
1−Bri

1− ρAri+1

k−1∑
j=1

∫ ri+1

r=ri

SERVICE(Xj, r)

r2
dr

]
≤ E

[
1−Bri

1− ρAri+1

min{N, k − 1}

]

≤ (k − 1)E

[
1−Bri

1− ρAri+1

]
= (k − 1)

1− ρAri − ρRr
1− ρAri+1

≤ (k − 1)
1− ρAri
1− ρAri+1

.

Returning all the way back to the beginning, we find that∫ ∞

r=0

E[(1−Br)Wr]

r2(1− ρAr )
dr ≤ (k − 1)

|R|∑
r=0

1− ρAri
1− ρAri+1

.

To optimize this bound, we need to choose R to minimize this sum. To do so, we set |R| =
⌈ln 1

1−ρ
⌉, and choose ri such that

1− ρA
r+i

1− ρA
r−i+1

≤ e.

for all i < |R|. By + and −, we refer to the left and right limits, thereby handling the possibility
that ρAr is discontinuous as a function of r. We therefore find that∫ ∞

r=0

E[(1−Br)Wr]

r2(1− ρAr )
dr ≤ e(k − 1)

⌈
ln

1

1− ρ

⌉
.

Now, it remains to bound the recyclings term in (5.18). Note that this term is identical to the
one in [202], so we can use essentially the same approach - we just disentangle it from the other
term. First, we use a basic theorem from [202]:
Lemma 5.6.3 (Lemma 8.2, [202]).

λR
r Er[Sr(X

R
r )Wr] ≤ (k − 1)rρRr .

Now, it remains to bound the recyclings-dependent term, plugged into Theorem 5.6.3.
Lemma 5.6.4. ∫ ∞

r=0

(k − 1)rρRr
r2(1− ρAr )

dr ≤ (k − 1) ln
1

1− ρ
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Proof. First, let us simplify:∫ ∞

r=0

(k − 1)rρRr
r2(1− ρAr )

dr = (k − 1)

∫ ∞

r=0

ρRr
1− ρAr

1

r
dr.

To bound the integrand, we will explicitly consider the Gittins game. Using the definitions of
UNDONEA(r), and GAMEA(r) given in Appendix B.2 of [202], we bound as follows:

ρRr
1− ρAr

1

r
≤ λrUNDONEA(r)

1− λ(GAMEA(r)− rUNDONEA(r))

1

r

≤ λUNDONEA(r)

1− λGAMEA(r)
=

λ d
dr

GAMEA(r)

1− λGAMEA(r)
=

d

dr
ln

1

1− λGAMEA(r)
.

Above, we make use of [202, Lemma 5.3].
Integrating over all r ∈ [0,∞), we find that∫ ∞

r=0

ρRr
1− ρAr

1

r
dr ≤

[
ln

1

1− λGAMEA(r)

]∞
r=0

= ln
1

1− λGAMEA(∞)
− ln

1

1− λGAMEA(0)
.

From the definition of the Gittins game, it is straightforward to prove that GAMEA(0) = 0, and
that GAMEA(∞) = E[S].

As a result, ∫ ∞

r=0

ρRr
1− ρAr

1

r
dr ≤ ln

1

1− ρ
.

Now, we’re ready to put it all together. We derive a bound on mean response time:
Theorem 5.6.1. In any multiserver-job system in the power-of-two setting the difference in mean
response time between ServerFilling-Gittins and Gittins-1 (resource pooled) is at most

E[T SFG-k]− E[TGittins-1] ≤ (e+ 1)(k − 1)

λ
ln

(
1

1− ρ

)
+

e

λ
.

The same is true of DivisorFilling-Gittins in the divisible setting.

Proof. Combine Theorem 5.6.3 with Theorem 5.6.4, using Lemma 5.6.2 and Lemma 5.6.4 to
bound the two terms.

Note that this bound is in some ways stronger than the bound on Gittins-k given in [202].
Our bound is the first uniform bound on multiserver Gittins, meaning that our bound doesn’t
depend on S except via E[S], unlike the bound on Gittins-k in [202]. Note also that the M/G/k
is a special case of the multiserver-job system when server needs are all 1, and that in this
special case, ServerFilling-Gittins specializes to Gittins-k. As a result, Theorem 5.6.1 is a strict
improvement upon the bound given in [202].

Analogous to Theorem 5.5.2, we use our bound to prove that ServerFilling-Gittins (and
DivisorFilling-Gittins) achieve asymptotically optimal mean response time.
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Theorem 5.6.2. If E[S2(logS)+] <∞,

lim
ρ→1

E[T SFG-k]

E[TGittins-1]
= 1.

Note that E[T SRPT -1] ≤ E[TGittins-1] by the optimality of SRPT, so E[TGittins-1] = ω(log 1
1−ρ

)

whenever E[S2(logS)+] <∞, just as E[T SRPT -1] = ω(log 1
1−ρ

) in this case.

5.7 DivisorFilling-SRPT
The DivisorFilling-SRPT policy is a scheduling policy for the divisible server needs setting of
the multiserver-job system, where all server needs kj perfectly divide the total number of servers
k.

To implement DivisorFilling-SRPT, we order jobs in increasing order of remaining size rj ,
and then apply a recursive procedure to select the jobs to serve, which we will specify in Sec-
tion 5.7.1. DivisorFilling-Gittins is defined identically, replacing increasing remaining size order
with increasing rank order.

DivisorFilling-SRPT achieves two key guarantees:
1. DivisorFilling-SRPT always serves a subset of the k jobs of least remaining size in the

system.

2. If at least k jobs are present, DivisorFilling-SRPT serves jobs with total server need exactly
k.

Item 1 is part of the definition of DivisorFilling-SRPT in Section 5.7.1. We prove Item 2 as
Theorem 5.7.1 in Section 5.7.2.

DivisorFilling-SRPT is identical to the DivisorFilling policy defined in Section 4.7 [84, Ap-
pendix A], except that DivisorFilling orders jobs in the arrival ordering, while DivisorFilling-
SRPT orders jobs in SRPT order. Note that [84] is the electronic companion to [86], and that
Appendix A only appears in the electronic companion.

As a corollary of Items 1 and 2, we can prove the “relevant work efficiency” property for
DivisorFilling-SRPT:
Corollary 5.7.1 (Relevant work efficiency). Under the DivisorFilling-SRPT policy, in the di-
visible setting, if there are k or more r-relevant jobs in the system, all servers are occupied by
r-relevant jobs.

The same is true for DivisorFilling-Gittins.
From Corollary 5.7.1, we can use the same techniques as were used for ServerFilling-SRPT

to prove Theorems 5.5.1 and 5.5.2.

5.7.1 DivisorFilling-SRPT Definition
Order all jobs in the system in order of least remaining size. Let M be the set of k jobs with least
remaining size, or all jobs if less than k are present.

We now split into three cases:
1. M contains at least k/6 jobs with server need kj = 1.
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2. k = 2a3b for some integers a, b, and M contains < k/6 jobs with kj = 1.

3. k has largest prime factor p ≥ 5, and M contains < k/6 jobs with kj = 1.

Case 1

If M contains at least k/6 jobs with server need 1, we initially parallel the ServerFilling-SRPT
policy: we order jobs in M by server need (tiebroken by least remaining size), and place jobs
into service in that order. However, because server needs are not powers of two, we may reach
a point where no more jobs fit into service, but servers are still unoccupied. In this case, we
place jobs from M with server need 1 into service, again tiebroken by least remaining size. We
continue doing so until all k servers are full or no more server need 1 jobs remain.

Case 2

Suppose that k is of the form 2a3b, and that Case 1 does not apply.
We will recurse on one of two subsets of M : the set of jobs with even server need, or the set

of jobs of odd server need greater than 1. Note that all jobs in the latter subset have server needs
divisible by 3. We call the former subset M2 and the latter subset M3. To decide which subset
to recurse on, we compare the values 2|M2| and 3|M3|, and recurse on the subset whose value is
larger. In the case of a tie, we arbitrarily select M2.

If 2|M2| is larger, we will only serve jobs from among M2. To decide which jobs to serve,
imagine that we combine pairs of servers. Doing so reduces k by a factor of 2, and reduces the
server need of each job in M2 by a factor of 2. We now recursively compute which jobs from
M2 the DivisorFilling-SRPT policy would serve in this subproblem, and serve those same jobs.
If 3|M3| is larger, we combine triples of servers, and then perform the same recursion.

Case 3

Suppose that k has largest prime factor p ≥ 5, and that Case 1 does not apply.
Let Mp be the set of jobs in M with server need divisible by p. If p|Mp| ≥ k, we recurse as

in Case 2 by combining groups of p servers.
Otherwise, we will only serve jobs from M whose server need is not divisible by p, and

also greater than 1. Let Mr be this subset of M . Note that all jobs in Mr have server needs
which are divisors of k/p. We therefore construct a set M ′ consisting of the k/p jobs of Mr

with least remaining size. If less than k/p jobs are in Mr, M ′ is all of Mr. We then apply
the DivisorFilling-SRPT procedure to M ′, setting the total number of servers k′ = k/p in the
subproblem. We extract the subset of jobs that DivisorFilling-SRPT serves in the subproblem
from Mr. We repeat this process by extracting subsets from the remaining jobs in Mr, repeating
until we have extracted p subsets from Mr, or Mr contains no jobs. DivisorFilling-SRPT serves
all jobs that were served in any of the p subproblems.

Note that this set of jobs served is valid to serve, with total server need at most k, because
each of the p subproblems have total server need at most k/p.
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5.7.2 DivisorFilling-SRPT Fills All Servers
Our proof mirrors the proof in [84, Appendix A], which we reprove to make this chapter self-
contained.
Theorem 5.7.1. If at least k jobs are present, DivisorFilling-SRPT serves a set of jobs with total
server need exactly k.

The same is true for DivisorFilling-Gittins.

Proof. We will prove that if M contains k jobs, DivisorFilling-SRPT serves all k jobs. Our proof
proceeds by strong induction on k. Specifically, assume that for all k′ < k, if M ′ consists of at
least k′ jobs whose server needs divide k′, then DivisorFilling-SRPT run on M ′ serves a set of
jobs with total server need k′. We will show that this assumption implies the desired result for k
servers.

Again, we split into three cases:

1. M contains at least k/6 jobs with server need kj=1.
2. k = 2a3b for some integers a, b, and M contains < k/6 jobs with kj = 1.
3. k has largest prime factor p ≥ 5, and M contains < k/6 jobs with kj = 1.

Case 1

Suppose M contains at least k/6 jobs with server need 1.
Let us label the jobs in M as m1,m2, . . . in decreasing order of server need:

km1 ≥ km2 ≥ . . . .

Let i∗ be defined as

i∗ = argmax
i

i∑
ℓ=1

kmℓ
≤ k.

In Case 1, DivisorFilling-SRPT serves jobs m1, . . .mi∗ , as well as any jobs with kj = 1 that fit
in the remaining servers. Let us write SUMi :=

∑i
ℓ=1 kmℓ

. Because M contains at least k/6 jobs
with server need 1, to prove Theorem 5.7.1 in this case, it suffices to show that SUMi∗ ≥ 5k/6.
The remaining servers are filled by the jobs with server need 1.

First, note that SUMk ≥ k, because M contains k jobs, each with server need at least 1. Next,
note that k − SUMi∗ < kmi∗+1

, by the definition of i∗. Because the labels m1,m2, . . . are in
decreasing order of server need, k − SUMi∗ < kmi∗ .

We will now proceed by enumerating the possible sequences of the i∗ largest server needs
in M . To prove that k − SUMi∗ ≤ k/6, we need only consider such sequences where all server
needs are greater than k/6. Such sequences consist only of the elements k, k/2, k/3, k/4, k/5.
We enumerate all possible such sequences in Table 5.2. Note that if k is not divisible by all of
{2, 3, 4, 5}, some entries will not apply. This only tightens the resulting bound on k − SUMi∗ for
such k.

As shown in Table 5.2, in all cases k − SUMi∗ ≤ k/6. The remaining servers are filled with
jobs with server need 1. DivisorFilling-SRPT serves a set of jobs with total server need exactly
k, as desired. As a result, Theorem 5.7.1 holds in this case.
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Sequence km1 , . . . , kmi∗ k − SUMi∗ Sequence km1 , . . . , kmi∗ k − SUMi∗

k 0 k/2, k/2 0
k/2, k/3 k/6 k/2, k/4, k/4 0
k/2, k/4, k/5 k/20 k/2, k/5, k/5 k/10
k/3, k/3, k/3 0 k/3, k/3, k/4 k/12
k/3, k/3, k/5 2k/15 k/3, k/4, k/4 k/6
k/3, k/4, k/5, k/5 k/60 k/3, k/5, k/5, k/5 k/15
k/4, k/4, k/4, k/4 0 k/4, k/4, k/4, k/5 k/20
k/4, k/4, k/5, k/5 k/10 k/4, k/5, k/5, k/5 3k/20
k/5, k/5, k/5, k/5, k/5 0

Table 5.2: All possible sequences of the i∗ largest server needs in M in which all server needs
exceed k/6.

Case 2

Suppose that k = 2a3b for integers a, b, and that Case 1 does not apply.
Recall that M2 is the set of jobs in M with even server need, and that M3 is the set of jobs

with odd server need, with server need greater than 1. We recurse on one of these subsets, by
comparing 2|M2| and 3|M3|. Note that if M2 is recursed on, the total number of servers in the
subproblem is k/2, and all server needs are divisors of k/2. For M3, the same is true of k/3.

For Theorem 5.7.1 to hold inductively, we must show that if M2 is recursed on, then |M2| ≥
k/2, and that if M3 is recursed on, then |M3| ≥ k/3. Because we select a subset by comparing
2|M2| and 3|M3|, if either set is large enough, the set recursed on will be large enough.

Because there are < n/6 jobs with server need 1, |M2| + |M3| ≥ 5k/6. Therefore, either
|M2| ≥ k/2 or |M3| ≥ k/3.

Suppose that 2|M2| ≥ 3|M3|. Call M ′
2 the set of jobs in M2, but with all server needs reduced

by a factor of 2. M ′
2 is the subset that DivisorFilling recurses on. Because |M ′

2| = |M2| ≥ k/2
in this case, by our inductive hypothesis the recursive call returns a subset of M ′

2 with total
server need k/2. The corresponding jobs in M2 have total server need k, so DivisorFilling-SRPT
serves a set of jobs with total server need exactly k, completing the inductive step in this case. If
3|M3| ≥ 2|M2|, then |M3| ≥ k/3, and the same argument applies.

Case 3

Suppose that k has largest prime factor p ≥ 5, and that Case 1 does not apply.
If p|Mp| ≥ k, Theorem 5.7.1 holds inductively, by the same argument as in Case 2.
Let us therefore focus on the extraction procedure. We must show that the extraction proce-

dure always extracts p subsets with total server need exactly k/p, to ensure that the overall set
served has total server need k.

Note that |Mp| < k/p ≤ k/5, and that there are ≤ k/6 jobs with server need 1. Mr consists
of the remaining jobs. As a result,

|Mr| ≥ k − k/6− k/5 =
19k

30
.
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Note also that every job in |Mr| has server need at least 2. The total server need extracted in
each step is at most k/p, so the number of jobs extracted is at most k/2p. To prove that p subsets
each with total server need k/p can be extracted, it suffices to show that at least k/p jobs remain
after the first p− 1 subsets have been extracted.

The number of jobs remaining at this point is at least:

19k

30
− (p− 1)k

2p
=

19k

30
− k

2
+

k

2p
=

2k

15
+

k

2p
.

To prove that the number of jobs remaining is at least k/p, we just need to show that 2k/15 ≥
k/2p. But p ≥ 5, so 2k/15 > k/10 ≥ k/2p.

Therefore, by induction, each of the p subsets extracted from Mr has total server need k/p.
Combining these subsets gives a total server need of k. Therefore, DivisorFilling-SRPT serves a
set of jobs with total server need exactly k, as desired.

5.8 Empirical Results
We have proven that ServerFilling-SRPT yields asymptotically optimal mean response time in
the heavy-traffic limit (as ρ→ 1). To empirically validate our theoretical results and broaden our
comparison to general ρ, we use simulation to compare the mean response time of ServerFilling-
SRPT to that of several previously proposed policies:
MaxWeight: A throughput optimal policy which considers all possible sets of jobs that can be

served at a time. Each job is given a weight equal the number of jobs in the system with
the same server need. The set of jobs with the maximum total weight is served [148]. Note
that this policy requires solving a NP-hard Bin Packing problem for each service.

ServerFilling: A policy which orders jobs in arrival order, then uses the same procedure to place
jobs onto servers as our ServerFilling-SRPT policy specified in Section 5.4.2. ServerFilling
is throughput-optimal in the power-of-two setting [86].

We also compare against resource-pooled SRPT-1, our lower bound on the optimal policy.
In Fig. 5.5, we show the ratio of mean response time between the multiserver-job policies

and SRPT-1. As proven in Theorem 5.5.2, for ServerFilling-SRPT, this ratio converges to 1,
implying that ServerFilling-SRPT yields asymptotically optimal mean response time. In contrast,
for MaxWeight and ServerFilling, the ratio is far from one, and appears to diverge. ServerFilling-
SRPT has superior mean response time at all ρ.

In Fig. 5.6, we show a setting with higher variance job sizes, where C2 = 10. In high-
variance settings, making effective use of job size information is at its most important. Here, the
ratio for ServerFilling-SRPT again converges smoothly to 1, while the ratios for MaxWeight and
ServerFilling diverge rapidly.

In Section 5.2, Fig. 5.4, we also compared ServerFilling-SRPT against two size-based heuris-
tic policies:
GreedySRPT: Order jobs in increasing order of remaining size. As long as sufficient servers are

available, place jobs into service. When a job has higher server need than the remaining
number of servers available, stop.
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Figure 5.5: Ratio of mean response time between several multiserver-job policies and SRPT-1.
K uniformly sampled from {1, 2, 4, 8}. S exponentially distributed, independent of K. Each
simulation consists of 107 arrivals. Loads up to ρ = 0.999 simulated.
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Figure 5.6: Ratio of mean response time between several multiserver-job policies and SRPT-1
under high variance. K uniformly sampled from {1, 2, 4, 8}. S hyperexponentially distributed,
C2 = 10, independent of K. Each simulation consists of 107 arrivals. Loads up to ρ = 0.999
simulated.
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FirstFitSRPT: Order jobs in increasing order of remaining size. As long as sufficient servers are
available, place jobs into service. If a job has higher server need than the remaining number
of servers available, skip that job. Continue through the list of jobs, placing jobs into
service if sufficient servers are available, until all servers are full, or all jobs are exhausted.
This policy was studied under the name “Smallest Area First” [33].

GreedySRPT makes no effort to pack jobs efficiently onto servers, while FirstFitSRPT is unreli-
able at doing so. For both of these policies, the stability region is significantly smaller than the
optimal stability region. This is why neither policy is depicted in Fig. 5.5 or Fig. 5.6, as both are
unstable for all loads ρ ≥ 0.85, and hence have infinite mean response time on this domain.

We summarize our experiments as follows: In all experiments, at all ρ, ServerFilling-SRPT
has minimal mean response time.

5.9 Conclusion
We introduce the ServerFilling-SRPT scheduling policy for the multiserver-job system. We
prove a tight bound on the mean response time of ServerFilling-SRPT in the power-of-two set-
ting, which applies for all loads ρ. We use that bound to prove that ServerFilling-SRPT achieves
asymptotically optimal mean response time in heavy traffic. We also show that ServerFilling-
SRPT empirically achieves the best mean response time of any policy simulated, across all loads
ρ. Finally, we introduce the DivisorFilling-SRPT policy, in the more general divisible setting, and
the ServerFilling- and DivisorFilling-Gittins policies, in the settings of unknown- and partially-
known job sizes, proving similar asymptotic optimality results for each.

One of the major insights of this chapter is that achieving asymptotically optimal mean re-
sponse time requires prioritizing jobs of small remaining size without sacrificing the throughput
of the system. ServerFilling-SRPT is the first policy to achieve both goals simultaneously.

The MIAOW analysis technique introduced in this chapter extends beyond ServerFilling-
SRPT and the multiserver-job setting. In fact, it allows the analysis of any system and any policy
in which the relevant work efficiency property (Corollary 5.4.1) can be proven.

One direction of future work is to study multiserver-job scheduling policies outside of the
divisible setting. No mean response time analysis is currently known for any scheduling policy
in this more general setting, much less any optimality results, so new techniques will likely be
needed. In particular, no policy with the remaining work efficiency property can exist in this
setting.

5.10 General Conclusion

5.10.1 Summary

We start by summarizing the results proven in this chapter, as well as the key techniques behind
these results.

Results: ServerFilling-SRPT is optimal We prove that out novel ServerFilling-SRPT
scheduling policy, which we define in Section 5.4.2, achieves the best possible mean response
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time when the load on the system is high and queue lengths become long (See Theorem 5.5.2).
We also prove an upper bound on the mean response time of ServerFilling-SRPT, in the

form of a clean mathematical formula (See Theorem 5.5.1). This upper bound proves that
ServerFilling-SRPT achieves similar mean response time to that of resource-pooled SRPT, in
which all k servers are combined into a single ultra-fast server, which runs k times faster than
each of the original servers. This bound becomes tight as load becomes high.

Simulation result: ServerFilling-SRPT is near-optimal under moderate traffic While
our results focus on heavy traffic, we show via simulation in Fig. 5.6 that ServerFilling-SRPT is
also very good under moderate traffic. In particular, we see that the ratio between ServerFilling-
SRPT’s mean response time and that of resource-pooled SRPT is near 1 even at moderate loads,
unlike other MSJ scheduling policies. This implies that ServerFilling-SRPT is near-optimal even
at moderate loads.

Results: Further optimal policies We prove similar optimality results and upper bounds
for several more MSJ scheduling policies. While the ServerFilling-SRPT policy focuses on
workloads where all server needs are powers of 2, and the total number of servers k is a power
of 2, the DivisorFilling-SRPT policy can handle any workload where all server needs are perfect
divisors of the total number of servers. We define the DivisorFilling-SRPT policy in Section 5.7.
We prove DivisorFilling-SRPT’s optimality in Theorem 5.5.2 and bound its response time in
Theorem 5.5.1.

The ServerFilling-SRPT and DivisorFilling-SRPT results focus on the setting where the
scheduling policy knows the job sizes. If job sizes are unknown or estimated, the appropriate
analogue to SRPT scheduling is the Gittins index scheduling policy [72, 73, 199], Correspond-
ingly, we define the ServerFilling-Gittins and DivisorFilling-Gittins policies in Section 5.6. We
prove in Theorem 5.6.2 that these policies each achieve optimal mean response time in the limit
as load approaches capacity, and prove upper bounds on each policy’s mean response time in The-
orem 5.6.1. These proofs follow essentially the same approach as our results on ServerFilling-
SRPT and DivisorFilling-SRPT.

Key challenge: Single straggler The key challenge that we overcome in proving our bounds
and optimality results is the “single straggler” problem. Suppose that, out of many jobs in the
system, there is only a single 1-server job, and suppose that job has a very small size. Note that
1 = 20 is a power of 2, and that 1 is the only odd power of 2. All other jobs have much larger
sizes, and have even server needs. Now the scheduling policy is in a bind: It must either deviate
from SRPT scheduling, by leaving the 1-server job in the queue, or it must waste a server, by
scheduling the 1-server job. Because k is even and all other server needs are even, the 1-server
job cannot be served without leaving at least one server empty.

ServerFilling-SRPT chooses to leave the 1-server job in the queue. As a result, despite the
fact that the 1-server job has a very small size, it can have a very long response time. However,
note that this unfortunate scenario can only happen to a single 1-server job at a time. There-
fore, there is hope that even though the 1-server job has a long response time, the overall mean
response time of the system may still be short.

This single-straggler scenario blocks us from using many previous techniques that we have
developed to prove optimality results in multiserver scheduling settings, including the techniques
used to prove optimality for one-server-per-job SRPT in Chapter 2 and one-server-per-job Gittins
[204]. We discuss the single-straggler obstacle further in Section 5.5.2
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Overcoming single straggler: MIAOW To overcome the single-straggler obstacle, we
develop a new analysis technique called Multiplicative Interval Analysis of Waste (MIAOW).
Rather than focusing on a single job at a time or a single size of jobs at a time, MIAOW bounds
the harmful mean-response-time impact of an entire interval of sizes simultaneously. For in-
stance, MIAOW might be used to analyze all inefficiency involving jobs whose sizes are in the
“interval” from 1 to 2 server-seconds. MIAOW might then show that all jobs in that interval
collectively only cause a 1-second increase in mean response time in ServerFilling-SRPT as
compared to resource-pooled SRPT, regardless of the load on the system.

We use the MIAOW technique to prove Theorem 5.5.3, the key step towards our optimality
result and our upper bound on ServerFilling-SRPT. Using the MIAOW technique, we make use
of the fact that only one job can be caught in the single straggler scenario at a time. This implies
that the single straggler scenario cannot increase the overall mean response time of ServerFilling-
SRPT by a non-negligible amount, in the limit as load on the system approaches the capacity of
the system.

5.10.2 Future Direction: General MSJ Scheduling

This chapter invents the ServerFilling-SRPT scheduling policy and proves that it achieves opti-
mal mean response time in the limit as load approaches the capacity of the system. However, the
ServerFilling policy is limited to the setting where all jobs’ server needs are powers of 2, and
where k, the total number of servers, is also a power of 2. Even the more general DivisorFilling
policy is limited to the setting where all jobs’ server needs are divisors of k.

As we discuss in Section 8.3.4, much less is known about achieving optimal mean response
time in the general MSJ scheduling setting. This is true even in settings where 100% server
utilization (i.e. full server utilization) is achievable. For instance, consider a system with k = 3
servers, server needs 1, 2, and 3, and where the load of 1-server jobs exceeds that of 2-server
jobs. Full server utilization can be achieved by pairing 1-server jobs with 2-server jobs for
service, to ensure that servers are never wasted. However, the response time under such a policy
may not resemble that of a resource-pooled SRPT system. For instance, suppose that 1-server
jobs typically have smaller size than 2-server jobs. We need to pair up 1-server and 2-server
jobs to maintain full utilization, but by doing so we must diverge drastically from the ideal SRPT
service ordering.

We pose the following open problem:

What MSJ scheduling policy achieves optimal mean response time under general
workloads?

5.10.3 Potential Impact

We now explore potential directions in which the ServerFilling-SRPT and DivisorFilling-SRPT
scheduling policies could be applied.
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Adopting ServerFilling-SRPT into Modern Computing Systems

Our analysis of the ServerFilling-SRPT scheduling policy in the MSJ model shows that ServerFilling-
SRPT can dramatically lower response times compared to other scheduling policies, and that
ServerFilling-SRPT is in fact optimal for mean response time under sufficiently heavy load.
Our hope is that our results will lead computing systems operators to adopt ServerFilling-SRPT
scheduling in their systems. However, the road from theoretical results to adoption requires
overcoming several hurdles. These include:

Judicious use of preemption. In real systems, preemption can be difficult or expensive, either
from an implementation perspective or because of performance overheads. ServerFilling-
SRPT preempts jobs for two reasons: Upon completions, to keep servers filled, and upon
arrivals, if a smaller job arrives. To keep completion-triggered preemptions to a minimum,
one could expand the pool of jobs that are under consideration for service, to increase
the chance that all servers can be filled without preemption. To lessen arrival-triggered
preemptions, one could decide to only remove a job from service if a much smaller job
arrives. If the newly-arrived job is only slightly smaller, then one might err on the side of
avoiding preemption.

Multidimensional resources. In real systems, jobs often require a variety of resources, includ-
ing CPU cores, GPUs, memory, network bandwidth, disk IO, and more. These can be
modeled as multidimensional resource requirements, in contrast to the single-dimensional
server need model considered in this chapter. In a general multidimensional setting, full
utilization is not attainable. There is no equivalent of the power-of-2 server need assump-
tion which can ensure that any assortment of jobs will always be able to use all of the
system’s resources. Jobs will use more of one resource or another, inevitably wasting
some resources.
Instead of full utilization, one should aim for optimal stability region. A policy achieves
optimal stability if it can handle as large an arrival rate as possible without jobs backing up
indefinitely and queue lengths diverging to infinity. Several optimal-stability scheduling
policies are known in the multidimensional setting [148, 181], However, these policies do
not incorporate size information, and do not achieve particularly low mean response times.
To achieve better mean response time in the multidimensional setting, one might start with
an optimal-stability policy, and then tilt its decisions towards favoring small jobs. We
discuss scheduling under multidimensional resource constraints further in Section 8.3.4.

ServerFilling-SRPT for Scheduling Jobs Involving People

When scheduling jobs involving people, the duration of service and the number of people (i.e.
server need) necessary to fulfil that job are not the only important qualities of the job. Jobs can
be differentiated both by their sizes, summarizing duration and server need, and by the time-
sensitivity or value of that service. Value might represent a customer paying extra for rush
service, or a task that needs to be completed before other work can begin. An appropriate metric
for this is scenario is the mean product of value and response time, also known as weighted
response time.
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In the single-server setting, if both value and size are known, the policy which minimizes
weighted mean response time is the “cµ-rule”, which serves the job with maximal ratio of value
to size. We would therefore use the ServerFilling-cµ policy, ordering jobs by their ratio of value
to size before performing the ServerFilling procedure. In fact, thanks to prior work on the Gittins
policy [199], our optimal mean response time result for ServerFilling-Gittins, Theorem 5.6.2,
immediately implies a similar optimal weighted mean response time result for ServerFilling-cµ.
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Chapter 6

Analyzing Multiserver-job First-Come
First-Served

This chapter is based on the paper “The RESET and MARC Techniques, with Application to
Multiserver-Job Analysis”, currently under submission, written with my coauthors Yige Hong,
Mor Harchol-Balter, and Alan Scheller-Wolf.

An extended abstract of this chapter has been published under the title “The RESET Tech-
nique for Multiserver-Job Analysis”, and was presented at the SIGMETRICS 2023 Student Re-
search Competition [79].

6.1 General Introduction
Modeling large-scale computing Modern computing systems scale in two important ways.
First, they contain huge numbers of servers, allowing them to process many jobs at once. Second,
the jobs in modern computing systems require vastly different amount of resources, ranging from
a single CPU core to thousands of machines. The scheduling decision in this system consists of
selecting a combination of jobs to serve at once. It is vital to understand the performance of
existing scheduling policies, so we can make informed decisions about changing workloads,
capacity provisioning, and other aspects of system design.

To capture the behavior of these computing systems, we use a multiserver-job queueing
model, depicted in Fig. 6.1, which was introduced in Chapter 4. Jobs arrive randomly over
time, and wait in a central queue. Each job has a server need, which specifies the number of
servers the jobs requires in order to enter service. All servers are identical, so the scheduling
policy can decide to serve any set of jobs with total server need at most k, where k is the total
number of servers in the system.

FCFS scheduling One important MSJ scheduling policy, which is the focus of this chapter,
is the First-Come First-Served (FCFS) policy. We depict FCFS in Fig. 6.1. FCFS is a natural
and practical scheduling policy that is the default in both cloud computing [58, 146, 208] and
supercomputing [61, 120]. FCFS places the oldest jobs in the system into service one-by-one,
until a job is reached whose server need exceeds the number of currently available servers. At
this point, the blocked job, and all jobs behind it in the queue, must wait until some of the jobs in
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Figure 6.1: The FCFS scheduling policy in the multiserver-job setting. Each job has two char-
acteristics: A server need, the number of servers it requires in order to run, and a duration, the
amount of service time it requires. FCFS serves jobs in arrival order. In the figure, the job with
server need 2 cannot receive service yet, because there is only 1 server available. The 2-server
job also blocks all jobs behind it in the queue from receiving service.

service complete and more servers become available. To measure FCFS’s performance, we are
interested in its mean response time, the mean time from when a job arrives to when it completes.

Prior analysis requires assumptions In Chapters 4 and 5, we analyzed the mean response
time of ServerFilling and ServerFilling-SRPT, two scheduling policies that we invented. These
are the only two mean response time analyses of any MSJ scheduling policies. While both
policies have advantageous properties, they both make assumptions about the behavior of the
MSJ system and its workload. In particular, both policies assume that jobs may be preempted,
meaning that the jobs may be paused and put back in the queue, to be returned to later. In
addition, both policies assume that all jobs’ server needs are powers of two, and that k is a power
of two. While the assumptions are valid in some settings, they are not valid in all settings. No
closed-form mean response time analysis is known for any non-preemptive scheduling policies,
nor for any scheduling policy under a general server need distribution.

Key question: Analyzing FCFS FCFS does not use preemption, and it does not make any
assumptions on the server need distribution. The key question of this chapter is:

What is the mean response time of FCFS in the multiserver-job model?
Key challenge: Wasted servers As shown in Fig. 6.1, FCFS can leave some servers empty,

even when there are lots of jobs in the queue. As a result, the system is not completing work at a
constant rate. At some times, more servers are busy, and work is completed at a faster rate, and
at some times, fewer servers are busy, and work is completed slower. This is a major obstacle to
many prior approaches to analyzing mean response time. In particular, the fact that FCFS wastes
servers means that FCFS does not resemble a resource-pooled system. A resource-pooled system
is one in which all k servers are combined into one gigantic server which runs k times faster than
each of the original servers. Resource-pooled analysis is at the heart of our mean response time
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Figure 6.2: The saturated system for the MSJ FCFS scheduling policy. The saturated system is
a closed system in which completions trigger new arrivals. As a result, there are always a fixed
number of jobs present in the system. Specifically, we set the number of jobs to always be exactly
k, the number of servers. In this case, there are always k = 5 jobs in the system.

analysis in each of Chapters 2 to 5. Unfortunately, it cannot handle systems where servers are
wasted, because no capacity can be wasted in the resource-pooled system.

Key technique: Saturated system In order to analyze the MSJ system, we need to get a
grip on its pattern of server use and waste over time, under a given workload. Our key tool for
understanding this behavior is the saturated system. The saturated system, shown in Fig. 6.2, is
a variant of the MSJ system where, instead of jobs arriving due to an external arrival process,
job arrivals are instead triggered by job completions. As a result, the number of jobs in the
saturated system is always constant. Nothing else changes: Jobs still have random server needs
and durations. The server need and duration of an arriving job are unrelated to the characteristics
of the job whose completion triggered that arrival.

As the external arrivals to the original MSJ system get faster and faster, and the MSJ system’s
queue gets longer and longer, it more and more closely approaches the saturated system’s behav-
ior, in the following sense: We show that the distribution of jobs in service in the two systems
converges in this limit (See Lemma 6.7.5). This property has previously been used to character-
ize the MSJ system’s stability region, the set of arrival rates for which the MSJ system’s mean
queue length is finite. [13, 65, 83, 88, 187].

Saturated system analysis to response time By analyzing the saturated system, we under-
stand the patterns of server utilization and wastage. This in turn allows us to analyze the mean
response time of the original MSJ FCFS system.
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6.2 Technical Introduction
Multiserver queueing theory predominantly emphasizes models in which each job utilizes only
one server (one-server-per-job models), such as the M/G/k. For decades, such models were pop-
ular in the study of computing systems, where they provided a faithful reflection of the behavior
of such systems while remaining conducive to theoretical analysis. However, one-server-per-job
models no longer reflect the behavior of many modern computing systems.

Multiserver jobs: In modern datacenters, such as those of Google, Amazon, and Microsoft,
each job now requests many servers (cores, processors, etc.), which the job holds simultaneously.
A job’s “server need” refers to the number of servers requested by the job. In Google’s recently
published trace of its “Borg” computation cluster [86, 218], the server needs vary by a factor
of 100,000 across jobs. Throughout this chapter, we will focus on this “multiserver-job model”
(MSJ), in which each job requests some number of servers, and concurrently occupies that many
servers throughout its time in service (its “duration”).

FCFS service: We specifically study the first-come first-served (FCFS) service ordering
for the MSJ model, a natural and practical policy that is the default in both cloud computing
[58, 146, 208] and supercomputing [61, 120]. Currently, little is known about FCFS service in
MSJ models.

Stability under FCFS: Even the stability region under FCFS scheduling is not generally
understood. Some papers characterize the stability region under restrictive assumptions on the
job duration distributions [5, 161, 187, 188]. A key technique in these papers is the saturated
system approach [13, 65]. The saturated system is a closed system in which completions trigger
new arrivals, so that the number of jobs in the system is always constant. We are the first to use
the saturated system for analysis beyond characterizing the stability region.

Response time for FCFS: Even less is known about mean response time E[T ] in MSJ FCFS
systems: The only MSJ FCFS system in which mean response time has been analytically char-
acterized is the simpler case of 2 servers and exponentially distributed durations [31, 63]. Mean
response time is much better understood under more complex scheduling policies such as Server-
Filling and ServerFilling-SRPT [86, 87], but these policies require assumptions on both preemp-
tion and the server need distribution, and do not capture current practices, which emphasize non-
preemptive policies. Mean response time is also better understood in MSJ FCFS scaling regimes,
where the number of servers and the arrival rate both grow asymptotically [113, 115, 226]. We
are the first to analyze MSJ FCFS mean response time under a fixed number of servers.

Why FCFS is hard to analyze: One source of difficulty in studying the FCFS policy is the
lack of work conservation. In simpler one-server-per-job models, a work-conservation property
holds: If enough jobs are present, no servers will be idle. The same is true under ServerFilling
and ServerFilling-SRPT [86]. Work conservation is key to the mean response time analysis of
those systems, as one can often reduce the analysis of response time to the analysis of work. In
contrast, the multiserver-job model under FCFS service is not work conserving: a job must wait
if it demands more servers than are currently available, leaving those servers idle.

First response time analysis: We derive the first characterization of mean response time
in the MSJ FCFS system. We allow any phase-type duration distribution, and any correlated
distribution of server need and duration. Our result holds at all loads up to an additive error,
which becomes negligible as the arrival rate λ approaches λ∗, the threshold of stability.
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Figure 6.3: The structure of our main results: RESET (Theorem 6.5.2) and MARC (Theo-
rem 6.5.1).

Proof structure: We illustrate the structure of our proof in Fig. 6.3. We first use our RESET
technique (REduction to Saturated for Expected Time) to reduce from the MSJ FCFS system to
a M/M/1 with Markovian service rate (MMSR), where the service rate is based on the saturated
system. We next use our MARC technique (MArkovian Relative Completions) to prove Theo-
rem 6.5.1, the first characterization of mean response time in the MMSR. Both steps are novel,
hard, and of independent interest. We prove our MARC result first because it is a standalone
result, characterizing mean response time for any MMSR system up to an additive constant. We
then prove Theorem 6.5.2, our characterization of mean response time in the MSJ FCFS system,
by layering our RESET technique on top of MARC.

Breadth of the RESET technique: Our RESET technique is very broad, and applies to a
variety of generalizations of the MSJ model and beyond (See Section 6.10). For instance, RESET
can handle cases where a job’s server need varies throughout its time in service, and where the
service rates at the servers can depend on the job. Finally, we can analyze scheduling policies
that are close to FCFS but allow limited reordering, such as some backfilling policies.

Breadth of the MARC technique: Our MARC technique is also very broad, and applies to
any MMSR system. For example, we can handle systems in which machine breakdowns lead to
reduced service rate, or where servers are taken away by higher-priority customers.

This chapter is organized as follows:

• Section 6.3: We discuss prior work on the MSJ model.
• Section 6.4: We define the MSJ model, the MMSR, the saturated system, relative comple-

tions, and related concepts.
• Section 6.5: We state our main results, and walk through an example of applying our

results to a specific MSJ FCFS system.
• Section 6.6: We characterize mean response time in the MMSR using our MARC tech-

nique.
• Section 6.7: We build upon Section 6.6 to characterize MSJ FCFS mean response time

using our RESET technique.
• Section 6.10: Our results apply to a very broad class of models which we call “finite skip”

models, and which we define in this section.
• Section 6.11: We empirically validate our theoretical results.
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6.3 Prior work

The bulk of the prior work we discuss is in Section 6.3.1, which focuses on specific results in the
multiserver-job model. In Section 6.3.2, we briefly discuss prior work on the saturated system,
an important tool in our analysis. Finally, in Section 6.3.3, we discuss prior work on the M/M/1
with Markovian service rate.

6.3.1 Multiserver-job model

Theoretical results in the multiserver-job model are limited. We first discuss the primary setting
of this chapter: a fixed number of servers and FCFS service.

Fixed number of servers, FCFS service

In this setting, most results focus on characterizing the stability region. Rumyantsev and Moro-
zov characterize stability for an MSJ system with an arbitrary distribution of server needs, where
the duration distribution is exponential and independent of server need [187]. This result can im-
plicitly be seen as solving the saturated system, which has a product-form stationary distribution
in this setting. A setting with two job classes, each with distinct server needs and exponen-
tial duration distributions has also been considered [83, 88, 186]. In this setting, the saturated
system was also proven to have a product-form stationary distribution, which was also used to
characterize the stability region.

The only setting in which mean response time E[T ] is known is in the case of k = 2 servers
and exponential duration independent of server need [31, 63]. In this setting, the exact stationary
distribution is known. Mean response time is open in all other settings, including whenever
k > 2.

Advanced scheduling policies

More advanced scheduling policies for the MSJ system have been investigated, in order to ana-
lyze and optimize the stability region and mean response time.

The MaxWeight policy was proven to achieve optimal stability region in the MSJ setting
[147]. However, its implementation requires solving an NP-hard optimization problem upon
every transition, and it performs frequent preemption. It is also too complex for response time
analysis to be tractable. The Randomized Timers policy achieves optimal throughput with no
preemption [71, 181], but has very poor empirical mean response time, and no response time
analysis.

In some settings, it is possible for a scheduling policy to ensure that all servers are busy when-
ever there is enough work in the system, which we call “work conservation.” Work conservation
enables the optimal stability region to be achieved and mean response time to be characterized.
Two examples are ServerFilling and ServerFilling-SRPT scheduling policies [86, 87]. How-
ever, the work-conservation-based techniques used in these papers cannot be used to analyze
non-work-conserving policies such as FCFS.
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Scaling number of servers

The MSJ FCFS model has also been studied in settings where the number of servers, the arrival
rate, and the server need distribution all grow in unison to infinity. Analogues of the Halfin-
Whitt and non-diminishing-slowdown regimes have been established, proving bounds on the
probability of queueing and mean waiting time [113, 115, 226]. These results focus on settings
where an approximate work conservation property holds, and there is enough excess capacity
that this approximate work conservation is sufficient to determine the first-order behavior of the
system. These results do not apply to the λ→ λ∗ limit.

6.3.2 Prior work on the saturated system

The saturated system is a queueing system which is used as analysis tool to understand the
behavior of an underlying non-saturated queueing system [13, 65]. Baccelli and Foss state that
it is a “folk theorem” that the stability region of the original open queueing system is equivalent
to the completion rate of the saturated system: If the completion rate of the saturated system is
µ, then the original system is stable for arrival rate λ if and only if λ < λ∗ = µ [13]. Baccelli
and Foss give sufficient conditions for this folk theorem, known as the “saturation rule,” to hold
rigorously. These conditions are mild, and are easily shown to hold for the MSJ FCFS system.
The strongest stability results in the MSJ FCFS system have either been proven by characterizing
the steady state of the saturated system, or are equivalent to such a characterization [83, 88, 187].

Our novel contribution is characterizing the mean response time behavior of an original sys-
tem by reducing its analysis to the analysis of a saturated system. All previous uses of the
saturated system focused on characterizing stability.

6.3.3 M/M/1 with Markovian Service Rate

The M/M/1 with Markovian service rate (MMSR) has been extensively studied since the 50’s,
often alongside Markovian arrival rates [39, 47, 95, 131, 151, 166]. A variety of mathematical
tools have been applied to the MMSR, including generating function methods, matrix-analytic
and matrix-geometric methods, and spectral expansion methods [39, 47, 145, 166]. However,
these methods primarily result in numerical results, rather than theoretical insights [47, 155].

More is known for special cases of the MMSR system [49, 179]. For instance, the case
where arrival rates alternate between a high and low completion rate at some frequency has
received specific study. In this case, the generating function can be explicitly solved as the root
of a cubic equation [239], but the resulting expression is too complex for analytical insights. In
this simplified setting, scaling results [167–169, 223] and monotonicity results [95] have been
derived, but those results do not extend to more complex MMSR systems.

By contrast, our MARC technique provides the first explicit characterization of mean re-
sponse time for the general MMSR system, up to an additive constant.

191



6.4 Model
In this section, we introduce five queueing models: the multiserver-job (MSJ) model, the M/M/1
with Markovian service rate (MMSR), the At-least-k (Ak) model, the saturated system, and the
simplified saturated system (SSS). The MSJ is the main focus of this chapter. Our RESET tech-
nique reduces its analysis to analyzing the Ak system. The Ak system is equivalent to a MMSR
system whose completion process is controlled by the saturated system. Our MARC technique
allows us to analyze this MMSR system. The SSS is a simpler equivalent of the saturated sys-
tem. We also introduce the concepts of relative completions and the generator approach, which
are key to our analysis.

6.4.1 Multiserver-job Model
The MSJ model is a queueing model in which each job requests an integer number of servers,
the server need, for some duration of time, the service duration. Each job requires concurrent
service on all of its servers throughout its duration. Let k denote the total number of servers in
the system.

We assume that each job’s server need and service duration are drawn i.i.d. from some
joint distribution. The duration distribution is phase type, and it may depend on the job’s server
need. This assumption can likely be generalized, which we leave to future work. We assume a
Poisson(λ) arrival process.

We focus on the first-come first-served (FCFS) service discipline. Our RESET technique
also applies to many other scheduling policies, as we discuss in Section 6.10. Under FCFS,
jobs are placed into service one by one in arrival order as long as the total server need of the
jobs in service is at most k. If a job is reached whose server need would push the total over k,
that job does not receive service until sufficient completions occur. We consider head-of-the-line
blocking, so no subsequent jobs in arrival order receive service. It has been shown that in the
MSJ FCFS setting, there exists a threshold λ∗, such that the system is stable if and only if λ < λ∗

[13, 65]. We assume that λ < λ∗.
Note that the only jobs eligible for service are the k oldest jobs in arrival order. We concep-

tually divide the system into two parts: the front, which consists of the (up to) k oldest jobs in
arrival order in the system, and the queue, which consists of all other jobs in the system.

6.4.2 Running Example
Throughout this section, we will use a running example to clarify notation and concepts. Con-
sider a MSJ setting with k = 2 servers, and two classes of jobs: 2/3 of jobs have server need 1
and duration Exp(1), and the other 1/3 of jobs have server need 2 and duration Exp(1/2).

6.4.3 M/M/1 with Markovian Service Rate
The MMSR is a queueing system where jobs arrive to the system according to a Poisson process,
and complete at a variable rate, where the completions are determined by the transitions of a
finite-state Markov chain. When a job arrives, it stays in the queue until it reaches the head of
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the line, entering service. The job then completes when the service-process Markov chain next
undergoes a transition associated with a completion. Jobs are identical until they reach service.
The service process is unaffected by the number of jobs in the queue.

6.4.4 At-least-k System
To connect the MSJ FCFS and MMSR systems, we define two systems: the “At-least-k” (Ak)
system, and the “saturated system” in Section 6.4.5. The Ak model mimics the MSJ model,
except that the front of the Ak model always has exactly k jobs. Specifically, in addition to the
primary Poisson(λ) arrival process, whenever there are exactly k jobs in the system, and a job
completes, a new job immediately arrives. The server need and service duration of this job are
sampled i.i.d. from the same distribution as the primary arrivals. Due to these extra arrivals, the
Ak system always has at least k jobs present.

Intuitively, the Ak system should have about k more jobs present in steady state than the MSJ
system. We thus expect the Ak and MSJ systems to have the same asymptotic mean response
time, up to an Oλ(1) term. We make this intuition rigorous by using our RESET technique to
prove Theorem 6.5.2.

6.4.5 Saturated System
The saturated system is a closed multiserver-job system, where completions trigger new arrivals.1

Jobs are served according to the same FCFS service discipline. There are always exactly k jobs
in the system. Whenever a job completes, a new job with i.i.d. server need and service duration
is sampled. The state descriptor is just an ordered list of exactly k jobs.

In our running example with k = 2 servers, the state space of the saturated system consists
of all orderings of 2 jobs:

YSat = {[1, 1], [1, 2], [2, 1], [2, 2]}

The leftmost entry in each of the lists is the oldest job in FCFS order. In state [1, 2], a 1-server
job is in service and a 2-server job is in the queue, while in state [2, 1], a 2-server job is in service
and a 1-server job is in the queue.

6.4.6 Equivalence between MMSR-Sat and At-least-k
Now we are ready to connect the MMSR and At-least-k (Ak) systems. Consider the subsystem
consisting only of the front of the Ak system. This subsystem is stochastically identical to the
saturated system. Whenever a job completes at the front of the Ak system, a new job enters the
front, either from the queue or from the auxiliary arrival process. This matches the saturated
system’s completion-triggered arrival process.

As a result, the Ak system is stochastically equal to an MMSR system whose service process
is controlled by the saturated system. To clarify this equivalency, assume the Ak system starts in

1Baccelli and Foss [13] consider a system with an infinite number of jobs in the queue, which is equivalent to
our closed system.
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a certain front state y with an empty queue. Then equivalently the MMSR system starts empty,
with its service process in state y. If a job completes in the Ak system then a new job is generated,
and the same transition occurs in the service process in the MMSR system. Next, assume a job
arrives to the Ak system, and sits in the queue. At the same time, a job arrives in the MMSR and
sits in the queue. Through this mapping, the two systems are sample-path equivalent.

6.4.7 Notation

A state of the MSJ system consists of a pair (qMSJ, yMSJ). The queue length qMSJ is a nonnegative
integer. A job state consists of a server need and a phase of its phase-type duration. The front
state yMSJ is a list of up to k job states. If qMSJ > 0, then yMSJ must consist of exactly k job
states, while if qMSJ = 0, yMSJ may consist of anywhere from 0 to k job states. Let YMSJ denote
the set of all possible front states yMSJ of the MSJ system. For instance, in our running example,
YMSJ = {[], [1], [2], [1, 1], [1, 2], [2, 1], [2, 2]}. Note that in the first three states, qMSJ must equal 0.

In the MMSR system, let π denote the Markov chain that modulates the service rate. As a
superscript, it signifies “the MMSR system controlled by the Markov chain π.” A state of the
MMSR-π system consists of a pair (qπ, yπ). The queue length qπ is a nonnegative integer. The
state yπ is a state of the service process π, and Yπ is the state space of π.

Because the MMSR-Sat system is stochastically equal to the Ak system, we use the super-
scripts Sat and Ak interchangeably. A state of the Ak system is a pair (qAk, yAk). In contrast to the
MSJ system, yAk always consists of exactly k job states. In particular, YAk ⊂ YMSJ.

When the service process π transitions from state y to y′, there are two possibilities: Either
a completion occurs, which we write as a = 1, or no completion occurs, which we write as
a = 0. We therefore define µπ

y,y′,a to denote the system’s transition rate from front state y to front
state y′, accompanied by a completions, where a ∈ {0, 1}. For instance, in our running example
µSat
[1,1],[1,2],1 = 2/3. Let the total completion rate from state y be denoted by µπ

y,·,1 =
∑

y′ µ
π
y,y′,1.

For instance, in our running example µSat
[1,1],·,1 = 2.

Let µMSJ
y,y′,a,b denote a transition rate in the Multiserver-job system, where y, y′, and a have

the same meaning as in µAk
y,y′,a. Let b = 1q>0 denote whether this transition is associated with

an empty queue (b = 0), or an occupied queue (b = 1). Note that if y ̸∈ YAk, then b = 0
for all nonzero µMSJ

y,y′,a,b, while if y ∈ YAk, then both values of b are possible. Note that ∀y ∈
YAk, µMSJ

y,y′,a,1 = µAk
y,y′,a.

If a job arrives to the MSJ system and finds that the front state y has fewer than k jobs
(y ̸∈ YAk), a fresh job state is sampled and appended to y. Let S be the distribution over fresh
job states, let i be a particular fresh job state, let pi be the probability P {S = i}, and let y · i
be the new front state with a job in state i appended. For instance, in the running example,
p1 = 2/3, p2 = 1/3.

We will study the time-average steady states of each of these systems, which we write
(QMSJ, Y MSJ), (Qπ, Y π), etc. Let Y π

d denote the departure-average steady state of the MMSR
service process π: the steady-state distribution of the embedded DTMC which samples states
after each departure from π.

Let Xπ denote the long-term throughput of the service process π. Let λ∗
π denote the stability

region of the MMSR-π system. Note that Xπ = λ∗
π by prior results relating the saturated system
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to the stability region of the original system [13, 65]. In particular, XSat = λ∗
Sat = λ∗, where

λ∗ denotes the stability region of the MSJ FCFS system. We will typically write λ∗ to avoid
confusion between XSat and a random variable.

A concrete example of this notation is provided in Section 6.5.1.

6.4.8 Relative completions
Key to our MARC technique is the novel idea of relative completions, which we define for a
general MMSR-π system. Let y1 and y2 be two states of the service process π. The difference
in relative completions between two states y1 and y2 is the long-term difference in expected
completions between an instance of the service process starting in state y1 and one starting in y2.
Specifically, let Cπ(y, t) denote the number of completions up to time t of the service process of
π initialized in state y at time t = 0. Then let ∆π(y1, y2) denote the relative completions between
states y1 and y2.

∆π(y1, y2) = lim
t→∞

E[Cπ(y1, t)− Cπ(y2, t)].

We prove that ∆π(y1, y2) always exists and is always finite in Lemma 6.9.1. We also allow y1
and/or y2 to be distributions over states, rather than single states. Specifically, we will often focus
on the case where y2, rather than being a single state, is the steady state distribution Y π. In this
case, note that E[Cπ(Y

π, t)] = Xπt = λ∗
πt. When it is clear from context, we write ∆π(y) to

denote ∆π(y, Y
π). The relative completions formula for this case simplifies:

∆π(y) = ∆π(y, Y
π) = lim

t→∞
E[Cπ(y, t)]− λ∗

πt. (6.1)

6.4.9 Generator
We also make use of the instantaneous generator of each of our queueing systems, which is the
stochastic equivalent of the derivative operator. The instantaneous generator is an operator which
takes a function from system states to real values, and returns a function from system states to
real values. The generator operator is specific to a given Markov chain. Let η be a Markov chain,
and let Gη denote the generator operator for η, which is defined as follows:

For any real-valued function of the state of η, f(q, y),

Gη ◦ f(q, y) := lim
t→0

1

t
E[f(Qη(t), Y η(t))− f(q, y)|Qη(0) = q, Y η(0) = y].

Importantly, the expected value of the generator in steady state is zero:
Lemma 6.4.1. Let f be a real-valued function of the state of a Markov chain η. Assume that the
transition rates of the Markov chain η are uniformly bounded, and E[f(Qη, Y η)] <∞. Then

E(q,y)∼(Qη ,Y η)[G
η ◦ f(q, y)] = 0. (6.2)

Proof deferred to Section 6.9.

We show in 6.9 that (6.2) holds for the MSJ, MMSR, At-least-k, and Saturated systems, for
any f(q, y) with polynomial dependence on q.
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6.4.10 Asymptotic notation
We use the notation Oλ(f(λ)) to represent a function g(λ) such that

∃ a constant M such that |g(λ)| ≤M |f(λ)| ∀λ, 0 < λ < λ∗.

6.4.11 Simplified saturated system
While the saturated system is a finite-state system, it can have a very large number of possible
states. However, many of the states have identical behavior, and can be combined to reduce the
state space. For instance, in our running example, the states [2, 1] and [2, 2] are nearly identical:
in both states just a 2-server job is in service. We therefore simplify the system by combining
the two states into the state [2], and delaying sampling the next job until needed.

We refer to the resulting system as the “simplified saturated system” (SSS), in contrast to the
“main saturated system,” defined in Section 6.4.5, which is the focus of the bulk of this chapter.

The simplified saturated system is a closed system which always contains jobs with total
server need ≥ k, and contains the minimal number of jobs to reach that threshold. Whenever a
job completes, the system admits new jobs until the total server need is ≥ k. Jobs are served in
FCFS order. Note that at most one job in the system is not in service.

In particular, a state of the SSS consists of a multiset of job states for the jobs in service, plus
the server need of the job in the queue, if any. The total server need of these jobs is just enough
to be ≥ k.

For instance, consider a system with k = 30 jobs, and server needs either 3 or 10, and
exponential durations. The main saturated system has state space YSat = {3, 10}30, with over a
billion states. In contrast, the simplified saturated system has 13 states. We will write each state
as a triple, consisting of the server need of the job in the queue, and the number of 3-server and
10-server jobs in service. Then the state space of the SSS is:

YSSS = {[∅, 0, 3], [10, 1, 2], [10, 2, 2], [3, 3, 2], [10, 3, 2], [10, 4, 1], [10, 5, 1],
[3, 6, 1], [10, 6, 1], [10, 7, 0], [10, 8, 0], [10, 9, 0], [∅, 10, 0]}

Despite its much smaller state space, the SSS has essentially identical behavior to the main
saturated system:
Lemma 6.4.2. There exists a coupling under which the main saturated system and simplified
saturated system have identical completions.

Proof. To form the coupling, let us sample in advance the entire arrival sequence: For each
arrival, we pre-sample which initial state it will arrive in.

Next, we initialize both systems based on this arrival sequence: For the main saturated sys-
tem, the first k jobs are initially present, while for the simplified saturated system, a subset of
those jobs are initially present. Note that the set of jobs in service in the main saturated system is
identical to the set of jobs in service in the simplified saturated system, because the total server
need of jobs in service is at most k. Note that the ordering of the jobs in service does not affect
any transitions, so the fact that SSS does not track this information poses no obstacle. We will
ensure that the set of jobs in service in the two systems is identical throughout time.
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Next, we couple the two systems’ completions and job state transitions to be identical. Jobs’
states can only change while those jobs are in service, so this coupling is valid as long as the set
of jobs in service is identical in both systems. Finally, whenever a pair of jobs completes, new
jobs are generated according to the shared global arrival sequence. This ensures that the jobs that
enter service are identical in the two systems.

By construction, the set of jobs in service is always identical in the two systems. Under this
coupling, the completion moments are also identical in the two systems.

6.5 Results
In this chapter, we give the first analysis of mean response time in the MSJ FCFS system. To do
so, we reduce the problem to the analysis of mean response time in an M/M/1 with Markovian
service rate (MMSR) in which the saturated system controls the service process (i.e. the At-least-
k system). We call this reduction the RESET technique. Before applying the RESET technique,
we start by analyzing the general MMSR-π system.

We prove the first explicit characterization of mean response time in the MMSR. To do so,
we use our MARC technique, which is based on the novel concept of relative completions (See
Section 6.4.8).
Theorem 6.5.1 (Mean response time asymptotics of MMSR systems). In the MMSR-π system,
the expected response time in steady state satisfies

E[T π] =
1

λ∗
π

1 + ∆π(Y
π
d , Y

π)

1− λ/λ∗
π

+Oλ(1).

To understand this formula, first note that the dominant term has order Θ( 1
1−λ/λ∗

π
). This is

the equivalent of the Θ( 1
1−ρ

) behavior seen in simpler systems such as the M/G/1/FCFS. Next, to
understand the numerator, examine the ∆π(Y

π
d , Y

π) term. ∆π, the relative completions function,
smooths out the irregularities in completion times, so that the function q −∆π(y) has a constant
negative drift. ∆π is the analog of the remaining size of the job in service in the M/G/1. When
a generic job arrives, it sees a time-average state of the service process, namely Y π. When
it departs, it leaves behind a departure-average state of the service process, namely Y π

d . The
difference in relative completions between these states captures the asymptotic behavior of mean
response time. The overall numerator, 1 + ∆π(Y

π
d , Y

π), is analogous to the E[Se] term in the
M/G/1/FCFS mean response time formula.

Now that we have characterized the mean response time of the MMSR system, we can use
this result to characterize the MSJ FCFS system. With our RESET technique, we show that the
MSJ FCFS system has the same mean response time, up to an Oλ(1) term, as the MMSR system
whose service rate is controlled by the saturated system, or equivalently the At-least-k system.
Theorem 6.5.2 (Mean response time asymptotics of MSJ systems). In the multiserver-job sys-
tem, the expected response time in steady state satisfies

E[TMSJ] =
1

λ∗
1 + ∆Sat(Y

Sat
d , Y Sat)

1− λ/λ∗ +Oλ(1). (6.3)
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Empirically, the Oλ(1) term is very small, as seen in Fig. 6.4a in Section 6.11.
Rather than calculating ∆Sat(Y

Sat
d , Y Sat) in Theorem 6.5.2, we can calculate the equivalent

value in the simplified saturated system (SSS) (See Section 6.4.11). Define ∆SSS, Y
SSS
d , and Y SSS

analogously to the primary saturated system.
Corollary 6.5.1. In the MSJ FCFS model,

E[TMSJ] =
1

λ∗
1 + ∆SSS(Y

SSS
d , Y SSS)

1− λ/λ∗ +Oλ(1).

This holds because ∆Sat(y1, y2) is defined based on the completion times in the primary sat-
urated system, and by Lemma 6.4.2, the SSS can be coupled to have the same completion times
as the primary saturated system.

6.5.1 Example for demonstration
We now demonstrate applying Theorem 6.5.2 and Corollary 6.5.1 to characterize the asymptotic
mean response time of our running example from Section 6.4.2.

We start with the MSJ system. First, we convert to the Ak system, whose front has state
space YAk = {[1, 1], [1, 2], [2, 1], [2, 2]}. By the RESET technique, this only increases mean
response time by Oλ(1). As discussed in Section 6.4.6, the Ak system is identical to a MMSR-
Sat system. As discussed in Section 6.4.11, the Sat system is equivalent to Simplified Saturated
System (SSS), which has state space YSSS = {[1, 1], [1, 2], [2]}.

For the rest of this section, we focus on the SSS, leaving the superscript implicit. Transitions
between these states only happen as a result of completions, leading to the following transition
rates:

µ[1,1],[1,1],1 = 2 · 2
3
=

4

3
, µ[1,1],[1,2],1 = 2 · 1

3
=

2

3
, µ[1,2],[2],1 = 1,

µ[2],[1,1],1 =
1

2

2

3

2

3
=

2

9
, µ[2],[1,2],1 =

1

2

2

3

1

3
=

1

9
, µ[2],[2],1 =

1

2

1

3
=

1

6
.

Now, we can calculate the steady states Y SSS and Y SSS
d of the SSS’s CTMC and DTMC

respectively, and calculate the throughput XSSS = XSat = λ∗. The vectors are in the order
{[1, 1], [1, 2], [2]}:

Y =
[1
5
,
1

5
,
3

5

]
, Y d =

[4
9
,
2

9
,
1

3

]
, XSSS = XSat = λ∗ =

9

10
.

Now, we can solve for ∆(y), defined in (6.1). To do so, we split up the completions E[C(y, t)]
into the time until the first completion, and the time after the first completion. For example,
starting in state y = [1, 1], the first completion takes an expected 1

2
second, during which 1 com-

pletion occurs, compared to the long-term average rate 1
2
λ∗ = 9

20
completions. The system then

transitions to a new state, with corresponding ∆(y). This gives rise to the following equation:

∆([1, 1]) = 1− 9

20
+

2

3
∆([1, 1]) +

1

3
∆([1, 2])
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We use the same process to derive a system of equations that uniquely determines ∆(y),
given in Corollary 6.9.1. We solve for ∆(y) for each state y:

∆([1, 1]) = 1.38, ∆([1, 2]) = −0.27, ∆([2]) = −0.37. (6.4)

All decimals are exact. We can then average over the distribution Y d to find that ∆(Y d) = 0.43.
Recall that ∆(Y d) is just shorthand for ∆(Y d, Y ).

We can therefore apply Theorem 6.5.2 and Corollary 6.5.1 to characterize the asymptotic
mean response time of the original system:

E[TMSJ] =
10

9

1.43

1− λ
9/10

+Oλ(1).

6.6 MARC Proofs

We start by analyzing the M/M/1 with Markovian service rate π (MMSR-π). Our main result in
this section is the proof of Theorem 6.5.1, a characterization of the asymptotic mean response
time of the MMSR-π system.

The main challenge is choosing an appropriate test function f(q, y), to leverage (6.2), the
fact that E[Gπ ◦ f(Qπ, Y π)] = 0, to give an expression for E[Qπ]. To gain information about
E[Qπ] via this approach, it is natural to choose a function f which is quadratic in q, because Gπ

is effectively a derivative. However, if we choose f1(q, y) = 1
2
q2, the expression Gπ ◦ f1(q, y)

will have cross-terms in which both q and y appear, preventing further progress.
Instead, our key idea is to use relative completions ∆π in our test function:

Definition 6.6.1. Let fπ
∆(q, y) =

1
2
(q −∆π(y))

2.
The ∆π(y) term smooths out the fluctuations in the system’s service rate, so that the quantity

q −∆π(y) has a constant drift of −λ∗
π whenever q > 0.

This choice of test function ensures that Gπ ◦ fπ
∆(q, y) separates into a linear term dependent

only on q and a term dependent only on y. The separation allows us to characterize E[Qπ], and
hence E[T π], in Theorem 6.5.1.

Let u = 1{q = 0 ∧ a = 1} denote the unused service caused by a given transition. Only
completion transitions (a = 1) can cause unused service.

We start by decomposing Gπ ◦ fπ
∆(q, y), into a term linearly dependent on q, and terms

dependent only on y, a, and u:
Lemma 6.6.1. For any state (q, y) of the MMSR-π system,

Gπ◦fπ
∆(q, y) = (λ− λ∗

π)q

− λ∆π(y) +
1

2
λ+

∑
y′,a

µπ
y,y′,a

(
1

2
(−a+ u−∆π(y

′))2 − 1

2
∆π(y)

2

)
. (6.5)

Proof. In this proof we omit π in the subscript of ∆π(y) and in the superscript of µπ
y,y′,a for

readability.
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To calculate Gπ ◦ fπ
∆(q, y), we begin by applying Lemma 6.9.5:

Gπ ◦ fπ
∆(q, y) = λ(q −∆(y) +

1

2
) (6.6)

+
∑
y′,a

µy,y′,a

(
1

2

(
(q − a)+ −∆(y′)

)2 − 1

2
(q −∆(y))2

)
(6.7)

Recall that the unused service u = 1{q = 0 ∧ a = 1}, so (q − a)+ = q − a + u. We can
decompose (6.7) into two terms, with and without q:

(6.7) = q
∑
y′,a

µy,y′,a (−a+ u−∆(y′) + ∆(y)) (6.8)

+
∑
y′,a

µy,y′,a

(
1

2
(−a+ u−∆(y′))2 − 1

2
∆(y)2

)
.

The coefficient of q in (6.8) can be simplified considerably using Lemma 6.9.4.∑
y′,a

µy,y′,a (−a+ u−∆(y′) + ∆(y))

=
∑
y′,a

µy,y′,a(−a) +
∑
y′,a

µy,y′,au−
∑
y′,a

µy,y′,a(∆(y′)−∆(y))

= −µy,·,1 −GAk ◦∆(y) +
∑
y′,a

µy,y′,au

= −µy,·,1 − (λ∗
π − µAk

y,·,1) +
∑
y′,a

µy,y′,au

= −λ∗
π +

∑
y′,a

µy,y′,au.

Note that either u = 0 or q = 0, because new jobs are only generated if the queue is empty.
As a result, qu = 0. We can therefore further simplify the q-term in (6.8):

q(
∑
y′,a

µy,y′,au− λ∗
π) = −qλ∗

π (6.9)

Substituting (6.9) into (6.8), (6.8) into (6.7), and performing some rearrangement, we find that

Gπ ◦ fπ
∆(q, y) = (λ− λ∗

π)q − λ∆(y) +
1

2
λ

+
∑
y′,a

µy,y′,a

(
1

2
(−a+ u−∆(y′))2 − 1

2
∆(y)2

)
.

We can now characterize the mean response time of the MMSR-π system. To do so, we
define three functions related to (6.5), the y-dependent portion of Gπ ◦ fπ

∆(q, y):
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Definition 6.6.2. Define c0(y, q), c1(y), and c2(y) as follows:

c0(y, q) = Gπ ◦ fπ
∆(q, y)− (λ− λ∗

π)q

= −λ∆π(y) +
1

2
λ+

∑
y′,a

µπ
y,y′,a

(
1

2
(−a+ u−∆π(y

′))2 − 1

2
∆π(y)

2

)
,

c1(y) = −λ∆π(y) +
1

2
λ+

∑
y′,a

µπ
y,y′,a

(
1

2
(−a−∆π(y

′))2 − 1

2
∆π(y)

2

)
,

c2(y) = c1(y)−Gπ ◦ h(y), where h(y) =
1

2
∆π(y)

2

= −λ∆π(y) +
1

2
λ+

∑
y′,a

µπ
y,y′,a

(
1

2
a2 + a∆π(y

′)

)
.

We will show that the expected values of c0(y, q), c1(y), and c2(y) in steady state are all equal
up to a Oλ(1− λ

λ∗
π
) error, which is crucial to our proof.

Theorem 6.5.1 (Mean response time asymptotics of MMSR systems). In the MMSR-π system,
the expected response time in steady state satisfies

E[T π] =
1

λ∗
π

1 + ∆π(Y
π
d , Y

π)

1− λ/λ∗
π

+Oλ(1). (6.10)

Proof. In this proof we omit π in the subscript of ∆π(y) and in the superscript of µπ
y,y′,a. We

start from Lemma 6.6.1, which states that Gπ ◦ f(q, y) = (λ − λ∗
π)q + c0(y, q), so by (6.2),

0 = (λ− λ∗
π)E[Qπ] + E[c0(Y π, Qπ)], which implies that E[Qπ] = E[c0(Y π, Qπ)]/(λ∗

π − λ). We
therefore focus on c0(q, y): By characterizing E[c0(Y π, Qπ)], we will characterize E[Qπ].

Let us expand c0(y, q) and separate out the terms where u appears:

c0(y, q)− c1(y) =
∑
y′,a

µy,y′,au

(
1

2
u− a−∆(y′)

)
. (6.11)

Note that in the time-average steady state Y π, the fraction of service-process completions that
occur while the queue is empty (i.e. where u = 1) is 1− λ

λ∗
π

, because λ jobs arrive per second, and
λ∗ service-process completions occur per second. As a result, Ey∼Y π

[∑
y′,a µy,y′,au

]
= 1− λ

λ∗
π

.
Note that a ≤ 1 and u ≤ 1, because at most 1 job completes at a time. Note that ∆(y′)

is bounded by a constant over all y′, because y′ ∈ Yπ, which is a finite state space. Thus, the
u/2−a−∆(y′) term in (6.11) is bounded by a constant. As a result, (6.11) contributes Oλ(1− λ

λ∗
π
)

to E[c0(Y π, Qπ)]:

E[c1(Y π)] = E[c0(Y π, Qπ)] +Oλ(1− λ/λ∗
π).

By (6.2), E[Gπ ◦ h(Y π)] = 0, so E[c2(Y π)] = E[c1(Y π)]. Let us now simplify c2(y), using
the fact that a = 0 or 1:

c2(y) = −λ∆(y) +
1

2
λ+

1

2
µy,·,1 +

∑
y′

µy,y′,1∆(y′).
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By Lemma 6.9.7, the last term in c2(y) is closely related to Y π
d . Taking expectations over y ∼ Y π

and applying Lemma 6.9.7,

E[
∑
y′

µY π ,y′,1∆(y′)] = λ∗
π

∑
y′

P {Y π
d = y′}∆(y′) = λ∗

π∆(Y π
d ),

E[c2(Y π)] = E[−λ∆(Y π) +
1

2
(µY π ,·,1 + λ) + λ∗

π∆(Y π
d )].

Now note that E[∆(Y π)] = 0, E[µY π ,·,1] = λ∗
π, and λ = λ∗

π +Oλ(1− λ
λ∗
π
):

E[c1(Y π)] = E[c2(Y π)] = λ∗
π + λ∗

π∆(Y π
d ) +Oλ(1−

λ

λ∗
π

). (6.12)

E[Qπ] =
E[c0(Y π, Qπ)]

λ∗
π − λ∗ =

λ∗
π + λ∗

π∆(Y π
d )

λ∗
π − λ

+Oλ(1) =
∆(Y π

d ) + 1

1− λ/λ∗
π

+Oλ(1).

Now, we apply Little’s Law, which states that E[T π] = 1
λ
E[Qπ].

E[T π] =
1

λ

1 + ∆(Y π
d )

1− λ/λ∗
π

+Oλ

(
1

λ

)
=

1

λ∗
π

1 + ∆(Y Sat
d )

1− λ/λ∗
π

+Oλ

(
1

λ

)
.

For the second equality, note that for any x, 1
λ

x
1−λ/λ∗ = 1

λ∗
x

1−λ/λ∗ + x
λ

, which is absorbed by the
Oλ(

1
λ
) term. Note that in the λ→ λ∗

π limit, Oλ(
1
λ
) = Oλ(1). Consider the λ→ 0 limit: E[T π] is

bounded for small λ. Likewise, 1
λ∗
π

1+∆(Y π
d )

1−λ/λ∗
π

is bounded for small λ. As a result, the two differ by
Oλ(1):

E[TMSJ] =
1

λ∗
π

1 + ∆(Y π
d )

1− λ/λ∗
π

+Oλ(1).

6.7 RESET Proofs
To characterize the asymptotic behavior of mean response time of the MSJ system, we use the
At-least-k (Ak) system, which is stochastically equal to the MMSR-Sat system. The MARC
results from Section 6.6 allow us to characterize the MMSR-Sat system. To prove that the MSJ
FCFS and Ak systems have the same asymptotic mean response time behavior, our key idea is to
show that Y MSJ and Y Ak, the steady states of their fronts, are “almost identical.”

To formalize and prove the relationship between Y MSJ and Y Ak, we design a coupling in Sec-
tion 6.7.1 between the MSJ system and the Ak system. We use a renewal-reward argument based
on busy periods to prove Lemma 6.7.5, which states that under the coupling, P

{
Y MSJ ̸= Y Ak

}
=

Oλ(1− λ
λ∗ ).

Then, in Section 6.7.2, we combine Theorem 6.5.1 and Lemma 6.7.5 to prove Theorem 6.5.2,
our main result, in which we give the first analysis of the asymptotic mean response time in the
MSJ system, by reduction to the saturated system. Theorem 6.5.2 parallels the proof steps that
Theorem 6.5.1 uses to characterize the MMSR system, using Lemma 6.7.5 to prove that the
equivalent proof steps hold for the MSJ system.

We will make use of a test function fMSJ
∆ (q, y) for the multiserver-job system which is similar

to fπ
∆(q, y), which was defined in Definition 6.6.1.
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Definition 6.7.1. For states y ∈ YAk, fMSJ
∆ (q, y) := fAk

∆ (q, y) = fSat
∆ (q, y). Otherwise, fMSJ

∆ (q, y) :=
0.

Importantly, GMSJ ◦ fMSJ
∆ (q, y) is similar to GAk ◦ fAk

∆ (q, y):
Lemma 6.7.1. GMSJ ◦ fMSJ

∆ (q, y) = 1q>0G
Ak ◦ fAk

∆ (q, y) + 1q=0Oλ(1).

Proof deferred to Section 6.9.1.

6.7.1 Coupling between At-least-k and MSJ
To show that the Ak system and the MSJ system have identical asymptotic mean response time,
we define the following coupling of the two systems. We let the arrivals of the two systems
happen at the same time. We couple the transitions of their front states based on their joint state
(qMSJ, yMSJ, qAk, yAk). If yMSJ = yAk, qMSJ > 0, and qAk > 0, the completions happen at the
same time in both systems, the same jobs complete, the same job phase transitions occur, and
the jobs entering the front are the same. We call the two systems “merged” during such a time
period. Note that under this coupling, if the two systems become merged, they will stay merged
until qMSJ = 0 or qAk = 0. If the systems are not merged, the two systems have independent
completions and phase transitions, and independently sampled jobs.

The two systems transition according to synchronized Poisson timers whenever they are
merged, and independent Poisson timers otherwise. Because all transitions are exponentially
distributed, this poses no obstacle to the coupling.

We want to show that under this coupling, the two systems spend almost all of their time
merged, in the limit as λ→ λ∗. Specifically, we will show that the fraction of time in which the
two systems are unmerged is Oλ(1 − λ

λ∗ ). This implies Lemma 6.7.5, which is the key lemma
we need for our main RESET result, Theorem 6.5.2.

To prove Lemma 6.7.5, we prove two key lemmas:

• Lemma 6.7.2: Whenever the two systems are unmerged, the expected time until the sys-
tems become merged is Oλ(1).

• Lemma 6.7.3: Whenever the two systems are merged, the expected time for which they
stay merged is Ωλ(

1
1−λ/λ∗ ).

We then use a renewal-reward approach to prove Lemma 6.7.5.

Lemma 6.7.2 (Quick merge). From any joint MSJ, Ak state, for any ϵ > 0, under the coupling
above, the expected time until yMSJ = yAk, qMSJ ≥ k + 1, and qAk ≥ k + 1 is at most m1(ϵ) for
some m1(ϵ) independent of the arrival rate λ and initial joint states, given that λ ∈ [ϵ, λ∗).

Proof. We call the period of time until yMSJ = yAk, qMSJ ≥ k + 1, and qAk ≥ k + 1 the “bad
period.” We wish to show that the expected length of the bad period is upper bounded by some
constant m1(ϵ) for all λ such that λ ∈ [ϵ, λ∗).

Consider the possibility that the following sequence of events occurs: over a period of 1/2
second, at least 2k + 1 jobs arrive. Then, over another 1/2 second, k completions occur in each
of the MSJ and At-least-k systems, which is sufficient to clear out every job initially present in
the fronts and replace them with freshly sampled jobs. Finally, the sampled jobs in the fronts
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of the two systems are the same, in the same order. After this sequence of events, yMSJ = yAk,
qMSJ ≥ k + 1, and qAk ≥ k + 1, which ends the bad period.

Recall that as long as the front states of the two systems are distinct, their completions are in-
dependent. As a result, the probability of this sequence of events is positive, for any λ > 0 and for
any initial states yMSJ, yAk. We call the probability of this sequence of events pGood(λ, yMSJ, yAk).

Moreover, pGood(λ, yMSJ, yAk) is monotonically increasing in λ, as λ only affects the proba-
bility that at least 2k + 1 jobs arrive in the first half second.

Therefore, the least value of pGood(λ, yMSJ, yAk) is achieved when λ = ϵ. Because there
are only finitely many possible front states yMSJ ∈ YMSJ, yAk ∈ YAk, there must be some lowest
value of pGood(ϵ, yMSJ, yAk). We call this value pGood∗(ϵ). Note that for all λ ≥ ϵ and for all
yMSJ ∈ YMSJ, yAk ∈ YAk,

pGood(λ, yMSJ, yAk) ≥ pGood∗(ϵ) > 0. (6.13)

In the first second, there is at least a pGood∗(ϵ) chance of the desired sequence of events happen-
ing and the bad period completing. In the next second, the same is true. In general, the time until
the bad period completes is upper bounded by a geometric distribution with completion proba-
bility pGood∗(ϵ). Taking m1(ϵ) = 1/pGood∗(ϵ), the mean time until the bad period completes
is upper bounded by m1(ϵ), which is independent of the arrival rate λ and initial joint states, as
desired.

Lemma 6.7.3 (Long merged period). From any joint MSJ, Ak state such that yMSJ = yAk, qMSJ ≥
k + 1, and qAk ≥ k + 1, the expected time until qMSJ = 0, qAk = 0, or yMSJ ̸= yAk, is at least

m2

1−λ/λ∗ for some m2 independent of the arrival rate λ and initial joint states, given that λ < λ∗.

Before we prove Lemma 6.7.3, we prove a lemma about busy periods in the At-least-k sys-
tem:

Lemma 6.7.4. In the At-least-k system, for all λ < λ∗

E[BAk] = Ωλ(
1

1− λ/λ∗ ) (6.14)

Proof. In this proof we omit Ak in the subscript of µAk
y,y′,a for readability.

To prove Lemma 6.7.4, it suffices to show that P
{
QAk = 0

}
= Oλ(1− λ

λ∗ ), and that the non-
busy periods (periods when QAk = 0) have expected duration Ωλ(1). The latter follows from the
fact that all transitions have expected duration Ωλ(1).

To prove the former, let u(qAk, yAk) be the rate at which new jobs are generated due to com-
pletions in a particular state (qAk, yAk) of the At-least-k system. Note that u(qAk, yAk) is positive
only if qAk = 0. The time-average value of u(qAk, yAk) is the difference between the completion
rate of the system and the Poisson arrival rate, because in steady state the total completion rate
and total arrival rate must match. Thus,

E[u(QAk, Y Ak)] = λ∗ − λ. (6.15)

Note that u(q, y) = µy,·,11{q=0}, so

E[µY Ak,·,11{QAk=0}] = λ∗ − λ.
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Note that

P
{
QAk = 0

}
=

E[µY Ak,·,11{QAk=0}]

E[µY Ak,·,1|QAk = 0]
=

λ∗ − λ

E[µY Ak,·,1|QAk = 0]
(6.16)

It therefore suffices to show that there exists a constant c > 0 not dependent on λ such that
E[µY Ak,·,1|QAk = 0] ≥ c.

From an arbitrary state yAk with qAk = 0, the distribution of time until a completion next
occurs does not depend on λ. Consider the probability of a completion happening in the next
second, with no arrivals happening before that completion. This probability is nonzero, and only
dependent only λ via the arrival process. The probability can be lower bounded away from zero
by substituting a Poisson(λ∗) process instead. We can thus lower bound the completion rate over
the next second with an empty queue away from 0. This therefore provides a lower bound on the
completion rate conditional on the queue being empty, E[µY Ak,·,1|QAk = 0], as desired. Calling
that lower bound c, we have:

P
{
QAk = 0

}
=

E[µY Ak,·,11{QAk=0}]

E[µY Ak,·,1|QAk = 0]
≤ λ∗ − λ

c
= Oλ(1−

λ

λ∗ ). (6.17)

This completes the proof.

Now we are ready to prove Lemma 6.7.3.

Lemma 6.7.3 (Long merged period). From any joint MSJ, At-least-k state such that yMSJ = yAk,
qMSJ ≥ k + 1, and qAk ≥ k + 1, the expected time until qMSJ = 0, qAk = 0, or yMSJ ̸= yAk, is
at least m2

1−λ/λ∗ for some m2 independent of the arrival rate λ and initial joint states, given that
λ < λ∗.

Note that the time until qMSJ = 0 or qAk = 0 is a lower bound on the time until yMSJ ̸= yAk.

Proof. In this proof we omit Ak in the subscript of µAk
y,y′,a for readability.

Let’s call the period of interest the “good period.” Note that throughout the good period,
yMSJ = yAk. Let us introduce a new lower-bounding MSJ system, M ′, beginning in a general
state yM

′
= yMSJ = yAk and beginning with qM

′
= k + 1. Let us define a coupling between

M ′ and the original MSJ and At-least-k systems in the same synchronized/independent fashion
defined at the start of Section 6.7.1. As a result, for all time until qM ′

= 0, yM ′
= yMSJ = yAk,

and qM
′ ≤ qMSJ, and qM

′ ≤ qAk. In particular, the duration until qM ′
= 0 is a lower bound on the

length of the good period.
Let us set up a new coupled system, M ′′. The M ′′ system is an At-least-k system initialized in

a specific front state distribution to be specified later and with qM
′′
= 1. Let us define a coupling

between the M ′ and M ′′ systems in the same synchronized/independent fashion defined at the
start of Section 6.7.1. Note however that M ′′ is a new system, distinct from all of the previous
systems.

Let BM ′ be the length of the first busy period of the M ′ system, which is the time in M ′ until
qM

′
= 0; similarly, let BM ′′ be the length of the first busy period of the M ′′ system. We want to
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show that

E[BM ′
] ≥ m3E[BM ′′

] (6.18)

E[BM ′′
] ≥ m4

1− λ/λ∗ . (6.19)

for some positive numbers m3 and m4 independent of the arrival rate λ and the initial front state
of the M ′ system yM

′ .
We will choose the front state distribution of the M ′′ system in order to guarantee that (6.19)

holds. To do so, we will make use of Lemma 6.7.4, which states that the At-least-k system has
long busy periods:

E[BAk] = Ωλ(
1

1− λ/λ∗ ) (6.20)

Let Y Ak−BP denote the long-term-average distribution of the front state in the At-least-k
system at the start of a busy period. We let the initial state distribution of the M ′′ system be
yM

′′ ∼ Y Ak−BP and qM
′′
= 1. As a result, E[BM ′′

] = E[BAk], the expected busy period length
of the At-least-k system. By Lemma 6.7.4, we have E[BM ′′

] ≥ m4

1−λ/λ∗ for some positive number
m4 independent of λ and yM

′ .
Now, we wish to show (6.18): that the length of the first busy period in M ′, initialized in an

arbitrary initial front state yM
′ and qM

′
= k + 1, is also long in expectation.

To prove this, let us introduce a very fast Poisson process with a rate µ∗ given by

µ∗ = λ∗ + max
y∈YAk

∑
y′,a

µy,y′,a.

Note that µ∗ is at least as fast as the transition rate of M ′′ in any state, and µ∗ is independent of
λ. Let us define a coupling between the Poisson(µ∗) process and the M ′′ system. Transitions in
the M ′′ system only occur when the Poisson(µ∗) increment occurs, where with some probability
sampled on each Poisson increment a transition happens, and otherwise no transition occurs. In
state y, a transition happens with probability

λ+
∑

y′,a µy,y′,a

µ∗

Note that this probability is always less than 1, by the definition of µ∗.
To lower bound E[BM ′

], the expected busy period length in the M ′ system, let us consider
E[BM ′

1{A1∧A2}], where A1 and A2 are the following two events:

1. Event A1: the first increment of the Poisson(µ∗) process takes at least 1 second.
2. Event A2: during the first second M ′ has exactly k completions, after each of which the

job entering the front of the M ′ system is sampled to have the same server need as the
corresponding job of the M ′′ system, and then all the jobs transition to the same phase as
in the M ′′ system. At the end of the first second, M ′ and M ′′ have identical front states y
and queue lengths q = 1 after exactly k completions in the M ′ system.
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First, note that

E[BM ′
] ≥ E[BM ′

1{A1∧A2}] = E[BM ′|A1 ∧ A2]P {A1 ∧ A2} . (6.21)

Note that P {A1 ∧ A2} is lower bounded by a positive constant for every λ such that ϵ ≤ λ ≤ λ∗,
so we can focus on E[BM ′|A1 ∧ A2].

Note that if events A1 and A2 occur, the M ′ and M ′′ systems have the same busy period
length, because after 1 second, the two systems have identical states. Specifically, both systems
become empty at the same time, which is the first time after each is initialized when each becomes
empty.

As a result,

E[BM ′|A1 ∧ A2] = E[BM ′′ |A1 ∧ A2] (6.22)

Note that Event A2 is conditionally independent of the behavior of the M ′′ system, given that
Event A1 occurs. As a result,

E[BM ′′ |A1 ∧ A2] = E[BM ′′ |A1] (6.23)

Notice that event A1 is independent of the state of M ′′. Conditioning on the event A1 merely
increases the time of the first transition in M ′′, without altering the future updates of M ′′ at all.
As a result,

E[BM ′′ |A1] ≥ E[BM ′′
] (6.24)

Thus, E[BM ′
] is lower bounded by a constant multiple of E[BM ′′

]. Recall that by construc-
tion, E[BM ′′

] = Ωλ(
1

1−λ/λ∗ ). Combining (6.18) and (6.19) and letting m2 = m3m4, we get the
desired lower bound on the expected length of the good period.

Now we are ready to prove our main result of this section:

Lemma 6.7.5 (Tight coupling). In the MSJ system, for any λ < λ∗, we have the following two
properties:

1. Property 1: P
{
QMSJ = 0

}
= Oλ(1− λ

λ∗ )

2. Property 2: P
{
Y MSJ ̸= Y Ak

}
= Oλ(1− λ

λ∗ ).

where property 2 holds under the coupling in Section 6.7.1.

Proof. Let ϵ = λ∗

2
. Note that if λ < ϵ, the properties are trivial: Oλ(1 − λ

λ∗ ) ≡ Oλ(1), and
probabilities are bounded. Therefore, we will focus on the case where λ ≥ ϵ, where we can
apply Lemmas 6.7.2 and 6.7.3.

Let us define a good period to begin when Y MSJ(t) = Y Ak(t), QMSJ(t) ≥ k+1 and QAk(t) ≥
k+1, and end when QMSJ(t) = 0 or QAk(t) = 0. Let a bad period be the time between two good
periods. Note that throughout a good period, the front states are merged (Y MSJ(t) = Y Ak(t)) and
both queues are nonempty.

To bound the fraction of time that the joint system is in a good period, we introduce the
concept of a “y∗-cycle.” Let y∗ be an arbitrary state in YAk. Let a y∗-cycle be a renewal cycle
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whose renewal points are moments when a bad period begins, and Y MSJ(t) = Y Ak(t) = y∗, and
QMSJ(t) = QAk(t) = 0, for some designated state y∗. We will show that a y∗-cycle has finite
mean time. Given that fact, we can apply renewal reward to derive the equations below:

P
{
QMSJ = 0

}
=

E[QMSJ(t) = 0 time per y∗-cycle]
E[total time per y∗-cycle]

, (6.25)

P
{
Y MSJ ̸= Y Ak} =

E[Y MSJ(t) ̸= Y Ak(t) time per y∗-cycle]
E[total time per y∗-cycle]

. (6.26)

Note that QMSJ(t) = 0 or Y MSJ(t) ̸= Y Ak(t) only during a bad period, so the two probabilities in
(6.25) and (6.26) are both bounded by the fraction of time spent in bad periods. By Lemma 6.7.2
and Lemma 6.7.3, the expected length of a bad period is at most m1 and the expected length of a
good period is at least m2

1−λ/λ∗ , conditioned on any initial joint state. Let Z be a random variable
denoting the number of good periods in a y∗ cycle. Note that good and bad periods alternate.

E[total time per y∗-cycle] ≥ m2

1− λ/λ∗E[Z],

E[bad period time per y∗-cycle] ≤ m1E[Z].

If a y∗-cycle has finite mean time, then we also have E[Z] < ∞ because each good period and
bad period take a positive time. Plugging the above inequalities into (6.25) and (6.26), we derive
Properties 1 and 2:

P
{
QMSJ = 0

}
≤ m1

m2

(
1− λ

λ∗

)
, P

{
Y MSJ ̸= Y Ak} ≤ m1

m2

(
1− λ

λ∗

)
.

It remains to show that a y∗-cycle has finite mean time. We first use a Lyapunov argument to
show that the joint states of the two systems return to a bounded set in a finite mean time. Con-
sider the Lyapunov function fMSJ

∆ (qMSJ, yMSJ)+fAk
∆ (qAk, yAk). Its drift is GMSJ◦fMSJ

∆ (qMSJ, yMSJ)+
GAk ◦ fAk

∆ (qAk, yAk). Applying Lemma 6.6.1 to the Ak system,

GAk ◦ fAk
∆ (qAk, yAk) = (λ− λ∗)qAk + c0(y

Ak, qAk),

where c0(y, q) is defined in Definition 6.6.2. Note that c0(y, q) is a bounded function because
∆(y) is bounded, by Lemma 6.9.1. Let cAk

max be the maximum of c0(y, q). For all yAk, qAk,
GAk ◦ fAk

∆ (qAk, yAk) ≤ (λ − λ∗)qAk + cAk
max. By similar reasoning, applying Lemma 6.7.1, there

exists a cMSJ
max such that

GMSJ ◦ fMSJ
∆ (qMSJ, yMSJ) ≤ (λ− λ∗)qAk + cMSJ

max

Let cmax = max(cAk
max, c

MSJ
max). Consider any qAk ≥ 2cmax+1

λ∗−λ
. Then for any yAk,

GAk ◦ fAk
∆ (qAk, yAk) ≤ −cmax − 1.

Similarly, GMSJ ◦ fMSJ
∆ (qMSJ, yMSJ) ≤ −cmax − 1 whenever qMSJ ≥ 2cmax+1

λ∗−λ
.

Let ccap = max{2cmax+1
λ∗−λ

, k + 1}. We define the bounded set S as

S =
{
(qMSJ, qAk, yMSJ, yAk) : qMSJ ≤ ccap, q

Ak ≤ ccap
}
.
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By the calculation above, the drift of the Lyapunov function fMSJ
∆ (qMSJ, yMSJ) + fAk

∆ (qAk, yAk) is
at most −1 outside S. In particular, outside of S, either qMSJ > cmax or qAk > cmax, yielding a
drift term ≤ −cmax − 1, outweighing the term where q is small. Thus, by the Foster-Lyapunov
theorem [153, Theorem A.4.1], the system returns to S in finite mean time.

We call a period of time inside the bounded set S an S-visit. Each S-visit has a finite mean
time because there is a positive probability of having a lot of arrivals in the next second and
leaving S. Moreover, as proved above using the Lyapunov argument, the time between two
S-visits has finite mean.

Each S-visit has a positive probability of ending the y∗-cycle. To prove this, we construct
a positive probability sample path of beginning a good period with qMSJ = qAk and ending the
good period in (0, 0, y∗, y∗), while remaining in S.

• First, we have a lot of completions in the two systems, completely emptying both. qMSJ =
qAk = |yMSJ| = 0. Next, k jobs arrive. Now qAk = k and qMSJ = 0. During this time
yMSJ ̸= yAk.

• Then k jobs complete in the Ak system, no jobs complete in the MSJ system, and the newly
generated Ak jobs are sampled such that yMSJ = yAk, while qMSJ = qAk = 0.

• Next, k + 1 jobs arrive, and a good period begins.
• Finally, k + 1 jobs complete in both systems, ending with yMSJ = yAk = y∗, and qMSJ =
qAk = 0. Now a y∗-cycle ends, and the next begins.

All of these events have strictly positive probability and are independent of each other, so their
joint occurrence has strictly positive probability as well. Thus, the length of a y∗-cycle is bounded
by a geometric number of S-visits, each of which has finite mean time, completing the proof.

6.7.2 Proof of Theorem 6.5.2
We now are ready to prove our main theorem, Theorem 6.5.2, progressing along similar lines as
Theorem 6.5.1 and making use of Lemmas 6.6.1 and 6.7.5. Throughout this section, whenever
we make use of results from Section 6.6, we set π = Sat. In particular, we make use of c0(y, q)
and c1(y), from Definition 6.6.2.
Theorem 6.5.2. In the multiserver-job system, the expected response time in steady state satisfies

E[TMSJ] =
1

λ∗
1 + ∆(Y Sat

d , Y Sat)

1− λ/λ∗ +Oλ(1)

Proof. We will show that the MSJ model has the same asymptotic mean response time as the
Ak system. We will make use of the test function fMSJ

∆ (q, y), from Definition 6.7.1. Recall from
Lemma 6.7.1 that

GMSJ ◦ fMSJ
∆ (q, y) = GAk ◦ fAk

∆ (q, y)1q>0 + 1q=0Oλ(1)

We will next use (6.2), the fact that the expected value of a generator function in steady state is
zero, which implies that

0 = E[GAk ◦ fAk
∆ (QMSJ, Y MSJ)1{QMSJ > 0}] + P

{
QMSJ = 0

}
Oλ(1) (6.27)

209



By Lemma 6.7.5, P
{
QMSJ = 0

}
= Oλ(1− λ

λ∗ ). Next, we apply Lemma 6.6.1 to the Ak system,
finding that GAk ◦ fAk

∆ (q, y) = (λ − λ∗)q + c0(y, q). Recall that c0(y, q)1q>0 = c1(y)1q>0.
Combining with (6.27) and invoking Lemmas 6.6.1 and 6.7.5 and the fact that c1(y) is bounded,
we have

(λ− λ∗)E[QMSJ] + E[c0(Y MSJ, QMSJ)1{QMSJ > 0}] = Oλ(1− λ/λ∗)

(λ− λ∗)E[QMSJ] + E[c1(Y MSJ)] = Oλ(1− λ/λ∗)

E[QMSJ] =
E[c1(Y MSJ])

λ∗ − λ
+Oλ(1) (6.28)

Next, specializing (6.12) in the proof of Theorem 6.5.1 to the Ak system, we know that
E[c1(Y Ak)] = λ∗+λ∗∆(Y Sat

d )+Oλ(1− λ
λ∗ ). By Lemma 6.7.5, we know that P

{
Y Ak ̸= Y MSJ

}
=

Oλ(1− λ
λ∗ ). Again because c1(y) is bounded,

E[c1(Y MSJ)] = E[c1(Y Ak)] +Oλ

(
1− λ

λ∗

)
= λ∗ + λ∗∆(Y Sat

d ) +Oλ

(
1− λ

λ∗

)
.

Therefore, applying (6.28), we find that E[QMSJ] =
1+∆(Y Sat

d )

1−λ/λ∗ +Oλ(1).
Now, we apply Little’s Law, which states that E[TAk] = 1

λ
E[NAk]. Note that QAk and NAk

differ by the number of jobs in the front, which is Oλ(1).

E[TMSJ] =
1

λ

1 + ∆(Y Sat
d )

1− λ/λ∗ +Oλ

(
1

λ

)
=

1

λ∗
1 + ∆(Y Sat

d )

1− λ/λ∗ +Oλ

(
1

λ

)
For the second equality, note that for any x, 1

λ
x

1−λ/λ∗ = 1
λ∗

x
1−λ/λ∗ + x

λ
. Here x is a constant, so

the extra term is absorbed by the Oλ(1/λ).
By the same bounding argument as in the last step of Theorem 6.5.1,

E[TMSJ] =
1

λ∗
1 + ∆(Y Sat

d )

1− λ/λ∗ +Oλ(1).

6.8 Deferred lemmas
We now present proofs of several subsidiary lemmas which were deferred to improve the clarity
of the presentation of the mean results.

6.9 Finiteness of ∆, and the conditions for drift lemma
Lemma 6.9.1. The relative completion function

∆π(y1, y2) = lim
t→∞

E[Cπ(y1, t)− Cπ(y2, t)]

is well-defined and finite for any pair of states y1 and y2 of the service process π.
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Proof. Throughout this proof, we leave the subscript π implicit.
To characterize E[C(y1, t)−C(y2, t)], we construct a coupling between the two service pro-

cesses π with initial states y1 and y2. We let each system transition independently when their
states are different, and let them transition identically once their states become the same. Let τ
be the time that the states of the two systems become the same. Because the two systems remain
identical after τ , for any t ≥ 0,

C(y1, t)− C(y2, y) = C(y1,min(t, τ))− C(y2,min(t, τ)).

We assume that the system π is irreducible. Because each system is irreducible, the joint Markov
chain of two systems is also irreducible and τ <∞ almost surely. Therefore,

lim
t→∞

E[C(y1, t)− C(y2, t)] = E[C(y1, τ)− C(y2, τ)].

The RHS of the above equality is clearly finite.

Now we show that for any Markov chain η,

E[Gη ◦ f(Qη, Y η)] = 0. (6.2)

The lemma below is implied by [74, Proposition 3]:
Lemma 6.4.1. Let f be a real-valued function of the state of a Markov chain η. Assume that the
transition rates of the Markov chain η are uniformly bounded, and E[f(Qη, Y η)] <∞. Then

E(q,y)∼(Qη ,Y η)[G
η ◦ f(q, y)] = 0. (6.2)

To check that the conditions of Lemma 6.4.1 hold for the At-least-k and MSJ systems, first
notice that their transitions rates are both uniformly bounded. In particular, the transition rates of
the At-least-k system are uniformly bounded by λ + maxy

∑
y′,a µ

Ak
y,y′,a, and the transition rates

of the MSJ system are uniformly bounded by λ+maxy,b
∑

y′,a µ
MSJ
y,y′,a,b. Therefore we only need

to check that each f used in this chapter has finite steady-state expectations in At-least-k and
MSJ systems, i.e.

E[f(QAk, Y Ak)] <∞
E[f(QMSJ, Y MSJ)] <∞.

The following lemma shows that a function f has finite expectations in the At-least-k and
MSJ system as long as it grows at a polynomial rate in q, which is true for all f which we will
apply Lemma 6.4.1 to.

Lemma 6.9.2. Consider the MMSR system controlled by the Markov chain π and the MSJ system.
For any positive integer m,

E[(Qπ)m] <∞
E[(QMSJ)m] <∞.

To prove the lemma, we need [98, Theorem 2.3], restated as below:
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Lemma 6.9.3. Consider a Markov chain η and a Lyapunov function V that satisfies the condi-
tions below: V (q, y) ≥ 0; there exists a constant b, γ > 0 such that whenever V (q, y) ≥ b,

Gη ◦ V (q, y) ≤ −γ, (6.29)

and there exists d > 0 such that

max
next state (q′,y′)

|V (q′, y′)− V (q, y)| ≤ d, (6.30)

then there exists θ > 0 such that
E[eθV (Qη ,Y η)] <∞. (6.31)

Now we prove Lemma 6.9.2.

Proof of Lemma 6.9.2. We first prove the lemma for the MMSR system controlled by the Markov
chain π.

Let ∆max be the maximal absolute value of ∆π(y) for any y in the state spaces of Yπ, which
must be finite due to Lemma 6.9.1 and the fact that there are only finitely many possible y.

We construct the Lyapunov function V (q, y) = (q−∆(y))+. We first check the conditions of
Lemma 6.9.3 for the MMSR system controlled by π. To check (6.29), we let b = 1+2∆max and
γ = λ∗−λ. If V (q, y) ≥ b, we must have q ≥ 1+∆max; for any state (q′, y′) that the system can
jump to after one transition, V (q′, y′) ≥ q′−∆(y′) ≥ q−1−∆max ≥ 0, so V (q′, y′) = q′−∆(y′).
Therefore,

Gπ ◦ V (q, y) = Gπ ◦ (q −∆(y)) = λ− λ∗ = −γ.

It is also easy to see that (6.30) holds with d = 2∆max. Therefore, by Lemma 6.9.3, there exists
θ > 0 such that

E[eθV (Qπ ,Y π)] <∞.

Observe that eθV (q,y) grows with q exponentially fast. Therefore, for any positive integer m,

qm = O(eθV (q,y)),

E[(Qπ)m] <∞.

The analysis of the MSJ system is similar to the analysis of the At-least-k system, which is a
special case of the MMSR system with π = Sat. We consider the Lyapunov function

V (q, y) =

{
if q > 1 (q −∆Sat(y))

+

otherwise 0,

and check the conditions of Lemma 6.9.3. Notice that GMSJ ◦ V (q, y) = GAk ◦ V (q, y) for any
q ≥ 1, so the rest of the argument is verbatim.
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6.9.1 Lemmas about Gπ and GMSJ

Lemma 6.9.4. Consider the MMSR system controlled by the Markov chain π. For any state
y ∈ Yπ,

Gπ ◦∆π(y, Y
π) = λ∗

π − µπ
y,·,1 (6.32)

Proof. Recall that by the definition of the generator, Gπ ◦∆π(y, Y
π) is given by

Gπ ◦∆π(y, Y
π) = lim

t→0

1

t
E[∆π(Y

π(t), Y π)−∆π(y, Y
π)|Y π(0) = y]. (6.33)

To figure out E[∆π(Y
π(t), Y π)−∆π(y, Y

π)|Y π(0) = y], recall the definition that

∆π(y, Y
π) = lim

t′→∞
E[Cπ(y, t

′)− λ∗
πt

′],

where recall that Cπ(y, t
′) is the expected number of completion up to time t′ of the MMSR sys-

tem whose service process is controlled by the Markov chain π initializing in state y. Therefore,
if we replace y by Y π(t) on the LHS of the above definition and take the expectation, we have

E[∆π(Y
π(t), Y π)|Y π(0) = y]

= lim
t′→∞

E[Cπ(Y
π(t), t′)− λ∗

πt
′|Y π(0) = y]

= lim
t′→∞

E[Cπ(y, t+ t′)− Cπ(y, t)− λ∗
πt

′|Y π(0) = y],

where in the second equality we have used the fact that

E[Cπ(y, t+ t′)] = E[Cπ(y, t) + Cπ([Yπ(t) | Yπ(0) = y], t′)] (6.34)
E[Cπ(Yπ(t), t

′) | Yπ(0) = y] = E[Cπ(y, t+ t′)]− E[Cπ(y, t)].

(6.34) simply splits up the completions from time 0 to t+ t′ into the completions from time 0 to
t, and the completions from time t to t+ t′.

Therefore,

E[∆π(Y
π(t), Y π))−∆π(y, Y

π)|Y π(0) = y]

= lim
t′→∞

E[Cπ(y, t+ t′)− Cπ(y, t)− λ∗
πt

′]− lim
t′→∞

E[Cπ(y, t
′)− λ∗

πt
′]

= lim
t′→∞

E[Cπ(y, t+ t′)− Cπ(y, t)− λ∗
πt

′]− lim
t′→∞

E[Cπ(y, t+ t′)− λ∗
πt− λ∗

πt
′]

= E[−Cπ(y, t) + λ∗
πt],

where in the second inequality we replace t′ with t+ t′ in the second term, which will not change
the limit because t′ and t + t′ are both going to infinity. Plugging the above calculations into
(6.33), we get

Gπ ◦∆π(y, Y
π) = lim

t→0

1

t
E[−Cπ(y, t) + λ∗

πt] = −µπ
y,·,1 + λ∗

π,

where in the last inequality we use the fact that limt→0
1
t
E[Cπ(y, t)] = µπ

y,·,1 (the instantaneous
completion rate at state y).
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Lemma 6.9.5. For any f(q, y) which is a real-valued function of the state of the MMSR-π system,

Gπ ◦ f(q, y) = λ (f(q + 1, y)− f(q, y)) +
∑

y′∈Yπ ,
a∈{0,1}

µπ
y,y′,a

(
f((q − a)+, y′)− f(q, y)

)
.

Proof. In this proof we omit π in the subscript of ∆π(y) and in the superscript of µπ
y,y′,a for

readability.
Recall the definition of the generator

Gπ ◦ f(q, y) = lim
t→0

1

t
E[f(Qπ(t), Y π(t))− f(q, y)|Qπ(0) = q, Y π(0) = y],

which can be interpreted as the instantaneous rate of change of the function f(Qπ(t), Y π(t))
when (Qπ(t), Y π(t)) is initialized in (q, y). Note that (Qπ(t), Y π(t)) can change either due to an
arrival event, or a transition event of the Markov chain π. An arrival event happens with rate λ,
and causes Qπ(t) to change from q to q + 1, so arrival events contribute

λ (f(q + 1, y)− f(q, y))

to Gπ ◦ f(q, y). A transition event of the Markov chain π from y to y′ ∈ Yπ accompanied by
a ∈ {0, 1} completions happens with rate µy,y′,a. Such a event causes (Qπ(t), Y π(t)) to change
from (q, y) to ((q − a)+, y′), so it contributes

µy,y′,a

(
f((q − a)+, y′)− f(q, y)

)
to Gπ ◦ f(q, y), for each y′ ∈ YAk and a ∈ {0, 1}. This proves the expression in the lemma
statement.

As a corollary of Lemma 6.9.4 and Lemma 6.9.5, we can derive a forward recurrence for
∆π(y) := ∆π(y, Y

π). Solving the resulting system of equations, together with the fact that
∆π(Y

π) = 0, gives the value of ∆π(y).

Corollary 6.9.1. For any MMSR-π system and any state y ∈ Yπ,

∆π(y) =
µy,·,1 − λ∗

π

µy,·,·
+
∑
y′,a

µy,y′,a

µy,·,·
∆(y′),

where µy,·,· is the total transition rate out of state y.
Moreover, if all transitions in π are associated with completions (if a always equals 1), then

the recurrence simplifies:

∆π(y) = 1− λ∗
π

µy,·,1
+
∑
y′

µy,y′,1

µy,·,1
∆(y′).

Proof. Start with Lemma 6.9.4:

Gπ ◦∆π(y) = λ∗
π − µπ

y,·,1 (6.35)
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Here we write ∆π(y) as a shorthand for ∆π(y, Y
π).

Expand the left-hand side of (6.35) using Lemma 6.9.5:

Gπ ◦∆π(y) =
∑
y′,a

µπ
y,y′,a(∆π(y

′)−∆π(y))

Note that Lemma 6.9.5 simplifies because ∆π(y) does not depend on q.
Now we can perform algebraic manipulation to complete the proof:

λ∗
π − µπ

y,·,1 =
∑
y′,a

µπ
y,y′,a(∆π(y

′)−∆π(y))

= −µπ
y,·,·∆π(y) +

∑
y′,a

µπ
y,y′,a∆π(y

′)

µπ
y,·,·∆π(y) = µπ

y,·,1 − λ∗
π +

∑
y′,a

µπ
y,y′,a∆π(y

′)

∆π(y) =
µπ
y,·,1 − λ∗

π

µπ
y,·,·

+
∑
y′,a

µπ
y,y′,a

µπ
y,·,·

∆π(y
′)

Note that if all transitions are associated with completions, e.g. if a = 1, then µπ
y,·,1 = µπ

y,·,·

Now, we focus on the MSJ system:

Lemma 6.9.6. For any f(q, y) which is a real-valued function of the state of the MSJ system,

GMSJ ◦ f(q, y) = λ (f(q + 1, y)− f(q, y))1{y∈YAk} (6.36)

+ 1q=0,y ̸∈YAkλ
∑
i∈S

pi(f(0, y · i)− f(0, y)) (6.37)

+ 1q>0

∑
y′∈YAk,
a∈{0,1}

µAk
y,y′,a

(
f((q − a)+, y′)− f(q, y)

)
. (6.38)

+ 1q=0

∑
y′∈YMSJ,
a∈{0,1}

µMSJ
y,y′,a,0

(
f((q − a)+, y′)− f(q, y)

)
. (6.39)

Proof. Recall the definition of the generator

GMSJ ◦ f(q, y) = lim
t→0

1

t
E[f(QMSJ(t), Y MSJ(t))− f(q, y)|QMSJ(0) = q, Y MSJ(0) = y],

which can be interpreted as the instantaneous rate of change of the function f(QMSJ(t), Y MSJ(t))
when (QMSJ(t), Y MSJ(t)) is initialized in (q, y). Note that (QMSJ(t), Y MSJ(t)) can change either
due to an arrival event, or a transition event of the front state. An arrival event happens with rate
λ, and its effect depends on whether y ∈ YAk: if y ∈ YAk, there are k jobs in the front, so QMSJ(t)
changes from q to q + 1, Y MSJ(t) remains unchanged; if y /∈ YAk, there are strictly fewer than k
jobs in the front, so QMSJ(t) remains zero after the arrival, and Y MSJ(t) changes from y to y · i
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with probability pi (append a fresh job in state i to the front state with probability pi). Therefore,
arrival events contribute

λ (f(q + 1, y)− f(q, y))1{y∈YAk}

+ 1q=0,y ̸∈YAkλ
∑
i∈S

pi(f(0, y · i)− f(0, y))

to GMSJ ◦ f(q, y), which are the terms in (6.36) and (6.37) in the lemma statement. As for the
transition events of the front, a transition from state y to state y′ accompanied by a completions
causes (QMSJ(t), Y MSJ(t)) to change from (q, y) to ((q − a)+, y′). Such a transition happens
with the rate µMSJ

y,y′,a,1 = µAk
y,y′,a if q > 0 and y′ ∈ YAk, and happens with rate µMSJ

y,y′,a,0 if q = 0.
Therefore, the transition events of the front contribute

1q>0

∑
y′∈YAk,
a∈{0,1}

µAk
y,y′,a

(
f((q − a)+, y′)− f(q, y)

)
+ 1q=0

∑
y′∈YMSJ,
a∈{0,1}

µMSJ
y,y′,a,0

(
f((q − a)+, y′)− f(q, y)

)

to GMSJ ◦ f(q, y), which are the terms in (6.38) and (6.39) in the lemma statement.

Lemma 6.7.1.

GMSJ ◦ fMSJ
∆ (q, y) = 1q>0G

Ak ◦ fAk
∆ (q, y) + 1q=0Oλ(1) (6.40)

Proof. Let us begin by using Lemmas 6.9.5 and 6.9.6 to give expressions for GMSJ ◦ fMSJ
∆ (q, y)

and GAk ◦ fAk
∆ (q, y).

Note that whenever q > 0, GMSJ ◦ fMSJ
∆ (q, y) is identical to GAk ◦ fAk

∆ (q, y), because the two
systems have the same transitions and because fMSJ

∆ (q, y) and fAk
∆ (q, y) are identical.

Note also that whenever q = 0, both GMSJfMSJ
∆ (q, y) and GAk ◦ fAk

∆ (q, y) are Oλ(1), because
∆(y) is bounded by a constant for all y, because YMSJ is finite.

As a result,

GMSJ ◦ fMSJ
∆ (q, y) = 1q>0G

Ak ◦ fAk
∆ (q, y) + 1q=0Oλ(1)

Lemma 6.9.7. In the MMSR-π system, the departure average distribution Y π
d is given by

P {Y π
d = y′} = 1

λ∗
π

E[µπ
Y π ,y′,1] (6.41)

Proof. We will show that

P {Y π
d = y′} = 1

λ∗
π

∑
y

P {Y π = y}µy,y′,1.
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As an intermediate step, let Y π
DTMC be the transition-average steady state of the Markov chain

π. P {Y π
DTMC = y} is the fraction of state-visits that are visits to y, in the embedded DTMC of

π.
Let µy,·,· be the total transition rate out of state y:

µy,·,· =
∑
y′,a

µy,y′,a

Note that the CTMC that controls Y π and the DTMC that controls Y π
DTMC visit the same

states in the same order, but that Y π stays in state y for Exp(µy,·,·) time for each visit. As a
result,

P {Y π = y} = aπP {Y π
DTMC = y} 1

µy,·,·

where aπ is a normalization constant. Specifically, aπ is the long-term completion rate, which
can be calculated as the reciprocal of the average time per visit to a state:

aπ =

(∑
y

P {Y π
DTMC = y} 1

µy,·,·

)−1

From Y π
DTMC , we can calculate the fraction of transitions that move from a generic state y to

another generic state y′ via a completion. Call this fraction py→y′,1.

py→y′,1 = P {Y π
DTMC = y} µy,y′,1

µy,·,·

Summing over all initial states y, we can find the fraction of transitions that are completions
which result in the state y′:

p·→y′,1 =
∑
y

P {Y π
DTMC = y} µy,y′,1

µy,·,·

Let bπ be the overall fraction of transitions that are completions. Conditioning on the transition
into state y′ being a completion, we find that the probability that a generic completion results in
state y′ is

P {Y π
d = y′} = p·→y′,1

bπ

Combining all of the above equations, we find that

P {Y π
d = y′} = 1

bπ

∑
y

P {Y π
DTMC = y} µy,y′,1

µy,·,·

=
1

bπ

∑
y

1

aπ
P {Y π = y}µy,·,·

µy,y′,1

µy,·,·

=
1

aπbπ

∑
y

P {Y π = y}µy,y′,1

Recall that aπ is the long-term transition rate, and that bπ is the fraction of transitions that are
completions. Thus, aπbπ is the long-term completion rate Xπ = λ∗

π.
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6.10 Extensions of RESET: Finite skip models
While our main MSJ result, Theorem 6.5.2, was stated for the MSJ FCFS model, our techniques
do not depend on the details of that model. Our RESET technique can handle a wide variety of
models, which we call “finite skip” models:

Definition 6.10.1. A finite skip queueing model is one in which jobs are served in near-FCFS
order. Only jobs among the n oldest jobs in arrival order are eligible for service, for some
constant n. Service is only dependent on the states of the n oldest jobs in arrival order, plus
an optional environmental state from a finite-state Markov chain. Furthermore, jobs must have
finite state spaces, and arrivals must be Poisson with i.i.d. initial job states.

Definition 6.10.1 generalizes the work-conserving finite-skip (WCFS) class [86]. The MARC
and RESET techniques can characterize the asymptotic mean response time of any finite skip
model, via the procedure in Fig. 6.3. Additional finite skip MSJ models include nontrivial
scheduling policies, including some backfilling policies; changing server need during service;
multidimensional resource constraints; heterogeneous servers; turning off idle servers; and pre-
emption overheads.

6.10.1 Nontrival scheduling policies: Backfilling

A common family of MSJ scheduling policies in practice are backfilling policies [33, 210, 225].
Under a backfilling policy, the scheduler begins by placing jobs into service in arrival order,
as in the FCFS policy. However, once a job is encountered which does not fit in the available
servers, additional jobs are considered for service. Some backfilling policies give rise to finite
skip models, and can thus be handled by the RESET technique.

As an example, consider the “First Fit-k” policy: The scheduler iterates through the first k
jobs in arrival order, checking for each job whether it can be served in the available servers. Each
job that fits is served. This policy only serves jobs among the k oldest in arrival order, so it can
be handled by the RESET technique.

Beyond backfilling policies, more advanced packing policies can also be considered. For
instance, for small k the scheduler could simply search over all subsets of the k oldest jobs and
serve the subset with maximal total server need ≤ k. This policy is also finite skip, and the
RESET technique also applies.

6.10.2 Changing server need during service

The standard MSJ model assumes that jobs require a fixed service need throughout their time in
service. However, in some settings, jobs may require a varying number of servers. For example,
consider a fork-join model with simultaneous start. Suppose that each job is made of some
number of tasks, each with independent duration, and each requiring 1 server. As the tasks
complete, the server need of the job as a whole diminishes, freeing up space for other jobs to
run. This setting still gives rise to a finite-skip model, and poses no difficulty to our RESET
technique.
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Another natural setting in which server needs change over time is the directed acyclic graph
(DAG) setting, in which jobs are broken up into small segments of work, with potentially com-
plex dependencies between segments. The DAG scheduling literature often focuses on schedul-
ing the segments of an individual DAG job. It is natural to consider a scheduling setting where
many DAG jobs arrive over time. Holding the DAG scheduling policy constant, this model ef-
fectively gives rise to a MSJ model where server needs can vary over time, and potentially vary
dynamically in response to the service conditions. As long as the high-level scheduling policy
deciding which DAG jobs to run is finite-skip, the model as a whole is finite-skip, and our RESET
technique can characterize its asymptotic mean response time.

6.10.3 Multidimensional resource constraints
The standard MSJ model considers a single constrained resource. However, computing jobs
are often constrained by a variety of resources, such as CPU, GPU, other accelerators, memory
bandwidth, cache capacity, network bandwidth, etc. Such multidimensional resource constraints
are often considered in the VM scheduling literature. In that literature, only stability results are
known. Our RESET technique thus gives the first characterization of asymptotic mean response
time in that setting.

6.10.4 Heterogeneous servers
In the standard MSJ model, all servers are identical. However, it is also important to consider
settings where different kinds of servers are available, which can provide different amounts of
resources. One can also consider jobs that need to be served at a particular server or set of
servers, such as a job that processes data stored at that server. In a multidimensional resource
setting, some servers may also provide different resources, such as a GPU-heavy or CPU-heavy
server. All of these extensions are compatible with the RESET technique.

6.10.5 Turning off idle servers
To improve energy efficiency, it may be preferable to turn off idle servers. Idle servers consume
nearly as much energy as active servers. However, turned-off servers take some time to restart. It
is important to characterize the impact of this start-up delay on mean response time to understand
the tradeoff inherent in turning off idle servers. The process of turning off and on servers can
be incorporated into a finite-skip model, because there are a finite number of possible states that
the servers can be in. As a result, our RESET technique can provide a characterization of mean
response time.

6.10.6 Preemption overheads
The FCFS policy never preempts any jobs. Prior work has studied settings with unlimited pre-
emption. However, practical settings often allow only a limited subset of jobs to be preempted,
and jobs may incur an overhead when preemption occurs. This overhead corresponds to the time
necessary to snapshot a job in service, and for the new job to be transferred onto the freed servers.
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(a) (1) k = 3, server need sampled uniformly
from {1, 2, 3}, durations Exp(1/3), Exp(2/3), and
Exp(1), respectively. (2) k = 20, server need sam-
pled uniformly from {1, 20}, durations Exp(1) and
Exp(1/2), respectively.
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(b) (1) k = 4, two classes of jobs: Server need 1,
duration Exp(1/4) w.p. 42%. Server need 4, dura-
tion Exp(1) w.p. 58%. (2) k = 10, two classes of
jobs: Server need 1, duration Exp(1/10) w.p. 10%.
Server need 10, duration Exp(1) w.p. 90%.

Figure 6.4: Empirical and predicted mean response time E[T ] for two MSJ settings in each of
figures (a) and (b). Simulated 108 arrivals at arrival rates up to λ/λ∗ = 0.99.

Models with preemption overheads have only recently begun to be analyzed in the M/G/1 setting
[177], with no mean response time analysis known in the one-server-per-job multiserver model,
much less the multiserver-job model. Preemption overheads can be modeled with a finite-number
of additional states, marking the corresponding servers as undergoing preemption. As a result,
our RESET technique can provide a characterization of mean response time.

6.11 Empirical Validation
We have characterized the asymptotic mean response time behavior of the FCFS multiserver-job
system. To illustrate and empirically validate our theoretical results, we simulate the mean re-
sponse time of the MSJ model to compare it to our predictions. Recall (6.3) from Theorem 6.5.2,
in which we proved mean response time can be characterized as a dominant term plus a Oλ(1)
term:

E[TMSJ] =
1

λ∗
1 + ∆(Y Sat

d , Y Sat)

1− λ/λ∗ +Oλ(1) (6.42)

In this section, we simulate mean response time E[TMSJ], and compare it against the dominant
term of (6.42), which we compute explicitly.

6.11.1 Accuracy of formula
In Fig. 6.4a, we show that our predictions are an excellent match for the empirical behavior
of the MSJ system in two different settings. In the first, k = 3 servers and jobs have server
needs of 1, 2, and 3. In the second, k = 20 servers, and jobs have server needs 1 and 20.
We thereby cover a spectrum from few-server-systems to many-server-systems, demonstrating
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extremely high accuracy in both regimes. The Oλ(1) term in (6.42) is negligible in both of these
examples.

6.11.2 Understanding the importance of ∆

Our results show that the relative completions function ∆ is key to understanding the response
time behavior of non-work-conserving systems such as the MSJ FCFS system. This is in contrast
to work-conserving systems, in which response time is determined by the size distribution and
load [86]. To illustrate this contrast, in Fig. 6.4b, we compare mean response time in two settings
with the same size distribution and stability region, but which have very different ∆.

The first setting has k = 4, and 42% of jobs have server need 1, while 58% of jobs have
server need 4. The second setting has k = 10, and 10% of jobs have server need 1, while
90% of jobs have server need 10. The settings’ stability regions are near-identical: λ∗

4 ≈
0.5413, λ∗

10 ≈ 0.5411, and their size distributions, defined as duration times server need over
k, are both Exp(1). However, our predictions for mean response time are very different in the
two settings: ∆(Y Sat

d )4 ≈ 0.3271,∆(Y Sat
d )10 ≈ 2.850. The k = 10 setting considered here,

with its relatively large value of ∆(Y Sat
d ), is an especially difficult test-case. Nonetheless, our

predictions are validated by the simulation results in Fig. 6.4b.
The differing mean response time behavior in these two settings is caused by the difference

in waste correlation. In the k = 10 case, wasteful states persist for long periods of time: If a
1-server job is the only job in service, it takes more time for it to complete than in the k = 4
system. Thus, in the k = 4 case, wasteful states are more short-lasting. This difference in waste
correlation produces the differences in ∆(Y Sat

d ) and in mean response time.
This example highlights a crucial feature of MSJ FCFS: The failure of work conservation

injects idiosyncratic idleness patterns in to the system. To characterize E[T ], we need to char-
acterize these patterns, which the RESET and MARC techniques enable us to do for the first
time.

6.12 Technical Conclusion

We introduce the RESET and MARC techniques. The RESET technique allows us to reduce
the problem of characterizing mean response time in the MSJ FCFS system, up to an additive
constant, to the problem of characterizing the M/M/1 with Markovian service rate (MMSR),
where the service process is controlled by the saturated system. The MARC technique gives the
first explicit characterization of mean response time in the MMSR, up to an additive constant.
Together, our techniques reduce E[TMSJ] to two properties of the saturated system: the departure-
average steady state Y Sat

d , and the relative completions function ∆(y1, y2). Our RESET and
MARC techniques apply to any finite skip model, including many MSJ generalizations.

We also introduce the simplified saturated system, a yet-simper variant of the saturated sys-
tem with identical behavior. We empirically validate our theoretical result, showing that it closely
tracks simulation at all arrival rates λ.

An important direction for future work is to analytically characterize the relative completions

221



∆(y1, y2) for specific MSJ FCFS settings, such as settings where Y Sat
d is known to have a product-

form distribution [83, 88, 187].

6.13 General Conclusion

6.13.1 Summary

We start by summarizing the results proven in this chapter, as well as the key techniques behind
these results.

Results: Analyze MSJ FCFS mean response time We characterize the FCFS scheduling
policy’s mean response time, in the form of a clean mathematical formula (See Theorem 6.5.2).
This formula differs from the system’s exact mean response time by at most an additive constant
which does not depend on the arrival rate. The formula becomes tight as the arrival rate grows
and the queue becomes long (the heavy-traffic limit).

Simulation result: Strong approximation at all loads While our results are tightest in the
heavy-traffic limit, we show via simulation in Fig. 6.4 that our formula closely approximates the
real mean response time across all arrival rates. In particular, we see that the difference between
our formula and the simulated value is almost negligible even at moderate arrival rates.

Results: Other settings and scheduling policies Our results generalize to prove similar
mean response time characterizations for a wide family of MSJ settings and scheduling policies,
as we discuss in Section 6.10. In particular, our analysis can handle any finite skip system,
which we define in Definition 6.10.1. Intuitively, a finite-skip system is any system in which jobs
complete in near-FCFS order, regardless of variations in the number of servers which may be
active. In particular, we can analyze MSJ systems with multidimensional resources, jobs which
vary in resource requirement over time, scheduling policies which deviate from FCFS service to
a limited extent, and many other important models.

Results: M/M/1 with Markovian Service Rate (MMSR) As an important stepping stone
to analyzing the MSJ FCFS system, we characterize the mean response time of the MMSR
system, again up to an additive constant (See Theorem 6.5.1). The MMSR system is a queueing
system in which all jobs are identical, but the rate at which jobs complete varies over time,
according to an arbitrary finite-state Markov chain. The MMSR system is an important system
in its own right, with extensive prior work on the subject [39, 47, 95, 131, 151, 166]. Our result
is the first closed-form mean response time analysis of the general MMSR system.

Key techniques Our key route of analysis is to break the MSJ system into two simpler
queueing systems: the MMSR system and the saturated system. The saturated system is a closed
queueing system where completions trigger new arrivals (See Section 6.4.5). As a result, there
are always exactly k jobs in the system. Note that the saturated system is a finite-state Markov
chain. We consider an MMSR system where the service rate is controlled by the saturated system.
This combination is equivalent to a queueing system which we call the “At-least-k” system (See
Sections 6.4.4 and 6.4.6). The At-least-k system is very similar to the MSJ system, in that there
is an external arrival process and MSJ service. However, in the At-least-k system, whenever
there are exactly k jobs in the system, if a job completes, a fresh job is immediately added to the
system.
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Thus, our analysis has two steps:

1. Reduction to Saturated for Expected Time (RESET): We prove that the MSJ and
At-least-k systems have almost identical mean response times (See Theorem 6.5.2).

2. Markovian Relative Completions (MARC): We analyze the mean response time of the
MMSR system (See Theorem 6.5.1), of which the At-least-k system is a special case. A
key step in this analysis is the relative completions function ∆π (See Section 6.4.8).

We refer to our overall analysis process as “finite-skip analysis”.

6.13.2 Future Directions
Optimizing Finite-skip Scheduling There are a wide variety of finite-skip scheduling policies
in the MSJ system. Any policy which selects among the k oldest jobs in the system is a finite-skip
policy. Some such policies will keep far more servers full than FCFS, achieving better response
times.

A natural open question is:

Which finite-skip policy achieves the lowest mean response time?

Using our analysis in Theorem 6.5.2, this question can be simplified into two steps, at least
in heavy traffic: What policy achieves the highest completion rate in the saturated system, and
what policy achieves the lowest ∆π(Y

π
d ) in the saturated system, given that completion rate? We

could try to answer these questions analytically, or we could try to answer them algorithmically.
Algorithmically, this is a relatively standard problem in Markov Decision Processes (MDPs). In
particular, achieving the highest completion rate is a standard average-cost MDP. Achieving the
lowest ∆π(Y

π
d ) is not a standard MDP problem, so some further research may be needed. We

discuss this problem further in Section 8.3.4.

6.13.3 Potential Impact
We now explore potential directions in which our predictions of mean response times of finite-
skip scheduling policies could be applied to real-world environments.

Using Finite-Skip Analysis to Predict Response Times in Modern Computing Systems

Our analysis of MSJ FCFS in particular, and of all finite-skip scheduling policies more generally,
can provide insight into the response times of a wide variety of important computing systems.
These predictions of response time can allow better-informed decision making in these systems.
For instance, in the dispatching setting, if a dispatcher is sending jobs to one of several computing
clusters, the dispatcher could predict the response time at a given cluster when deciding where
to send the job. In the capacity provisioning setting, our analysis could be used when choosing
how many servers to employ to handle a given workload.

However, the road from theoretical results to adoption requires overcoming several hurdles.
These include:
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Multidimensional resource requirements: Hard and soft resources In real systems, jobs of-
ten require a variety of resources, such as CPU cores, GPUs, memory, network bandwidth,
disk IO, and more. As discussed in Section 6.10, our finite-skip analysis can accommo-
date multidimensional resources. An important distinction in modeling these resources is
between hard and soft resource requirements. A hard requirement is one where the job
cannot be served at all without all of the specified resources. A soft requirement is one
where the job can be served with a fraction of its required resources, but it will suffer
a performance penalty. Our finite-skip analysis can accommodate either hard or soft re-
quirements, as well as a mixture of the two. Establishing accurate models of the resource
requirements in a given system is vital to getting accurate performance predictions using
our finite-skip analysis.

Computationally intensive analysis Our mean response time analysis in Theorem 6.5.2 re-
duces the problem of understanding MSJ FCFS mean response time to the problem of
understanding the behavior of the corresponding saturated system (See Section 6.4.5). Be-
cause the saturated system is a finite-state Markov chain, understanding its behavior is
possible in principle using computational methods. Unfortunately, the number of possible
states of the saturated system grows exponentially with the number of servers. To over-
come this issue, we devised the simplified saturated system (See Section 6.4.11), which
has a dramatically smaller number of states. In addition, for some settings, theoretical
analysis of the saturated system may allow us to bypass computational methods entirely
[83, 88, 187].

Prioritization In real computing systems, it is typically the case that some jobs have higher
priority than others. One might still use a policy like MSJ FCFS within a class of jobs
with equal priority. Our finite-skip analysis does not immediately apply to systems with
prioritization. However, in single-server systems, the “transformer glasses” technique is
used to relate the mean response time of a system with prioritization to that of a FCFS
system with a different workload [104, 201]. The same technique could likely be applied
in the MSJ setting to relate the mean response time of a MSJ scheduling policy with pri-
oritization to that of a MSJ FCFS system with a different workload, and then apply our
finite-skip analysis to characterize that system’s mean response time.

Predicting Mean Response Time when Scheduling People

Consider a real-world scenario where you running a contracting company, and you receive
projects to work on. Each project requires some number of people to complete. Moreover, peo-
ple are not all the same: A project might require one technical expert and four general workers,
for instance. Different people might have different skills, such as expertise on different topics.
When projects come in, they are handled in FCFS order. Given that different projects require
different skill-sets and different numbers of employees, we are interested in figuring out the av-
erage time to complete projects. The results in this chapter allow us to predict and understand
the average time to completion for projects in this scenario.
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Part IV

Response Time Tails
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Chapter 7

Better Response Time Tail than FCFS:
Nudge

This chapter is based on the paper “Nudge: Stochastically Improving upon FCFS”, published in
SIGMETRICS in 2021, written with my coauthors Kunhe Yang, Ziv Scully, and Mor Harchol-
Balter [85].

7.1 General Introduction

Tail performance matters People who design and operate computing systems overwhelmingly
use tail performance metrics to quantify the performance of their systems. Common tail metrics
include T 99, the 99th percentile of job response time, or P {T > 1s}, the fraction of jobs whose
response time exceeds one second. Here “response time” refers to the distribution of durations
from when a job arrives to the system to when it completes. Service Level Objectives, the actual
contracts which define whether or not a system is functioning adequately, are typically defined
using these tail metrics.

Scheduling for tail performance The choice of scheduling policy has a dramatic effect on
the response time distribution, and the system’s tail performance in particular. To capture the
effect of scheduling on the response time distribution, we use a single-server queueing model.
While a multiserver queueing model would be more realistic, understanding tail scheduling in
the single-server model already presents several major open problems, so we focus on the single-
server model throughout this chapter.

Advantages of FCFS A natural choice of scheduling policy for optimizing the tail of re-
sponse time is the First-Come First-Served (FCFS) policy. As an indication of its effectiveness,
one can show that on a finite sequence of jobs, FCFS minimizes the maximum response time of
those jobs. To understand why, consider deciding how to serve just a pair of jobs. Whichever
order the two jobs are served, the second of the two jobs will complete at the same point in time.
To minimize the maximum of the two jobs’ response times, the second job to complete must be
the job that arrived second. Among the pair, jobs must be served in arrival order. By applying
this argument inductively, one can show that all jobs must be served in arrival order, giving rise
to the FCFS scheduling policy.
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Figure 7.1: Comparison via simulation of tail probability under a variety of scheduling policies.
The model is an M/G/1: Single server, Poisson arrival process, i.i.d. job sizes. The job size
distribution is a hyperexponential distribution with two branches: 2/3 of jobs are distributed as
an exponential with mean 3/4, and 1/3 as an exponential with mean 3/2. Server is occupied
ρ = 0.8 fraction of time, 2 billion arrivals simulated.
Five scheduling policies are shown: First-Come First-Served (FCFS) serves jobs in arrival order.
Preemptive Last-Come First-Served (PLCFS) preemptively serves jobs in reverse arrival order.
Preemption refers to pausing a job in service, to be served again later. Shortest Processing Time
(SPT) non-preemptively serves the job of smallest size. Shortest Remaining Processing Time
(SRPT) preemptively serves the job of smallest remaining size. Nudge is our new policy.
Note that Nudge’s tail probability lies strictly below FCFS’s tail probability for all thresholds t.

In a stochastic setting, instead of the maximum response time, we study the asymptotic tail
of response time. This is the behavior of the tail probability P {T > t}, the probability that
response time exceeds a threshold t, as the threshold t goes to infinity.

FCFS is known to achieve an asymptotic tail of response time which is at least close to
optimal [27]. Moreover, FCFS is conjectured to achieve the best possible asymptotic tail of
response time [232]. This optimality is conjectured even when comparing against scheduling
policies which make use of size information: i.e. have prior knowledge of the duration of each
job.

Our policy: Nudge We devise a new scheduling policy, Nudge, which we prove achieves
better asymptotic tail of response time than FCFS. Nudge is the first policy to improve upon
FCFS’s asymptotic tail, overturning prior conjecture [232]. Moreover, we prove that Nudge
achieves a much stronger property: For every threshold t, Nudge achieves a smaller tail proba-
bility P {T > t} than FCFS.

Nudge intuition The intuition behind Nudge is that we should be able to make use of size
information to improve the tail performance of FCFS. However, standard size-based scheduling
policies such as Shortest Remaining Processing Time (SRPT) give far too much priority to small
jobs. While SRPT achieves optimal mean response time, its tail performance can be quite poor,
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as we show in Fig. 7.1. This poor tail performance is caused by large jobs suffering very long
response times. To improve upon FCFS’s tail performance, we need to be very gentle in our use
of size information, so that large jobs do not suffer too much. Nudge is designed to use size
information in this gentle fashion.

Nudge definition Nudge classifies all jobs into three categories, based on the jobs’ sizes:
small, large, and other. Jobs are initially placed into the queue in arrival order. If a small job
arrives to the system and finds a large job at the back of the queue, the small job moves ahead
of the large job. However, to minimize the effect of this reordering on the tail of response time,
Nudge only allows each small job to move past at most one large job, and only allows each large
job to be moved past by at most one small job. Nudge then serves the job at the front of the
queue.

Effect of scheduling on tail To visualize the improvement of Nudge over FCFS, in Fig. 7.1,
we depict the tail probabilities of several common scheduling policies, as well as our new policy
Nudge. For small thresholds t, PLCFS, SPT, and SRPT have low tail probabilities, but as the
threshold t grows large, all three have much worse tail probability. In contrast, FCFS and Nudge
achieve very good tail probabilities for large thresholds t.

Nudge improves upon FCFS’s tail In Fig. 7.1, notice that our new policy, Nudge, achieves
smaller tail probabilities than FCFS for every tail threshold t. Our main result in this chapter
is to prove that Nudge always achieves smaller tail probabilities than FCFS, for all job size
distributions in a broad class known as “light-tailed” distributions.

Because Nudge improves upon FCFS for all tail probability thresholds t, Nudge also im-
proves upon FCFS with regards to all common tail performance metrics, including all percentiles
of response time such as T 99, and all moments of response time such as E[T 2].

7.2 Technical Introduction

7.2.1 The Case for FCFS
While advanced scheduling algorithms are a popular topic in theory papers, it is unequivocal
that the most popular scheduling policy used in practice is still First-Come First-Served (FCFS).
There are many reasons for the popularity of FCFS. From a practical perspective, FCFS is easy
to implement. Additionally, FCFS has a feeling of being fair.

However, there are also theoretical arguments for why one should use FCFS. For one thing,
FCFS minimizes the maximum response time across jobs for any finite arrival sequence of jobs.
By response time we mean the time from when a job arrives until it completes service.

For another thing, in an M/G/1 with a light-tailed job size distribution, FCFS is known to
have a weakly optimal asymptotic tail of response time [27, 213]. Specifically, using T to denote
response time, the asymptotic tail under FCFS is of the form:

P
{
T FCFS > t

}
∼ CFCFSe

−θ∗t, (7.1)

where “∼” indicates that the ratio of the two quantities converges to 1 in the t→∞ limit.
The exponent θ∗ in (7.1) is known to be optimal, while the optimality of CFCFS is an open

problem [27]. The asymptotic tail growth under FCFS has been compared with more sophis-
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ticated policies [27]. It has been shown that, for light-tailed job size distributions, the tail of
response time under Processor-Sharing (PS), Preemptive Last-Come-First-Served (PLCFS), and
Shortest-Remaining-Processing-Time (SRPT) each take the asymptotic form of

P {T > t} ∼ C ′e−θ′t,

where θ′ is the worst possible exponential decay rate [164] over all work-conserving scheduling
policies. Roughly, FCFS’s tail exponent θ∗ arises from the tail of the workload distribution, while
the other policies’ tail exponent θ′ arises from the tail of the busy period distribution, which is
much larger under light-tailed job size distributions.

7.2.2 The Case For Light-Tailed Job Size Distributions
In this chapter, we choose to focus on the case of light-tailed job size distributions. Light-
tailed job size distributions show up naturally in workloads where all the transactions are of the
same type (say shopping); while there is some variability in the time it takes to purchase an
item, even high-variability distributions that arise in such settings are often light-tailed. Also,
many natural distributions, like the Normal distribution, Exponential distribution, and all Phase-
type distributions, are light-tailed. Finally, while heavy-tailed job size distributions are certainly
prevalent in empirical workloads (see for example [42, 101, 218]), in practice, these heavy-tailed
workloads are often truncated, which immediately makes them light-tailed. Such truncation can
happen because there is a limit imposed on how long jobs are allowed to run. Alternatively,
truncation can occur when a heavy-tailed job size distribution is divided into a few size classes
as in [103, 108] where the smaller size classes end up being truncated distributions.

7.2.3 The Case for Non-Asymptotic Tails
Within the world of light-tailed job size distributions, FCFS is viewed as the best policy. How-
ever, while FCFS has a weakly optimal asymptotic tail, it is not best at minimizing P {T > t}
for all t. In practice, one cares less about the asymptotic case than about particular t [105].
For example, one might want to minimize the fraction of response times that exceed t = 0.5
seconds, because such response times are noticeable by users. One might also want to meet sev-
eral additional Service Level Objectives (SLOs) where one is charged for exceeding particular
response time values, such as t = 1 minute, or t = 1 hour. SLOs are very common in the com-
puting literature [35, 105, 158], in service industries [45, 209, 219], and in healthcare [22, 116].
Unfortunately, different applications have different SLOs. This leads us to ask:

When considering P {T > t}, is it possible to strictly improve upon FCFS for all
values of t?

We are motivated by the fact that, for lower values of t, Shortest-Remaining-Processing-Time
(SRPT) is better than FCFS, although FCFS clearly beats SRPT for higher values of t, as FCFS
is weakly asymptotically optimal while SRPT is asymptotically pessimal [164, 172]. SRPT
also minimizes mean response time [194], which is closely related to lower values of t. This
motivates us to consider whether prioritizing small jobs might have some benefit, even in the
world of light-tailed job size distributions.

230



x1 x2 x3x0

large
mediumsmall extra−large

swap

Figure 7.2: The Nudge algorithm.
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Figure 7.3: Empirical tail improvement of Nudge over FCFS in an M/G/1. The tail improvement
ratio (TIR) is defined as 1 − P

{
TNudge > t

}
/P
{
T FCFS > t

}
. Specific job size distributions,

each with mean 1: Uniform(0,2); Exponential with mean 1; Hyperexponential with branches
drawn from Exp(2) and Exp(1/3), where the first branch has probability 0.8 and where C2 =
3; BoundedLomax(λ = 2, max= 4, α = 2). Distributions in legend ordered by asymptotic
improvement. Simulations run with 10 billion arrivals. Load ρ = 0.8. Nudge parameters:
x1 = 1, x2 = 1, x3 = ∞. Note that x1 = x2, so there are no medium-sized jobs. Empirically,
Nudge often achieves its best performance with x1 = x2, though our proofs involve setting
x1 < x2. See Section 7.10.

We ask more specifically:

Can partial prioritization of small jobs lead to a strict improvement over FCFS?
Specifically, is there a scheduling policy which strictly improves upon FCFS with
respect to P {T > t}, for every possible t including large t?

7.2.4 Our Answer: Nudge

This chapter answers the above question in the affirmative. We will define a policy, which we
call Nudge, whose response time tail is provably better than that of FCFS for every value of t,
assuming a light-tailed job size distribution1 (see Theorem 7.5.2). We say that Nudge’s response
time stochastically improves upon that of FCFS, in the sense of stochastic dominance. Moreover,

1Technically, a Class I job size distribution. See Definition 7.4.3.
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we prove that the asymptotic tail of response time of Nudge is of the form

P{TNudge > t} ∼ CNudgee
−θ∗t,

with optimal decay rate θ∗ and a superior leading constant CNudge < CFCFS (see Corollary 7.5.1).
Thus, we demonstrate that FCFS is not strongly optimal, answering an open problem posed by
Boxma and Zwart [27]. In particular, this is contrary to a conjecture of Wierman and Zwart [232]
(see Section 7.3.1).

The intuition behind the Nudge algorithm is that we’d like to basically stick to FCFS, which
we know is great for handling the extreme tail (high t), while at the same time incorporating a
little bit of prioritization of small jobs, which we know can be helpful for the mean and lower t.
We need to be careful, however, not to make too much use of size, because Nudge still needs to
beat FCFS for high t; hence we want just a little “nudge” towards prioritizing small jobs.

We now describe the Nudge algorithm. Imagine that the job size distribution is divided into
size regions, as shown in Fig. 7.2, consisting of small, medium, large, and extra large jobs. Most
of the time, Nudge defaults to FCFS. However, when a “small” job arrives and finds a “large”
job immediately ahead of it in the queue, we swap the positions of the small and large job in the
queue. The one caveat is that a job which has already swapped is ineligible for further swaps.
The size cutoffs defining small and large jobs will be defined later in this chapter.

The degree of the tail improvement of Nudge over FCFS is non-trivial. In Fig. 7.3, we see
that for many common light-tailed job size distributions, Nudge results in a multiplicative im-
provement of 4-7% throughout the tail. In Section 7.10.2, we show that with low load and a
high-variability job size distribution, Nudge’s improvement can be as much as 10-15% through-
out the tail. The magnitude of these improvements highlights the importance of scheduling, even
in the light-tailed setting.

We additionally present an exact analysis of the performance of Nudge. Nudge does not
fit into any existing framework for M/G/1 transform analysis, including the recently developed
SOAP framework [201] (see Section 7.3.3). Nonetheless, we derive a tagged-job analysis of
Nudge in Theorem 7.5.4, deriving the Laplace-Stieltjes transform of response time of Nudge.

7.2.5 Contributions and Roadmap
This chapter makes the following contributions.

• In Section 7.4.5, we introduce the Nudge policy.
• In Sections 7.5 to 7.7 we prove that with appropriately chosen parameters, Nudge stochas-

tically improves upon FCFS for light-tailed2 job size distributions; we also give a simple
expression for such parameters. Moreover, in Section 7.9, we prove that Nudge achieves a
multiplicative asymptotic improvement over FCFS.

• In Section 7.8, we derive the Laplace-Stieltjes transform of response time under Nudge.
• In Section 7.10, we empirically demonstrate the magnitude of Nudge’s stochastic improve-

ment over FCFS. We also discuss how to tune Nudge’s parameters for best performance.
• In Section 7.11, we discuss practical considerations for using Nudge.
• In Section 7.12, we discuss several notable variants of Nudge.

2Technically, any Class I job size distribution. See Definition 7.4.3.
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7.3 Prior Work
Most prior work on scheduling to optimize the tail of response time focuses on the asymptotic
case, characterizing P {T > t} in the t→∞ limit. We review these results in Section 7.3.1.

Our main result, Theorem 7.5.2, is a non-asymptotic statement, characterizing the behavior
of P {T > t} for all t, not just the t → ∞ limit. There is much less prior work on the tail
of response time outside of the asymptotic regime. We review the few results in this area in
Section 7.3.2.

In addition to characterizing Nudge’s tail of response time, we also give an exact transform
analysis of Nudge’s response time. Our analysis requires a novel approach that significantly
differs from traditional analyses, as we discuss in Section 7.3.3.

This chapter’s focus is the M/G/1 queue. All of the results cited in this section apply to the
M/G/1, with some also applying to more general models, such as the GI/GI/1.

7.3.1 Asymptotic Tails: Extensive Theory, but Open Problems Remain
When optimizing the asymptotic tail, the goal is to find a policy π∗ such that for all scheduling
policies π,

lim sup
t→∞

P
{
T π∗

> t
}

P {T π > t}
≤ c

for some constant c ∈ [1,∞). Such a policy π∗ is called weakly optimal; if c = 1, then π∗ is
called strongly optimal [27]. While weak optimality has been well studied, proving or disproving
strong optimality is much harder.

One major theme of the prior work is that optimizing the asymptotic tail looks very different
depending on the job size distribution.

• For light-tailed job sizes, FCFS is weakly optimal [27]. Specifically, the tail of response
time has a form given in (7.1). Moreover, many popular preemptive policies such as PS,
SRPT, and Foreground-Background (FB)3 are “weakly pessimal”: they have the maximum
possible asymptotic tail, up to a constant factor, of any work-conserving scheduling policy
[164, 172].

• For heavy-tailed job sizes, the reverse is true: PS, SRPT, FB, and similar policies are all
weakly optimal [27, 172, 203], while FCFS is weakly pessimal.

This state of affairs prompts a question: is any policy weakly optimal in both the light-tailed and
heavy-tailed cases? Nair et al. [164] show that a variant of PS achieves this, but their variant
requires knowledge of the system’s load. Wierman and Zwart [232] show that any policy that
is weakly optimal in both the light- and heavy-tailed cases requires knowing some information
about the system parameters, such as the load.

The above results mostly characterize weakly optimal scheduling policies, but the problem
of strongly optimizing the tail remains open. Boxma and Zwart [27] pose the strong optimality
of FCFS as an open problem. Wierman and Zwart [232] go further and conjecture that FCFS is
in fact strongly optimal for light-tailed job size distributions. Despite a large of body of work

3FB at all times serves the jobs that have received the least service so far.
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analyzing the tail asymptotics of FCFS [2–4, 191], the problem has remained open. We solve the
problem by showing that FCFS is not strongly optimal. Specifically, our Corollary 7.5.1 implies

lim
t→∞

P
{
TNudge > t

}
P {T FCFS > t}

=
CNudge

CFCFS
< 1.

7.3.2 Non-asymptotic Tails: Few Optimality Results
Characterizing P {T > t} outside the asymptotic regime is a much harder problem than charac-
terizing the asymptotic tail. As such, the strongest results in this area are for relatively sim-
ple scheduling policies. For FCFS under light-tailed job size distributions, it is known that
P {T > t} < e−θ∗t for the same constant θ∗ as appears in FCFS’s asymptotic tail formula
[126, 127]. As a result, this bound is tight up to a constant factor [127], subject to subtleties
discussed in Section 7.4.3. Beyond FCFS, one of the few known results gives an improved
characterization of response time under preemptive-priority scheduling policies [2, Section 2].

Very little is known about more complicated scheduling policies. While the Laplace-Steiltjes
transform of T is known for a wide variety of scheduling policies [201, 211], these transforms
do not readily yield useful bounds on P {T > t} for general job size distributions.

Given that characterizing P {T > t} is difficult, it comes as no surprise that optimizing
P {T > t} is harder still. As such, rather than trying to crown a single optimal policy, we fo-
cus on a relative measure. Specifically, as we define in Definition 7.4.1, we say that policy π1

stochastically improves upon another policy π2 if P {T π1 > t} ≤ P {T π2 > t} for all t.
There are two stochastic improvement results in the literature, but both are much simpler

than our Nudge result. Both results start with a well-known policy that does not use job sizes and
show that a variation that does use job sizes stochastically improves response time.

• Nuyens et al. [172] show that SRPT and similar policies stochastically improve upon FB.
• Friedman and Henderson [66] and Friedman and Hurley [67] show that one can stochas-

tically improve upon PS by using job sizes. Their policy, Fair Sojourn Protocol (FSP),
guarantees in a sample-path sense that no job departs later than it would if the server were
using PS.

The results above fit a common theme. Both FB and PS often share the server between
multiple jobs. Sharing the server is fundamentally suboptimal. For example, when sharing the
server between jobs 1 and 2, if we knew that we would finish job 1 first, then it would be better
to devote the entire server to job 1 at first. Doing so improves the response time of job 1 without
harming the response time of job 2. Roughly speaking, when FB and PS would share the server
between jobs, SRPT and FSP serve the jobs one at a time, using job size information to choose
the ordering.

FCFS is more difficult to stochastically improve upon than FB and PS. For one thing, FCFS
never shares the server, removing this easy opportunity for stochastic improvement. Moreover,
there is a sense in which FCFS is unimprovable: on any specific finite arrival sequence, FCFS
minimizes the sorted vector of response times, where we order vectors lexicographically. For
example, FCFS minimizes the maximum response time. As a result, the sample path arguments
that work for improving FB and PS do not apply to improving FCFS.
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In spite of these obstacles, we show in Theorem 7.5.2 that Nudge stochastically improves
upon FCFS. Rather than reasoning in terms of sample paths, we take a fundamentally stochastic
approach from the beginning. See our proofs in Section 7.6.

7.3.3 Transform of Response Time: Nudge Needs a Novel Approach
In Theorem 7.5.4, we give a closed-form expression for the Laplace-Stieltjes transform of Nudge’s
response time. There has been much prior work on analyzing the transform of response time of
the M/G/1 under various scheduling policies. Some analysis techniques cover a wide variety of
scenarios [68, 201]. However, as we explain below, none of these prior techniques can analyze
Nudge.

SOAP Policies. Policies in the SOAP class, introduced by Scully et al. [201], schedule
jobs based on an index calculated from each job’s size and attained service4, and their response
time can be analyzed via the SOAP framework [201]. These include SRPT [196], FB [195],
some multi-level processor sharing policies [130], and certain cases of the Gittins policy [173].
Unfortunately, Nudge is not a SOAP policy, so we cannot leverage this analysis method. This
is because whether Nudge will swap a small job s with a large job ℓ depends in part on whether
any other jobs arrive between ℓ and s. In contrast, a SOAP policy would make such a decision
based on properties of ℓ and s alone.

Variations on FCFS. Nudge serves jobs in FCFS order by default and only ever swaps ad-
jacent arrivals. One might therefore hope that Nudge could be analyzed as a variation on FCFS.
There are many papers analyzing a variety of M/G/1 variants under FCFS scheduling. These in-
clude systems with generalized vacations [68] and exceptional first service [228]. Unfortunately,
to the best of our knowledge, no prior analysis of a variation of FCFS applies to Nudge.

Other Analysis Techniques. There are a number of scheduling policies whose transform
analyses do not fit into either of the previous categories, such as random order of service [129]
and systems with accumulating priority [211]. However, these policies do not resemble Nudge,
and the techniques used in their analyses do not readily apply to Nudge.

7.4 Model

7.4.1 Notation
We consider the M/G/1 queue in which job sizes are known. Let λ be the arrival rate, S be the
job size distribution, and smin be the minimum possible job size. Specifically, let smin be the
infimum of the support of S. We denote the load by ρ = λE [S] and assume 0 < ρ < 1.

The queueing time, TQ, is the time from when a job arrives until it first receives service. The
response time, T , is the time from when a job arrives until it completes. We write TAlg

Q and TAlg

for the queueing time and response time under scheduling algorithm Alg, respectively.
For any continuous random variable V , we will use fV (·) to denote the probability density

function (p.d.f.) of V . We write the Ṽ (s) for the Laplace-Stieltjes transform of V .

4The index can also depend on certain other characteristics of the job, e.g. its class if there are multiple classes
of jobs. Size and attained service are the attributes relevant to Nudge.
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7.4.2 Stochastic Improvement

In this chapter, our goal is to prove that the Nudge policy stochastically improves upon the FCFS
policy. We now define stochastic improvement, along with the related notion of tail improvement
ratio.

Definition 7.4.1 (Stochastic Improvement). For two scheduling algorithms Alg1 and Alg2, we say
that Alg1 (strictly) stochastically improves upon Alg2 if, for any response time cutoff t > smin,
the probability that response time of Alg1 exceeds t is smaller than the probability that Alg2’s
response time exceeds t, i.e.,

∀t > smin, P
{
TAlg1 > t

}
< P

{
TAlg2 > t

}
.

Definition 7.4.2 (Tail improvement ratio). For any response time cutoff t, the tail improvement
ratio of Alg1 versus Alg2 at t, denoted TIR(t), is defined as

TIR(t) ≜ 1−
P
{
TAlg1 > t

}
P {TAlg2 > t}

.

The asymptotic tail improvement ratio, denoted AsymTIR, is defined as

AsymTIR ≜ lim inf
t→∞

TIR(t) = 1− lim sup
t→∞

P
{
TAlg1 > t

}
P {TAlg2 > t}

.

7.4.3 Class I “Light-Tailed” Distributions

In this chapter, we focus on job size distributions for which the FCFS policy has an asymp-
totically exponential waiting time distribution. This property of FCFS will be crucial for our
analysis. Prior work has exactly characterized the job size distributions for which FCFS has this
property. These distributions are known as “class I” distributions [2, 3, 191].

Definition 7.4.3 (Class I Distribution). For a distribution S, let −s∗ be the rightmost singularity
of S̃(s), with −s∗ = −∞ if S̃(s) is analytic everywhere. S is a class I distribution if and only if
s∗ > 0 and S̃(−s∗) =∞.

Class I distributions can roughly be thought of as “well-behaved” light-tailed distributions.
In contrast, class II distributions, the other class of light-tailed distributions, are very unusual and
“paradoxical”, and rarely occur as job size distributions.

For this chapter, the key property of class I job size distributions is that they cause FCFS to
have an asymptotically exponential waiting time distribution for all loads [3, 4]. However, as
shown by [3, 4], the waiting time also exhibits an exponential tail for light load if the job size is
class II. For this reason, while we focus only on class I distributions, we believe that our results
also hold for class II under light load. In Section 7.4.4, we characterize the exponential waiting
time in more detail.
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7.4.4 Characterizing the FCFS Waiting Time Distribution
In this chapter, we care about the exponential tail of the FCFS response time distribution. It turns
out to be simpler to focus on the FCFS waiting time distribution, which is closely related. We
will make use of two key concepts regarding the waiting time distribution. The first concept is
the asymptotic exponential decay rate, as investigated in [4, 27]. We refer to this quantity as

θ∗ and formally define it to be the negative of the rightmost singularity of T̃ FCFS
Q . Based on the

Cramer-Lundberg theory, the waiting time distribution T FCFS
Q takes an asymptotic exponential

tail:
P
{
T FCFS
Q > t

}
∼ Ce−θ∗t. (7.2)

The quantity θ∗ is the least positive real solution to the equation

S̃(−θ∗) = λ+ θ∗

λ
.

We also define the normalized p.d.f. to be

g(t) ≜ fT FCFS
Q

(t) · eθ∗t. (7.3)

Note that (7.2) relates to the c.d.f. of waiting time, while (7.3) relates to the p.d.f. of waiting
time.

We characterize three important properties of the normalized p.d.f., namely its maximum,
minimum, and asymptotic limit. Let gmax, gmin, g

∗ denote respectively the maximum, minimum
and asymptotically limiting values of g(·) over [0,∞):

gmax ≜ sup
t∈[0,∞)

g(t); gmin ≜ inf
t∈[0,∞)

g(t); g∗ ≜ lim
t→∞

g(t).

The following lemma, implies these quantities are well defined.

Lemma 7.4.1. Suppose S is a continuous class I job size distribution. For any load ρ, the
normalized p.d.f. g(t) is bounded above and below by positive constants, and limt→∞ g(t) exists.

Proof. First we show (following prior work [2, 3, 191]) that T̃ FCFS
Q has a simple pole −θ∗ as its

rightmost singularity.

We let −θ∗ be the root of the denominator of T̃ FCFS
Q (s), which is

λS̃(s)− λ+ s = 0 ⇐⇒ S̃(s) =
λ− s

λ
.

Since the left hand S̃(s) is convex in s5, and the right hand λ−s
λ

is only linear in s, their intersec-
tion s = −θ∗ must be a simple root. Moreover, such an intersection exists for s < 0 because

• S̃(0) = λ−0
λ

= 1;
• S̃ ′(0) = − 1

µ
> − 1

λ
;

5We have S̃′′(s) =
∫∞
t=0

t2e−stfS(t) dt > 0 for every s in the convergence region of S̃(·).
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• S̃(s)→∞ when s approaches the rightmost singularity of S̃ (since S is a class I distribu-
tion).

Now we use final value theorem to establish the limit of the ratio between the p.d.f. fT FCFS
Q

and the exponential function e−θ∗t. Recall the function g(t) = fT FCFS
Q

(e)eθ
∗t and consider its

Laplace transform G̃(s) = T̃ FCFS
Q (s − θ∗). Since the poles of G̃(s) map one-to-one to the poles

of T̃ FCFS
Q (s− θ∗), the above arguments show that every pole of G̃(s) is either in the open left half

plane or at the origin, and the origin is a simple pole. Therefore, the Final Value Theorem for
g(t) tells us

lim
t→∞

fFCFS
TQ

(t)eθ
∗t = lim

t→∞
g(t) = lim

s→0
sG̃(s) =

(1− ρ)θ∗

−λS̃ ′(−θ∗)− 1
≜ g∗ > 0. (7.4)

Since the limit g∗ exists, for ϵ = g∗

2
, there exists Nϵ <∞ such that ∀t ≥ Nϵ,

|g(t)− g∗| ≤ g∗

2
⇒ g∗

2
e−θ∗t ≤ fFCFS

TQ
(t) ≤ 3g∗

2
e−θ∗t.

Next, we want to show that

min
0≤t<Nϵ

g(t) > 0 and max
0≤t<Nϵ

g(t) <∞. (7.5)

First, note that fFCFS
TQ

satisfies the following level-crossing differential equations [30] (we
abbreviate fFCFS

TQ
to f ):{
f(0) = (1− ρ)λ;

f ′(t) = λf(t)− (1− ρ)λfS(t)− λ
∫ t

j=0
f(t− j)fS(j) dj.

To begin with, f(t) is continuous because fS(t) is continuous. If f(t) = 0 for some t < Nϵ,
we let t0 = inf {t < Nϵ : f(t) = 0}. Clearly t0 > 0 because f(0) = (1 − ρ)λ > 0. Note also
that f(t0) = 0, because f is continuous. Since f(t0) < f(0), ∃0 < s0 < t0 s.t. fS(s0) > 0. Then
∃a, b where 0 ≤ a < s0 < b ≤ t0, s.t. f(t) > 0 for all t ∈ [a, b]. Now we have

f ′(t0) = −(1− ρ)λfS(t0)− λ

∫ t0

j=0

f(t0 − j)fS(j) dj < 0

because the first term −(1− ρ)λfS(t0) ≤ 0 and the second term

−λ
∫ t0

j=0

f(t0 − j)fS(j) dj ≤ −λ
∫ b

j=a

f(t0 − j)fS(j) dj < 0.

But f ′(t0) < 0 is impossible, because we assumed that f(t0) = 0. The implication that f ′(t0) <
0 contradicts the fact that f is a non-negative probability density function. Therefore,

min
0≤t<Nϵ

g(t) ≥ min
0≤t<Nϵ

g(t) > 0.
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On the other hand, since f ′(t) ≤ λf(t) everywhere, we have f(t) ≤ (1 − ρ)λeλt. Note that
this bound holds even if S has infinite density at one or more points. As a result,

max
0≤t<Nϵ

g(t) ≤ max
0≤t<Nϵ

[
fFCFS
TQ

(t)eθ
∗Nϵ

]
≤ (1− ρ)λeλNϵeθ

∗Nϵ <∞.

Finally, note that

inf
t∈[0,∞)

g(t) ≜ gmin ≥ min

{
inf

0≤t<Nϵ

[
fFCFS
TQ

(t)eθ
∗t
]
,
g∗

2

}
> 0

sup
t∈[0,∞)

g(t) ≜ gmax ≤ max

{
sup

0≤t<Nϵ

[
fFCFS
TQ

(t)eθ
∗t
]
,
3g∗

2

}
<∞

which indicates both gmin and gmax are well-defined and nonzero. This completes the proof.

The ratio gmax/gmin will be particularly important in our analysis. Intuitively, we can think
of the ratio as measuring the deviation of the queueing time T FCFS

Q from a perfect exponential
distribution. The queueing time distribution is exactly an exponential distribution in an M/M/1,
and diverges from an exponential to greater or lesser degree under any class I job size distribution.
The degree of divergence will show up in our later results.

7.4.5 Scheduling Algorithm: Nudge
We now formally define the Nudge algorithm. Nudge(x1, x2, x3) first divides jobs into four
regions based on their sizes:

• “small”: 0 = x0 ≤ S < x1.
• “medium”: x1 ≤ S < x2.
• “large”: x2 ≤ S < x3.
• “very large”: x3 ≤ S < x4 =∞.

Throughout this chapter, we concentrate mostly on the “small” and the “large” jobs. For
conciseness, we define Ssmall, Slarge, psmall, plarge as follows.

Definition 7.4.4. We define Ssmall and Slarge to be the distribution of small and large jobs, respec-
tively. We also define psmall and plarge to be the fraction of small and large jobs, respectively.

Ssmall ∼ [S|S < x1], Slarge ∼ [S|x2 ≤ S < x3]

psmall ≜ P {S < x1} , plarge ≜ P {x2 ≤ S < x3} .

To determine which job to serve, Nudge maintains an ordering over jobs which have not yet
entered service. We call this ordering the “queue”. For each job, we also track whether or not it
each has already been “swapped”.

Whenever a job completes, Nudge serves the job at the front of the queue (if any), and serves
it to completion. By default, newly arriving jobs are placed at the back of the queue, resulting
in FCFS scheduling by default. However, if three conditions are satisfied, then a “swap” is
performed. If
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1. the arriving job is a small job, js,
2. the job at the back of queue is a large job, jℓ, and
3. the job jℓ at the back of queue has never been swapped,

then Nudge places the small job js just ahead of jℓ, in the second-to-last position in the queue.
This is called a swap, and both jℓ and js are now marked as having been “swapped.”

Because Nudge never swaps the same job twice, a job is only in the last position in the queue
and eligible to be swapped immediately after it arrives. As a result, Nudge only ever swaps a job
with the job that arrives immediately before or after it.

7.5 Main Results

7.5.1 Nudge Improves upon FCFS Non-Asymptotically
Our main goal is to show that Nudge stochastically improves upon FCFS. Nudge’s performance
crucially depends on the choice of parameters x1, x2, and x3, i.e. which jobs are small and which
jobs are large. We begin by asking: given job size distribution S and load ρ, for what choices
of parameters x1, x2, and x3 does Nudge stochastically improve upon FCFS? We answer this in
Theorem 7.5.1, which gives sufficient conditions on the parameters for Nudge to stochastically
improve upon FCFS. We prove Theorem 7.5.1 in Section 7.6.

Theorem 7.5.1 (Stochastic Improvement Regime). Suppose S is a continuous class I job size
distribution. Then Nudge(x1, x2, x3) stochastically improves upon FCFS for any smin < x1 ≤
x2 ≤ x3 satisfying6

• gmax

gmin

λ+ θ∗

λ
<

1− S̃large(−θ∗)−1

1− S̃small(−θ∗)−1
, (7.6)

• x1 + x3 ≤ 2x2. (7.7)

With Theorem 7.5.1 in hand, our goal reduces to the following question: given S and ρ, do
there exist parameters satisfying the sufficient condition from Theorem 7.5.1? We answer this in
Theorem 7.5.2, showing that as long as the minimum job size smin = 0, such parameters always
exist. Our proof of Theorem 7.5.2 in Section 7.7 gives a simple construction of those parameters.

Theorem 7.5.2 (Existence of Stochastic Improvement). For any continuous class I job size dis-
tribution S with smin = 0 and any load 0 < ρ < 1, there exist x1, x2, x3 satisfying (7.6) and (7.7),
implying that Nudge(x1, x2, x3) stochastically improves upon FCFS.

7.5.2 Nudge Improves upon FCFS Asymptotically
Having shown that Nudge stochastically improves upon FCFS, we ask: is Nudge’s improvement
non-negligible in the asymptotic limit? We answer this in Theorem 7.5.3. Specifically, recall that
in the t→∞ limit, P

{
T FCFS > t

}
∼ CFCFSe

−θ∗t. We show that P
{
TNudge > t

}
∼ CNudgee

−θ∗t

6Recall from Definition 7.4.4 that Ssmall and Slarge depend on x1, x2, and x3. This applies throughout this chapter.
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and that, with appropriately set parameters, CNudge < CFCFS. This implies that FCFS is not
strongly optimal for asymptotic tail behavior (see Section 7.3.1), resolving a long-standing open
problem [27, 232]. We also exactly derive the difference CFCFS−CNudge. We prove Theorem 7.5.3
in Section 7.9, making use of Theorem 7.5.4.

Theorem 7.5.3 (Asymptotic Improvement Regime). Suppose S is a continuous class I job
size distribution. For any smin < x1 ≤ x2 ≤ x3, the asymptotic tail improvement ratio of
Nudge(x1, x2, x3) compared to FCFS is

AsymTIR = psmallplarge

λ

λ+ θ∗

(
S̃large(−θ∗)−

λ

λ+ θ∗
S̃small(−θ∗)−

θ∗

λ+ θ∗
S̃large(−θ∗)S̃small(−θ∗)

)
.

Furthermore, AsymTIR is positive, meaning CNudge < CFCFS, if

λ+ θ∗

λ
<

1− S̃large(−θ∗)−1

1− S̃small(−θ∗)−1
.

Note that the asymptotic improvement regime in Theorem 7.5.3 is a superset of the non-
asymptotic improvement regime in Theorem 7.5.1, because gmax/gmin ≥ 1. Thus, whenever
Theorem 7.5.1 guarantees a stochastic improvement, we also have CFCFS > CNudge. Thus, by
Theorem 7.5.2, there exists an asymptotic improvement whenever smin = 0.

Corollary 7.5.1 (Existence of Asymptotic Improvement). For any continuous class I job size
distribution S with smin = 0 and any load 0 < ρ < 1, there exist x1, x2, x3 such that CNudge <
CFCFS.

While Theorem 7.5.3 shows that there is a multiplicative improvement in the asymptotic tail,
we find empirically that the same multiplicative improvement exists throughout nearly the entire
tail. See Fig. 7.3 and Section 7.10.

7.5.3 Exact Analysis of Nudge
All of the above results compare Nudge’s performance to that of FCFS. In particular, none of
these results give an exact analysis of Nudge’s response time. We give such an analysis in Theo-
rem 7.5.4, in which we exactly derive T̃Nudge(s). This result is nontrivial, because Nudge does not
fall into any class of policies with known analyses (see Section 7.3.3). We prove Theorem 7.5.4
in Section 7.8.

Theorem 7.5.4 (Transform of Response Time). The response time of Nudge has Laplace-Stieltjes
transform

T̃Nudge(s) = T̃ FCFS(s) + psmallplarge

S̃large(s)(1− S̃small(s))
(
T̃ FCFS
Q (λ+ s)− T̃ FCFS

Q (s)
)

+ S̃small(s)(1− S̃large(s))

 T̃ FCFS
Q (s)

S̃(s)
− (1− ρ)

λ/S̃(λ)− s/S̃(s)

λ− s

 .
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7.6 Proof of Theorem 7.5.1: Stochastic Improvement Regime
Our goal in this section is to prove Theorem 7.5.1, which gives sufficient conditions on the
parameters x1, x2, and x3 for Nudge to stochastically improve upon FCFS. To do so, we employ
a tagged job approach. In particular, we follow an arbitrary tagged job i making its way through
a pair of coupled systems, one employing the FCFS policy and one employing the Nudge policy,
both with the same arrival process and job sizes.

We focus on one particular response time threshold t, and in particular on the events Di,t and
Ii,t, where the tagged job i has response time greater than t in one system and below in the other
system. In (7.8), we write the difference in the response time tails of Nudge and FCFS in terms
of the events Di,t and Ii,t. In Lemma 7.6.1, we derive formulas for the probabilities of these
events.

Using these formulas, in Lemma 7.6.2, we derive a sufficient condition for Nudge to improve
upon FCFS relative to a specific threshold t. This sufficient condition is dependent on the thresh-
old t. In order to remove this dependence, we prove Lemma 7.6.3, a technical lemma regarding
arbitrary random variables.

Finally, in Section 7.6.2, we prove Theorem 7.5.1, by demonstrating that the conditions given
in Theorem 7.5.1 ensure that the sufficient condition in Lemma 7.6.2 holds relative to every
response time threshold t, making use of Lemma 7.6.3 to do so.

7.6.1 Intermediate Lemmas
Consider a tagged job i that arrives into the steady state of the pair of coupled systems. We write
TNudge
i and T FCFS

i for job i’s response time in the Nudge and FCFS systems, respectively. For
any t ≥ 0, define the events

Ii,t ≜
{
T FCFS
i ≤ t < TNudge

i

}
, Di,t ≜

{
TNudge
i ≤ t < T FCFS

i

}
.

Intuitively, Di,t is the event in which Nudge decreases job i’s response time relative to FCFS,
specifically from above t to below t. Similarly, Ii,t is the event in which Nudge increases job i’s
response time relative to FCFS. We can write

P
{
TNudge
i > t

}
= P

{
T FCFS
i > t

}
+ P {Ii,t} − P {Di,t} . (7.8)

The events Di,t and Ii,t are defined using the Nudge and FCFS systems. Our next step is to
express them in terms of only the FCFS system, which we understand well.

We begin by defining the relevant quantities in the FCFS system. Let i− be the arrival imme-
diately before job i, and let i+ be the arrival immediately after, and let

Wi ≜ amount of work in the system (either Nudge or FCFS) when job i arrives,

Ai ≜ interarrival time between jobs i and i+,

Si ≜ size of job i.

We define analogous quantities for i− and i+. The work is the same in both systems because both
Nudge and FCFS are work-conserving.
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Note that Nudge will only ever swap job i with one of the adjacent arrivals, i− or i+ (see
Section 7.4.5). Under what condition do we swap job i with job i+? This happens if and only if
the following events occur:

(a) Job i is large, which is when x2 ≤ Si < x3.
(b) Job i+ is small, which is when Si+ < x1.
(c) Job i+ arrives before job i enters service in the Nudge system.
(d) Job i has not swapped with any other job, namely job i−.

Because job i cannot be both large and small, (a) implies (d). But (d) implies that (c) happens
when Ai ≤ Wi. This is because in the absence of swaps, job i would enter service after Wi time.
Therefore, the event that job i swaps with job i+ is

swapi,i+ ≜ {(x2 ≤ Si < x3) ∧ (Si+ ≤ x1) ∧ (Ai ≤ Wi)}. (7.9)

Crucially, this definition of swapi,i+ depends only on quantities in the FCFS system. We define
swapi−,i analogously.

Lemma 7.6.1 (Evaluating P {Ii,t} and P {Di,t}). We have

P {Ii,t} = P
{
swapi,i+ ∧ (Wi + Si ≤ t < Wi + Si + Si+)

}
, (7.10)

P {Di,t} = P
{
swapi−,i ∧ (Wi− − Ai− + Si ≤ t < Wi− − Ai− + Si + Si−)

}
. (7.11)

Proof. We begin by computing P {Ii,t}. The event Ii,t occurs only if TNudge
i > T FCFS

i , which in
turn occurs only if job i swaps with the next arrival, namely job i+. If this swap occurs, then
TNudge
i = T FCFS

i + Si+ . We know that T FCFS
i = Wi + Si, so (7.10) follows from

Ii,t = swapi,i+ ∧ (T FCFS
i ≤ t < TNudge

i )

= swapi,i+ ∧ (T FCFS
i ≤ t < T FCFS

i + Si+)

= swapi,i+ ∧ (Wi + Si ≤ t < Wi + Si + Si+).

We now compute P {Di,t}. By similar reasoning to the above, the event Di,t occurs only
if job i swaps with job i−. If this swap occurs, then TNudge

i = T FCFS
i − Si− . We again have

T FCFS
i = Wi + Si, so

Di,t = swapi−,i ∧ (TNudge
i ≤ t < T FCFS

i )

= swapi−,i ∧ (T FCFS
i − Si− ≤ t < T FCFS

i )

= swapi−,i ∧ (Wi + Si − Si− ≤ t < Wi + Si).

To obtain (7.11), observe that conditioned on swapi−,i, we have Wi = Wi− + Si− − Ai− .

Now, we give sufficient conditions for Nudge to improve upon FCFS relative to a particular
threshold t.
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Lemma 7.6.2 (Strict Improvement at a Given Threshold). Given any t > smin, where smin is the
smallest value of S,

P
{
TNudge > t

}
< P

{
T FCFS > t

}

if the following inequality in terms of t holds:

gmax

gmin

λ+ θ∗

λ
<

E
[
eθ

∗ min(t,Ssmall+Slarge) − eθ
∗ min(t,Ssmall)

]
E
[
eθ

∗ min(t,Ssmall+Slarge) − eθ
∗ min(t,Slarge)

] . (7.12)

Proof. Because the tagged job i is a random sample arriving to the steady state of the system,
by (7.8), we have P

{
TNudge > t

}
< P

{
T FCFS > t

}
if and only if P {Ii,t} < P {Di,t}. Our

approach is to use Lemma 7.6.1 to bound each of P {Ii,t} and P {Di,t}, from which the desired
sufficient condition follows.

We begin by computing P {Ii,t}:

P {Ii,t} = P
{
swapi,i+ ∧ (Wi + Si ≤ t < Wi + Si + Si+)

}
[by Lemma 7.6.1]

= P {(Ai ≤ Wi) ∧ (Wi + Si ≤ t < Wi + Si + Si+) ∧ (x2 ≤ Si < x3) ∧ (Si+ < x1)}
[by (7.9)]

≤ P {(Wi + Si ≤ t < Wi + Si + Si+) ∧ (x2 ≤ Si < x3) ∧ (Si+ < x1)}
[discarding Ai ≤Wi]

= P
{(

(t− Si − Si+)
+ ≤ Wi ≤ (t− Si)

+
)
∧ (x2 ≤ Si < x3) ∧ (Si+ < x1)

}
= plargepsmall · ESi∼Slarge,Si+∼Ssmall

[∫ (t−Si)
+

w=(t−Si−Si+ )+
fWi

(w) dw

] [change of measure for Si

and S+
i , independence of

Si, Si+ , and Wi

]

≤ plargepsmall · ESi∼Slarge,Si+∼Ssmall

[∫ (t−Si)
+

w=(t−Si−Si+ )+
gmaxe

−θ∗w dw

] [by Lemma 7.4.1 and
the fact that Wi ∼
T FCFS
Q

]

= plargepsmall ·
e−θ∗t

θ∗
· gmaxE

[
eθ

∗ min(t,Ssmall+Slarge) − eθ
∗ min(t,Slarge)

]
. (7.13)
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Similarly, we compute P {Di,t}:

P {Di,t} = P
{
swapi−,i ∧ (Wi− − Ai− + Si ≤ t < Wi− − Ai− + Si + Si−)

}
= P

{
(Ai− ≤ Wi−) ∧ (Wi− − Ai− + Si ≤ t < Wi− − Ai− + Si + Si−)

∧(Si < x1) ∧ (x2 ≤ Si− < x3)

}
= P

{(
Ai− + (t− Si − Si−)

+ ≤ Wi− ≤ Ai− + (t− Si)
+
)
∧ (Si < x1) ∧ (x2 ≤ Si− < x3)

}
= psmallplarge · ESi∼Ssmall,Si−∼Slarge,Ai−∼Exp(λ)

[∫ Ai−+(t−Si)
+

w=Ai−+(t−Si−Si− )+
fWi−

(w) dw

]
[mutual independence of Si, Si+ , Ai− , and Wi]

≥ psmallplarge · ESi∼Ssmall,Si−∼Slarge,Ai−∼Exp(λ)

[∫ Ai−+(t−Si)
+

w=Ai−+(t−Si−Si− )+
gmine

−θ∗w dw

]
[by Lemma 7.4.1 and the fact that Wi ∼ T FCFS

Q ]

≥ psmallplarge · ESi∼Ssmall,Si−∼Slarge

[∫ ∞

a=0

∫ a+(t−Si)
+

w=a+(t−Si−Si− )+
gmine

−θ∗w · λe−λa dw da

]
[Ai− ∼ Exp(λ)]

= psmallplarge ·
e−θ∗t

θ∗
· gmin

λ

λ+ θ∗
E
[
eθ

∗ min(t,Ssmall+Slarge) − eθ
∗ min(t,Ssmall)

]
. (7.14)

Combining the bounds (7.13) and (7.14), we find that P {Ii,t} < P {Di,t} holds if

gmaxE
[
eθ

∗min(t,Ssmall+Slarge)−eθ∗min(t,Slarge)
]
< gmin

λ

λ+θ∗
E
[
eθ

∗min(t,Ssmall+Slarge)−eθ∗min(t,Ssmall)
]
.

(7.15)

Having proven Lemma 7.6.2, we have a sufficient condition, namely (7.12), for Nudge to
improve upon FCFS at a specific value of t. But our goal is to improve upon FCFS for all values
of t. We therefore seek a condition which implies that (7.12) holds for all t.

We start by simplifying (7.12). Let A = eθ
∗Ssmall , B = eθ

∗Slarge , and c = eθ
∗t. Then (7.12)

becomes
gmax

gmin

λ+ θ∗

λ
<

E [min(AB, c)−min(A, c)]

E [min(AB, c)−min(B, c)]
. (7.16)

Here the only appearance of the specific value of t is via c. Our strategy is to lower-bound
the right-hand side of (7.16) by a quantity that does not include c. The following lemma helps
accomplish this under an additional assumption.

Lemma 7.6.3. Let A,B be two independent real-valued random variables and c be a fixed
constant. Suppose 1 ≤ A ≤ c and A < B. Under these assumptions, if P {B > c} > 0
and

cE [B] ≥ E [A]E [B|B > c] , (7.17)

then
E [min(AB, c)−min(A, c)]

E [min(AB, c)−min(B, c)]
=

E [min(AB, c)− A]

E [min(AB, c)−min(B, c)]
≥ E [AB − A]

E [AB −B]
. (7.18)
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Proof. First we observe E [min(AB, c)− A] > E [min(AB, c)−min(B, c)] because A < min(B, c).
Based on this, we can shrink the left hand side of inequality (7.18) by adding the same positive
term to both the denominator and numerator. We compute

E [min(AB, c)− A]

E [min(AB, c)−min(B, c)]
=

E [AB − A]− E [(AB − c)1AB > c]

E [AB −B]− E [(AB − c)1AB > c] + E [(B − c)1B > c]
.

(7.19)

Since A ≥ 1 and B > 0, we have AB ≥ B. Therefore,

0 ≤ 1AB > c− 1B > c ≤ 1AB > c = 1AB − c > 0.

We proceed by adding a positive term, E [(AB − c) (1AB > c− 1B > c)], to both the denomi-
nator and numerator of the right hand side of (7.19) and obtain

E [min(AB, c)− A]

E [min(AB, c)−min(B, c)]
≥ E [AB − A]− E [(AB − c)1B > c]

E [AB −B]− E [(AB −B)1B > c]
.

Hence, to establish inequality (7.18), it suffices to show

E [(AB − c)1B > c]

E [(AB −B)1B > c]
≥ E [AB − A]

E [AB −B]

⇐⇒ E [(AB − c)1B > c]E [AB −B] ≥ E [(AB −B)1B > c]E [AB − A]

⇐⇒ (E [A]E [B|B > c]− c)P {B > c}E [AB −B]

≥ (E [A]− 1)E [B|B > c]P {B > c}E [AB − A]

⇐⇒ cE [B] (E [A]− 1) ≥ E [A]E [B|B > c] (E [A]− 1)

⇐⇒ cE [B] ≥ E [A]E [B|B > c] ,

which is precisely the condition provided in (7.17).

7.6.2 Main Proof
Theorem 7.5.1. Suppose S is a continuous class I job size distribution. Then Nudge(x1, x2, x3)
stochastically improves upon FCFS for any smin < x1 ≤ x2 ≤ x3 satisfying

• gmax

gmin

λ+ θ∗

λ
<

1− S̃large(−θ∗)−1

1− S̃small(−θ∗)−1
, (7.20)

• x1 + x3 ≤ 2x2. (7.21)

Proof. We prove Theorem 7.5.1 by verifying the condition in Lemma 7.6.2. For every t > smin,
we will show that Inequalities (7.20) and (7.21) together imply (7.12).

(i) When smin < t ≤ x2, the denominator of the right hand side of (7.12) becomes

E
[
eθ

∗ min(t,Ssmall+Slarge) − eθ
∗ min(t,Slarge)

]
= E

[
et − et

]
= 0.

Thus (7.12) is not well defined, but (7.15) holds trivially, which is sufficient.
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(ii) When x2 < t < x3, we let A = eθ
∗Ssmall , B = eθ

∗Slarge and c = eθ
∗t. Then clearly

1 ≤ A ≤ c and A < B. By (7.21), we know that

cE [B] = eθ
∗tE
[
eθ

∗Slarge
]
≥ eθ

∗(2x2) ≥ eθ
∗(x1+x3)

≥ E
[
eθ

∗(Ssmall+Slarge)
]
≥ E

[
eθ

∗ min(Ssmall+Slarge,t)
]
≥ E [A]E [B|B > c] .

We can therefore apply Lemma 7.6.3 to obtain

E
[
eθ

∗ min(Ssmall+Slarge,t) − eθ
∗Ssmall

]
E
[
eθ

∗ min(Ssmall+Slarge,t) − eθ
∗ min(Slarge,t)

] ≥ E
[
eθ

∗(Ssmall+Slarge) − eθ
∗Ssmall

]
E
[
eθ

∗(Ssmall+Slarge) − eθ
∗Slarge

] . (7.22)

Moreover, condition (7.20) implies that

gmax

gmin

λ+ θ∗

λ
<

1− S̃large(−θ∗)−1

1− S̃small(−θ∗)−1
=

E
[
eθ

∗(Ssmall+Slarge) − eθ
∗Ssmall

]
E
[
eθ

∗(Ssmall+Slarge) − eθ
∗Slarge

] (7.23)

Combining (7.22) with (7.23) establishes (7.12).
(iii) When t ≥ x3, we have min(t, Ssmall) = Ssmall and min(t, Slarge) = Slarge. Therefore, condi-

tion (7.20) is equivalent to (7.12).

Therefore, for every t > smin, we have proven that P
{
TNudge > t

}
< P

{
T FCFS > t

}
.

7.7 Proof of Theorem 7.5.2: Existence of Stochastic Improve-
ment

Theorem 7.5.2. For any continuous class I job size distribution S with smin = 0 and any load
0 < ρ < 1, there exist x1, x2, x3 satisfying (7.20) and (7.21), implying that Nudge(x1, x2, x3)
stochastically improves upon FCFS.

Proof. We start by constructing x1, x2, x3 that satisfy both Inequality (7.20) and (7.21). For
notational convenience, let M = gmax

gmin

λ+θ∗

λ
. First fix an arbitrary x3 > 0 and let x2 = 3

4
x3, then

compute S̃large(−θ∗) and choose a small enough x1 such that

x1 < min

{
− 1

θ∗
ln

(
1− 1− S̃large(−θ∗)−1

M

)
,
1

2
x3

}
. (7.24)

Clearly, such x1 > smin = 0 in (7.24) exists because M > 1, so we have

• x1 + x3 <
3

2
x3 = 2x2, (7.25)

• 1− S̃large(−θ∗)−1

1− S̃small(−θ∗)−1
=

1− S̃large(−θ∗)−1

1− E [eθ∗Ssmall ]−1 ≥
1− S̃large(−θ∗)−1

1− e−θ∗x1
> M =

gmax

gmin

λ+ θ∗

λ
. (7.26)

By Theorem 7.5.1, (7.25) and (7.26) together imply that P
{
TNudge ≥ t

}
< P

{
T FCFS ≥ t

}
for

every t > smin = 0. Therefore,

∀t > 0, P
{
TNudge > t

}
< P

{
T FCFS > t

}
.
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7.8 Proof of Theorem 7.5.4: Transform of Response Time

In this section we compute an exact formula for T̃Nudge(s). The formula holds for arbitrary job
size distributions, not just those of class I.

At a high level, our analysis works by considering two systems experiencing identical ar-
rivals: one using Nudge, and one using FCFS. We consider a tagged job arriving to this pair of
systems in equilibrium and determine how its Nudge queueing time relates to its FCFS queueing
time.

• Small jobs: Nudge queueing time is FCFS queueing time, possibly minus a large job’s
size.

• Large jobs: Nudge queueing time is FCFS queueing time, possibly plus a small job’s size.
• Other jobs: Nudge queueing time is identical to FCFS queueing time.

We will determine T̃Nudge
Q,small(s) and T̃Nudge

Q,large(s), from which T̃Nudge(s) easily follows.

7.8.1 Probabilistic Interpretation of the Laplace-Stieltjes Transform
Before jumping into the Nudge queueing time analysis, we recall a probabilistic interpretation of
the Laplace-Stieltjes transform.

Let V be a nonnegative random variable. Consider a time interval of length V and a Pois-
son process of rate s that is independent of V . We call the increments of the Poisson process
“interruptions”. Let NoPoisson(V, s) be the event that there are no interruptions during the time
interval. Then [104, Exercise 25.7]

Ṽ (s) = P {NoPoisson(V, s)} . (7.27)

The interpretation in (7.27) necessarily requires s ≥ 0. Fortunately, formulas we derive using
(7.27) are still valid for s < 0 because Laplace transforms are uniquely defined by their value on
any bounded interval on the real line [34].

7.8.2 Transform for Large Jobs
Lemma 7.8.1. The queueing time of large jobs under Nudge has Laplace-Stieltjes transform

T̃Nudge
Q,large(s) =

(
1− psmall(1− S̃small(s))

)
T̃ FCFS
Q (s) + psmall(1− S̃small(s))T̃ FCFS

Q (λ+ s).

Proof. Consider a large tagged job arriving to the pair of systems, one using Nudge and the other
using FCFS, in equilibrium. We can think of the job’s Nudge queueing time as the time it takes
to do the following two steps:

(a) We first wait for its FCFS queueing time, namely T FCFS
Q .

(b) If during that T FCFS
Q time there has been at least one arrival, and if the first such arrival is

a small job, we then wait for that small job’s service, which takes Ssmall time. Note that the
small job’s size is independent of the FCFS queueing time.
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We will use (7.27) to compute T̃Nudge
Q,large(s). To that end, we associate each of the Nudge and

FCFS systems with a Poisson “interruption” process of rate s. The interruption processes are
independent of the arrival times and job sizes of each system, but they are coupled to each other
in the following way. At any moment in time when the systems are busy, some job j has been in
service for some amount of time t. We couple the interruption processes such that interruptions
occur at the same (j, t) pairs in both systems.

By (7.27), T̃Nudge
Q,large(s) is the probability that no interruptions occur during steps (a) and (b).

We compute this probability by conditioning on the following event:

E =

{
the next arrival after the tagged job is small,
and an interruption occurs during its service

}
Note that E does not consider whether the next arrival occurs before the tagged job exits the
queue. Therefore, it is independent of the length T FCFS

Q of step (a).
If E does not occur, then there are no interruptions during step (b). Therefore, there are no

interruptions if and only if there are no interruptions during step (a). By (7.27), this happens with

probability T̃ FCFS
Q (s).

If E does occur, then an interruption will occur during step (b) if and only if a new job
arrives during step (a). That is, by conditioning on E, we have predetermined that the next
arrival will be small and, if it swaps with the tagged job, will cause an interruption. Therefore,
to avoid interruptions, we need to avoid interruptions and arrivals during step (a). Merging the
arrival and interruption processes yields a Poisson process of rate λ+s, so avoiding interruptions
corresponds to the event NoPoisson(T FCFS

Q , λ + s). By (7.27), this happens with probability

T̃ FCFS
Q (λ+ s).

Conditioning on whether E occurs and using (7.27) to compute P {E} = psmall(1− S̃small(s)),
we obtain the desired expression.

7.8.3 Transform for Small Jobs
Lemma 7.8.2. The queueing time of small jobs under Nudge has Laplace-Stieltjes transform

T̃Nudge
Q,small(s) = T̃ FCFS

Q (s)

(
1 +

plarge(1− S̃large(s))

S̃(s)

)
−plarge(1− S̃large(s))(1−ρ) · λ/S̃(λ)− s/S̃(s)

λ− s
.

The analysis of small jobs is more involved than the analysis of large jobs. We therefore state
and prove several more intermediate results before proving Lemma 7.8.2.

Consider a small tagged job arriving to the pair of systems, one using Nudge and the other
using FCFS, in equilibrium. The main question we need to answer is whether the tagged job will
swap with a large job in the Nudge system. Our main insight is that we can tell whether the swap
will occur by examining just the FCFS system. Because we understand FCFS well, this makes it
relatively simple to tell whether a swap will occur.

Lemma 7.8.3. The small tagged job swaps with a large job in the Nudge system if and only if,
when it arrives, the FCFS system has a nonempty queue whose last job is large.
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The proof of Lemma 7.8.3 follows very similar reasoning to our analysis at the start of Sec-
tion 7.6.1.

Proof. By definition of Nudge, the tagged job swaps if and only if, when it arrives, the Nudge
system has a nonempty queue whose last job is a large job that has not been swapped. It therefore
suffices to show that at any moment in time, the FCFS system has a nonempty queue whose last
job is large if and only if the Nudge system has a nonempty queue whose last job is a large job
that has not been swapped.

We first note that the total amount of work in both systems is the same at every moment in
time, because both FCFS and Nudge are work conserving.

Suppose the FCFS system has a nonempty queue whose last job j is large. Because it is
the last job in the FCFS queue, there have been no new arrivals after j. In the Nudge system,
this means j has not been swapped, so either j is the last job in the Nudge queue or has entered
service. By work conservation, both systems had the same amount of work when j arrived, so j
must still be in the Nudge queue, as desired.

Suppose the Nudge system has a nonempty queue whose last job j is a large job that has not
been swapped. We argue similarly to the previous direction: there have been no arrivals since j
because it is at the end of the Nudge queue without being swapped, and j cannot have entered
service in the FCFS system by work conservation, so j must be the last job in the FCFS queue,
as desired.

Thanks to Lemma 7.8.3, we can determine the queueing time of the small tagged job by
looking at the state of the FCFS system when it arrives. We describe the equilibrium state of the
FCFS system with the following quantities:

• W : the amount of work in the system.
• NQ: the number of jobs in the queue.
• Wmost: the amount of work in the system, excluding the last job in the queue if NQ ≥ 1.
• Slast: the size of the last job in the queue, or 0 if NQ = 0.

Note that these quantities are not independent. In particular, W = Wmost+Slast. However, Wmost

and Slast are conditionally independent given NQ ≥ 1.
Armed with Lemma 7.8.3 and the system state notation, we are ready to compute TNudge

Q,small(s),
thus proving Lemma 7.8.2. Our computation will make use of an additional lemma which we
state after the proof.

Proof of Lemma 7.8.2. Consider the small tagged job arriving to the pair of systems in equilib-
rium. By Lemma 7.8.3, its Nudge queueing time is

TNudge
Q,small =

{
Wmost if NQ = 0

Wmost + Slast1(¬(x2 ≤ Slast < x3)) if NQ ≥ 1.
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Applying (7.27) and the conditional independence of Wmost and Slast yields

T̃Nudge
Q,small(s) = P {NoPoisson(Wmost, s) ∧ NQ = 0}

+ P {NoPoisson(Wmost, s) ∧ NQ ≥ 1 ∧ (NoPoisson(Slast, s) ∨ x2 ≤ Slast < x3)}
= P {NoPoisson(Wmost, s) ∧ NQ = 0}
+ P {NoPoisson(Wmost, s) ∧ NQ ≥ 1} ·

(
S̃(s) + plarge(1− S̃large(s))

)
. (7.28)

It remains only to compute the two probabilities in (7.28). Let

q ≜ P {NoPoisson(W, s) ∧ NQ = 0} = P {NoPoisson(Wmost, s) ∧ NQ = 0} , (7.29)

making q the first probability in (7.28). We now compute the second probability in (7.28) in
terms of q. First, note that T FCFS

Q and W are identically distributed. Recalling the conditional
independence of Wmost and Slast, we have, using (7.27) throughout,

T̃ FCFS
Q (s)− q = W̃ (s)− q = P {NoPoisson(W, s) ∧ NQ ≥ 1}

= P {NoPoisson(Wmost, s) ∧ NQ ≥ 1 ∧ NoPoisson(Slast, s)}
= P {NoPoisson(Wmost, s) ∧ NQ ≥ 1} · S̃(s). (7.30)

Plugging (7.29) and (7.30) into (7.28) yields

T̃Nudge
Q,small(s) = q +

(
T̃ FCFS
Q (s)− q

)(
1 +

plarge(1− S̃large(s))

S̃(s)

)
.

Lemma 7.8.4 below computes the value of q, yielding the desired result.

Lemma 7.8.4. Let q ≜ P {NoPoisson(W, s) ∧ NQ = 0}. We have

q = T̃ FCFS
Q (λ) · λS̃(s)− sS̃(λ)

λ− s
=

1− ρ

S̃(λ)
· λS̃(s)− sS̃(λ)

λ− s
.

To prove Lemma 7.8.4, we require an additional lemma.

Lemma 7.8.5. Let V be a nonnegative random variable, and let Exp(r) and Exp(s) be expo-
nentially distributed random variables of rates r and s, respectively. Suppose V , Exp(r), and
Exp(s) are mutually independent. Then

P {V < Exp(r) + Exp(s)} = rṼ (s)− sṼ (r)

r − s
.
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Proof. We compute

P {V < Exp(r) + Exp(s)} =
∫ ∞

v=0

P {v < Exp(r) + Exp(s)} fV (v) dv

=

∫ ∞

v=0

(∫ ∞

u=0

∫ ∞

t=0

1(v < t+ u) · re−rt · se−su dt du

)
fV (v) dv

=

∫ ∞

v=0

re−rv − se−sv

r − s
fV (v) dv

=
rṼ (s)− sṼ (r)

r − s
.

Proof of Lemma 7.8.4. Consider a FCFS system in equilibrium along with an independent Pois-
son “interruption” process of rate s. Call a job lucky if it enters the system while NQ = 0
and experiences no interruptions during its queueing time. Because Poisson arrivals see time
averages [235], q is probability an arriving job is lucky.

We compute q in an unusual way. Let a job’s departure period be the time interval starting
when the job enters service and ending when the next job enters service. Jobs enter service at
average rate λ, so q is the average number of lucky jobs that arrive a departure period. More
formally, by renewal-reward theorem,

q = P {arrival is lucky}

=
average rate of lucky arrivals

λ

=
average rate of lucky arrivals

average rate of departure periods
= E [number of lucky arrivals during a departure period] .

Moreover, because a job is lucky only if NQ = 0, only the first arrival in a departure period can
possibly be lucky, so

q = P {first arrival in a departure period is lucky} .

Consider a job j. The first arrival in j’s departure period is lucky if both of the following
events occur:

E1 = there are no arrivals during j’s queueing time
E2 = j completes before the first interruption after the first arrival of j’s departure period.

By (7.27), P {E1} = T̃ FCFS
Q (λ). We compute P {E2 | E1} below.

Conditioned on E1, the queue is empty when j enters service, so the first arrival during j’s
departure period is simply the first arrival after j enters service. Let Exp(λ) be the amount
of time between when j enters service and the next arrival, and let Exp(s) be the amount of
time between that next arrival and the first interruption after it. Both Exp(λ) and Exp(s) are
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exponentially distributed with rates λ and s, respectively, and they and j’s size are mutually
independent. Because j’s size is distributed as S, we have

P {E2 | E1} = P {S < Exp(λ) + Exp(s)} = λS̃(s)− sS̃(λ)

λ− s
,

where the latter equality follows from Lemma 7.8.5.

It remains only to show T̃ FCFS
Q (λ) = (1 − ρ)/S̃(λ). Because response time T FCFS is a

sum of independent random variables with distributions T FCFS
Q and S, we have T̃ FCFS

Q (λ) =

T̃ FCFS(λ)/S̃(λ). By (7.27), T̃ FCFS(λ) is the probability that no arrivals occur during a job’s re-
sponse time. But this is simply the probability that a job leaves an empty system when it departs,
which is 1− ρ.

7.8.4 Overall Response Time Transform
Theorem 7.5.4. The response time of Nudge has Laplace-Stieltjes transform

T̃Nudge(s) = T̃ FCFS(s) + psmallplarge

S̃large(s)(1− S̃small(s))
(
T̃ FCFS
Q (λ+ s)− T̃ FCFS

Q (s)
)

+ S̃small(s)(1− S̃large(s))

 T̃ FCFS
Q (s)

S̃(s)
− (1− ρ)

λ/S̃(λ)− s/S̃(s)

λ− s


 .

Proof. The expression follows by plugging the results of Lemmas 7.8.1 and 7.8.2 into

T̃Nudge(s) = psmall · T̃Nudge
Q,small(s) · S̃small(s) + plarge · T̃Nudge

Q,large(s) · S̃large(s)

+ (1− psmall − plarge) · T̃ FCFS
Q (s) · S̃(s)− psmallS̃small(s)− plargeS̃large(s)

1− psmall − plarge

and simplifying the resulting expression.

One key step is recognizing that T̃ FCFS(s) = T̃ FCFS
Q (s) · S̃(s).

7.9 Proof of Theorem 7.5.3: Asymptotic Improvement
Theorem 7.5.3. Suppose S is a continuous class I job size distribution. For any smin < x1 ≤
x2 ≤ x3, the asymptotic tail improvement ratio of Nudge(x1, x2, x3) compared to FCFS is

AsymTIR = psmallplarge

λ

λ+ θ∗

(
S̃large(−θ∗)−

λ

λ+ θ∗
S̃small(−θ∗)−

θ∗

λ+ θ∗
S̃large(−θ∗)S̃small(−θ∗)

)
.

Furthermore, AsymTIR is positive, meaning CNudge < CFCFS, if

λ+ θ∗

λ
<

1− S̃large(−θ∗)−1

1− S̃small(−θ∗)−1
.
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Below we give a high-level overview of the proof, followed by the full proof.

Proof sketch. Using the Final Value Theorem, one can show that for Alg ∈ {Nudge,FCFS},

CAlg =
1

θ∗
lim
s→0

sT̃Alg(s− θ∗).

Combining this with Theorem 7.5.4, which relates T̃Nudge(s) to T̃ FCFS(s), will relate CNudge to
CFCFS.

To obtain AsymTIR = 1−CNudge/CFCFS, we compute lims→0(sT̃ FCFS(s− θ∗)− sT̃Nudge(s−
θ∗)) we compute lims→0(sT̃Nudge(s − θ∗)) in terms of CFCFS via Theorem 7.5.4. Each non-

vanishing term has an sT FCFS
Q (s − θ∗) factor. Because T̃ FCFS

Q (s) = T̃ FCFS(s)/S̃(s), we can
express CFCFS − CNudge as a constant times CFCFS; this constant is AsymTIR.

Proof. We prove this theorem using the Laplace-Stieltjes transform derived in Theorem 7.5.4.
The transform of the tail of TNudge can be calculated as∫ ∞

t=0

e−stP
{
TNudge > t

}
dt = −

∫ ∞

t=0

P
{
TNudge > t

}
d

(
e−st

s

)
= − P

{
TNudge > t

}(e−st

s

)∣∣∣∣∞
0

+

∫ ∞

t=0

e−st

s
dP
{
TNudge > t

}
=

1

s

(
1−

∫ ∞

t=0

e−stfTNudge(t) dt

)
=

1− T̃Nudge(s)

s
. (7.31)

Then the transform of eθ∗tP
{
TNudge > t

}
is obtained by translating (7.31) horizontally through

θ∗ units: ∫ ∞

t=0

e−st
(
eθ

∗tP
{
TNudge > t

})
dt =

1− T̃Nudge(s− θ∗)

s− θ∗
.

Now, we are ready to calculate CNudge using this transform. From Final Value Theorem,

CNudge = lim
t→∞

eθ
∗tP
{
TNudge > t

}
= lim

s→0
s
1− T̃Nudge(s− θ∗)

s− θ∗

=
1

θ∗
lim
s→0

sT̃Nudge(s− θ∗)

Now, we substitute the expression from Theorem 7.5.4, and drop terms that are negligible in
s→ 0 limit.
1

θ∗
lim
s→0

sT̃Nudge(s− θ∗) = CFCFS

+
1

θ∗
psmallplarge

(
S̃large(−θ∗)(S̃small(−θ∗)− 1)CQ,FCFS + S̃small(−θ∗)(1− S̃large(−θ∗))

CQ,FCFS

S̃(−θ∗)

)
,

(7.32)
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where

CQ,FCFS = lim
s→0

sT̃ FCFS
Q (s− θ∗) = lim

s→0
s
T̃ FCFS(s− θ∗)

S̃(s− θ∗)
=

θ∗CFCFS

S̃(−θ∗)
. (7.33)

We recall that −θ∗ is the rightmost singularity of T̃ FCFS
Q (s) = (1−ρ)s

λS̃(s)−λ+s
, which indicates that

θ∗ is the smallest positive value that satisfies

λS̃(−θ∗)− λ− θ∗ = 0 and S̃(−θ∗) = λ+ θ∗

λ
. (7.34)

Using (7.33) and (7.34) to simplify (7.32), we obtain

CNudge

= CFCFS

(
1− psmallplarge

λ

λ+ θ∗

(
S̃large(−θ∗)−

λ

λ+ θ∗
S̃small(−θ∗)−

θ∗

λ+ θ∗
S̃large(−θ∗)S̃small(−θ∗)

))
.

This gives us

AsymTIR = 1− CNudge

CFCFS

= psmallplarge

λ

λ+ θ∗

(
S̃large(−θ∗)−

λ

λ+ θ∗
S̃small(−θ∗)−

θ∗

λ+ θ∗
S̃large(−θ∗)S̃small(−θ∗)

)
.

By assumption,
λ+ θ∗

λ
<

1− S̃large(−θ∗)−1

1− S̃small(−θ∗)−1
,

so we have

AsymTIR = psmallplarge

λ

λ+ θ∗
S̃large(−θ∗)S̃small(−θ∗)

(
S̃small(−θ∗)−1 − λ

λ+ θ∗
S̃large(−θ∗)−1 − θ∗

λ+ θ∗

)
= psmallplarge

λ

λ+ θ∗
S̃large(−θ∗)S̃small(−θ∗)

(
λ

λ+θ∗

(
1−S̃large(−θ∗)−1

)
−
(
1−S̃small(−θ∗)−1

))
> 0.

Hence CNudge < CFCFS.

7.10 Empirical Lessons
This chapter proves that Nudge stochastically improves upon FCFS under the correct choice of
parameters, and achieves multiplicative improvement in the asymptotic tail. However, there are
a few practical questions remaining. These questions center around finding Nudge parameters in
practice. In this section, we demonstrate several practical lessons on choosing Nudge parameters.

1. (Section 7.10.1) We find that Nudge typically achieves its greatest improvement over FCFS
when the Nudge parameters specify that all jobs are either large or small (i.e. x1 = x2,
x3 =∞).
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Figure 7.4: Empirical tail improvement of Nudge over FCFS under a variety of Nudge param-
eter choices. Highest improvement occurs when x1 = x2, x3 = ∞. Job size distribution is
hyperexponential with branches drawn from Exp(2) and Exp(1/3), where the first branch has
probability 0.8. E [S] = 1, C2 = 3. Simulations run with 10 billion arrivals. Load ρ = 0.8.
Parameter choices are listed in order of asymptotic improvement.

2. (Section 7.10.2) We find that when load is low, Nudge can dramatically improve upon
FCFS (10-20%) in the common case where job size variability is relatively high (i.e. C2 >
1). When job size variability is lower and load is low, improvement is smaller.

3. (Section 7.10.3) We find that the space of parameters that lead Nudge to asymptotically
improve upon FCFS typically also cause Nudge to stochastically improve upon FCFS.
This is serendipitous, because Theorem 7.5.3 provides a simple, exact method to check
whether given Nudge parameters will achieve asymptotic improvement over FCFS.

7.10.1 All Jobs Should Be Either Large or Small

When evaluating Nudge on common job size distributions, we have found that the greatest im-
provement over FCFS is achieved by setting the Nudge parameters such that all jobs are either
large or small (i.e. x1 = x2, x3 = ∞), with no medium or very large jobs. This is a pattern we
have seen with great consistency across a variety of job size distributions.

In Fig. 7.4, we show one instance of this pattern, for the case of a particular hyperexponential
distribution. We see that the two choices of Nudge parameters that display the least improvement
over FCFS are those where both medium and very large jobs exist, i.e. x1 ̸= x2 and x3 ̸=∞.

To explain this phenomenon, note that when we remove medium and very large jobs, we end
up with more swaps. Empirically, we have found that the quantity of swaps is more important
than the quality of those swaps, and thus maximizing the number of swaps leads to the largest
improvement. While empirically removing medium and very large jobs improves performance,
our analytical result in Theorem 7.5.2 requires medium and very large jobs.

Setting the Nudge parameters so that all jobs are either large or small dramatically simplifies
the problem of choosing Nudge parameters, in addition to achieving consistently strong perfor-
mance. Now, only one free parameter remains: the cutoff between small and large jobs.
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(a) High variance: C2 > 1; x1 = x2 = 1, x3 =∞ (b) Low variance: C2 < 1; x1 = x2 = 0.2, x3 =∞
Figure 7.5: Empirical tail improvement of Nudge over FCFS at low load (ρ = 0.4) under a va-
riety of job size distributions with E [S] = 1. (a) Higher variance distributions show dramatic
improvement. (b) Lower variance distributions show modest improvement. Specific distribu-
tions: In (a), Mixed Uniform: Uniform(0, 1) w/prob. 0.9, else Uniform(0, 11), C2 = 3.33;
Hyperexponential: Exp(2) w/ prob. 0.8, else Exp(1/3), C2 = 3; ChiSquared(1), C2 = 2;
InverseGaussian(µ = 1, λ = 1/2), C2 = 2. In (b), Triangle w/ min = 0, mode = 0, max = 3,
C2 = 1/2; Uniform(0, 2), C2 = 1/3; Erlang(k = 3, λ = 1/3, C2 = 1/3; Beta(α = 2, β = 2)
scaled by a factor of 2, C2 = 1/5. Distributions listed in order of asymptotic improvement.
Simulations run with 10 billion arrivals.

7.10.2 Low Load: Dramatic Improvement when Variability is High

At low load, Nudge has the potential for dramatic improvement over FCFS (> 10% throughout
the tail), in the common case where the job size distribution is more variable than an exponential
distribution, i.e. C2 > 1. On the other hand, under low-variability job size distributions (C2 < 1),
we find that Nudge’s improvement shrinks at lower loads; here it helps to set the x1 cutoff close
to 0.

In Fig. 7.5 we show these patterns for a wide variety of distributions at relatively low load ρ =
0.4. In Fig. 7.5(a), we have four high-variance job size distributions, each with C2 ∈ [2, 3.33].
In every case, Nudge dramatically improves upon FCFS, with TIR in the range of 10-15%. In
Fig. 7.5(b), we have four low-variance job size distributions, each with C2 ∈ [1/5, 1/2]. In these
cases, we reduce the cutoff x1 to 0.2 for best performance, and Nudge’s improvement over FCFS
is under 3%.

Intuitively, when load is low, each job waits behind fewer other jobs on average, so Nudge’s
one swap per job has a greater relative impact. When those swaps are broadly beneficial for the
tail, as occurs when job size variance is high, Nudge achieves the most dramatic improvement
over FCFS. When job size variance is low, swaps involving small jobs that are near the mean job
size cause the response time of the large jobs to suffer too much. To alleviate this, we reduce the
small job cutoff x1 to maintain stochastic improvement over FCFS.
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Job size dist. x1 Asym. Stoc. x1 Asym. Stoc. x1 Asym. Stoc. x1 Asym. Stoc. x1 Asym. Stoc.
Exponential 0.5 ✓ ✓ 1 ✓ ✓ 2 × × 4 × × 8 × ×

Hyperexponential 0.5 ✓ ✓ 1 ✓ ✓ 2 ✓ ✓ 4 ✓ ✓ 8 ✓ ✓
Bounded Lomax 0.5 ✓ ✓ 1 ✓ ✓ 1.5 × × 2 × × 3 × ×

Uniform 0.1 ✓ ✓ 0.2 ✓ ✓ 0.5 × × 0.75 × × 1 × ×
Beta 0.1 ✓ ✓ 0.2 ✓ ✓ 0.3 × × 0.4 × × 0.5 × ×

Table 7.1: Presence or absence of asymptotic and stochastic improvement of Nudge over FCFS
under a variety of job size distributions and Nudge parameter choices. Stochastic improvement
occurs whenever asymptotic improvement occurs. Each row gives a distinct job size distribution,
and each cell gives a distinct Nudge parameter setting. In every case, x2 = x1 and x3 = ∞, so
only x1 is specified. Load ρ = 0.4. Specific job size distributions, each with mean 1: Exponential
with mean 1, Uniform(0, 2), Hyperexponential drawn from Exp(2) w/ prob. 0.8 and Exp(1/3)
with prob. 0.2, BoundedLomax(λ = 2,max = 4, α = 2), Beta(α = 2, β = 2) scaled by a factor
of 2.

7.10.3 Asymptotic Improvement Means Stochastic Improvement

After extensively simulating Nudge under different loads and job size distributions, we have
found that the space of parameters under which Nudge asymptotically improves upon FCFS
typically matches the space under which Nudge stochastically improves upon FCFS.

In Table 7.1, we show the consistency of this relationship across a wide variety of job size
distributions and choices of Nudge parameters. The distributions range from a low-variance Beta
distribution with C2 = 1/5 to a hyperexponential distribution with C2 = 3. Across the spectrum,
Nudge stochastically improves over FCFS whenever it asymptotically improves over FCFS.

This connection between asymptotic and stochastic improvement is surprising given that the
conditions that we need to prove stochastic improvement (Theorem 7.5.1) are much more strin-
gent than what we need to prove asymptotic improvement (Theorem 7.5.3). Nonetheless, the
connection is highly useful because we have provided a simple analytical formula for determin-
ing when Nudge asymptotically improves upon FCFS (Theorem 7.5.3).

7.11 Nudge in practice
Nudge can be used in practice even if some of the assumptions made in this chapter are not
perfectly satisfied.

In this chapter, we assume that exact job size information is known to the scheduler. However,
such information is only used to determine which size class (small, large, etc.) a job should be
placed in. In practice, only estimates of job size may be known. In such a setting, the scheduler
could assign jobs that are clearly above or below a size threshold to the large and small classes,
while placing ambiguous jobs in the medium class. If the estimates are reasonably accurate, we
would expect such a Nudge policy to stochastically improve upon FCFS.

We also assume that the exact job size distribution is known to the scheduler. This assumption
is needed to choose the Nudge parameters for our proofs in Section 7.5. However, our empirical
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results in Section 7.10 show that much less information is needed in practice to choose good
Nudge parameters. For instance, as we saw in Section 7.10.2, the following choice of parameters
works well empirically: By default, set x1 = x2 = E[S], x3 = ∞. However, if load is low and
job size variability (C2) is low, set x1 = x2 = E[S]/5, x3 =∞.

7.12 Variants on Nudge

As Nudge is such a simple policy, there are many interesting variants of Nudge that one could
investigate. We now discuss the advisability of several such variants.

Recall that Nudge only ever swaps a job at most once. One might consider allowing a job
to swap a second or third time with new arrivals, or even an unlimited number of times. Un-
fortunately, this change could ruin Nudge’s stochastic improvement over FCFS, if implemented
poorly. In particular, under a Nudge variant where large jobs can be swapped with an unlimited
number of small arrivals, such highly-swapped large jobs will typically dominate the response
time tail, dramatically worsening the variant’s tail performance. A wiser variant might be to
allow large jobs to be swapped with a bounded number of small jobs, or to allow only the small
jobs to be swapped an unlimited number of times.

Another interesting variant of Nudge would only swap in a probabilistic fashion, such as
with an i.i.d. coin flip. We believe such a policy could achieve stochastic improvement over
FCFS. However, proving such a result would be no simpler than for Nudge, because probabilistic
swapping does not change the shape of the distribution of swaps. Moreover, the variant’s tail
improvement ratios would likely be smaller than those of Nudge, because a smaller fraction of
jobs are involved in swaps.

Finally, one could design a more complicated variant of Nudge which would consider a job’s
exact size when deciding whether to swap, rather than simply comparing the job’s size to a
threshold. For instance, one might decide to swap all pairs of jobs whose sizes differ by a factor
of 2, as long as neither job has yet been swapped. These more complicated Nudge variants might
achieve even larger stochastic improvements over FCFS than Nudge. Beyond FCFS, such Nudge
variants might be able to stochastically improve upon some or even all Nudge policies. We leave
this possibility as an open question.

7.13 Technical Conclusion

We introduce Nudge, the first scheduling policy whose response time distribution stochastically
improves upon that of FCFS. Specifically, we prove that with appropriately chosen parame-
ters, Nudge stochastically improves upon FCFS for light-tailed job size distributions7. From an
asymptotic viewpoint, we prove that Nudge achieves a multiplicative improvement over FCFS,
disproving the strong asymptotic optimality conjecture for FCFS. Finally, we derive the Laplace-
Stieltjes transform of response time under Nudge, using a novel technique. Nudge is simple to
implement and is a practical drop-in replacement for FCFS when job sizes are known.

7More specifically, continuous class I job size distributions with positive density at 0.
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One of the major insights of this chapter is that improving the tail does not follow the same
intuitions that we use in improving the mean. While improving mean response time is often a
matter of helping small jobs jump ahead of large ones, when it comes to the tail, this has to be
done in a very measured way. Too much help to the small jobs causes the tail to get a lot worse.
Nudge finds the exactly appropriate way to do this.

One direction for future work is further exploring the stochastic improvement frontier. Can
we stochastically improve upon other commonly used scheduling policies? Can we improve
upon Nudge itself, such as with a more complicated variant of Nudge (see Section 7.12)? One
policy which cannot be stochastically improved upon is SRPT, due to its optimal mean response
time. Can we prove that other policies are unimprovable?

Another direction is simplifying the definition of Nudge. Our empirical results in Sec-
tion 7.10 indicate that in practice, Nudge can always stochastically improve upon FCFS with
only two classes of jobs: small and large. Thus Nudge appears to only need a single cutoff. It
would be of practical importance to figure out how to extend the theorems in this chapter to hold
for this simplified definition of Nudge.

7.14 General Conclusion

7.14.1 Summary

We start by summarizing the results proven in this chapter, as well as the key techniques behind
these results.

Results: Nudge achieves better asymptotic tail response time than FCFS We prove
that our novel Nudge policy, which we define in Section 7.4.5, achieves a smaller asymp-
totic tail of response time than FCFS (See Theorem 7.5.3 and Corollary 7.5.1). In particu-
lar, in the limit as the response time threshold t goes to infinity, the ratio of tail probabilities
P
{
TNudge > t

}
/P
{
T FCFS > t

}
is strictly below 1. This result overturns the prior conjecture of

FCFS’s strong tail optimality [232]. This result holds for a broad class of job size distributions
known as “light-tailed” job size distributions (See Section 7.4.3), which is the class of job size
distributions for which FCFS achieves good tail performance [27].

Results: Nudge stochastically dominates FCFS Moreover, we prove that Nudge stochas-
tically dominates FCFS with respect to the tail of response time (See Theorems 7.5.1 and 7.5.2).
By “stochastically dominates”, we mean that for every response time threshold t, Nudge’s tail
probability P

{
TNudge > t

}
is smaller than FCFS’s tail probability P

{
T FCFS > t

}
. As a result,

Nudge improves upon FCFS for every common tail performance metric, including all percentiles
of response time such as T 99, and all moments of response time such as E[T 2].

Simulation result: Nudge achieves significant improvement While our results only prove
that some improvement over FCFS is achieved, we show via simulation in Fig. 7.5 that Nudge
achieves a significant margin of improvement over FCFS. For instance, in Fig. 7.5(a), we see that
under a variety of relatively high-variance job size distributions, Nudge achieves 10-15% better
tail performance than FCFS across all response time thresholds.

Key technique: Analyze Nudge relative to FCFS Our analysis relies on the wealth of
results about the distribution of response time under FCFS. Because Nudge is defined to be a
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slight modification of FCFS, we are able to quantify the scenarios where Nudge outperforms
FCFS and vice versa. Every time Nudge interchanges the service order of a pair of jobs relative
to FCFS, that decision is beneficial relative to some response time thresholds t, and detrimental
relative to other thresholds. We use prior results on FCFS’s response time distribution to prove
that in total, the beneficial interchanges outweigh the detrimental interchanges. In particular, for
every threshold t, beneficial interchanges occur at a higher rate than detrimental interchanges.
This relative analysis is the key to proving Lemma 7.6.2, which is the key step towards proving
our main results.

7.14.2 Subsequent Results: Nudge-K
The Nudge policy and the results discussed in Section 7.14.1 have been generalized to an entire
family of scheduling policies in subsequent work. Van Houdt [222] defines the Nudge-K family
of scheduling policies. While Nudge only moves a job by at most one position relative to the ar-
rival ordering, the Nudge-K policy allows a small job to move past up to K large jobs. Van Houdt
characterizes the asymptotic tail of response time of Nudge-K, and theoretically characterizes
the value of K for which Nudge-K achieves the best asymptotic tail of response time. Note that
the Nudge policy considered in this paper is equivalent to that paper’s Nudge-1. Van Houdt also
empirically finds workloads for which Nudge-2 stochastically improves upon Nudge-1, answer-
ing one of the open problems we pose in Section 7.12. Finally, Van Houdt finds complex and
interesting behavior when the “small” and “large” jobs, rather than being strictly ordered by size,
can have overlapping size distributions.

7.14.3 Future Direction: Intermediate Tail
This chapter invents the Nudge policy, and proves that it stochastically improves upon FCFS.
FCFS is primarily of interest for its excellent tail performance for very large tail thresholds t.
Nudge is therefore a better choice in this regime. At the opposite extreme, when scheduling for
mean response time, SRPT is known to achieve optimal mean response time.

The intermediate tail performance regime, neither focusing on the asymptotic tail nor the
mean, is underexplored. One way of quantifying this intermediate tail is to look at the moments
of response time, namely E[Tα] for various constants α. If α = 1, we have the mean. In the
α→∞ limit, the asymptotic tail dominates. A natural intermediate choice is α = 2, giving rise
to E[T 2], the second moment of response time.

As a measure of the intermediate tail, E[T 2] has the advantage that it has already been an-
alyzed for many scheduling policies. For many scheduling policies, the Laplace-Stieltjes trans-
form of mean response time T̃ (s) is known [104, 201], and the second moment E[T 2] can easily
be extracted from T̃ (s). However, the policies that would achieve the best second-moment per-
formance have not been analyzed.

For instance, as we discuss in Section 8.3.5, a natural scheduling policy to try to optimize
E[T 2] is the t/s policy, which prioritizes jobs by their ratio of time in system to job size. The
t/s policy has not been analyzed, though the Accumulating Priority Queue framework [21, 59,
159, 211] may be a useful tool for analyzing it. Analyzing the t/s policy’s second moment E[T 2]
would be a major step forward in our understanding of the intermediate tail performance regime.
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7.14.4 Future Direction: Multiserver Nudge
This chapter studies Nudge in the single-server setting. However, multiserver settings, as studied
in the rest of this thesis, better model the behavior of large-scale computing systems. Therefore,
a natural open question is:

In a multiserver setting, does Nudge stochastically improve upon FCFS? Does Nudge
achieve a better asymptotic tail of response time than FCFS?

To prove that Nudge does achieve such an improvement, the work-conserving finite-skip
analysis from Chapter 4 and the general finite-skip analysis from Chapter 6 may be useful, as
Nudge is a finite-skip scheduling policy. While the results in those chapters focus on mean
response time, the techniques could likely be generalized to analyze the tail of response time.

7.14.5 Potential Impact
We now explore potential directions in which the Nudge scheduling policy could be applied.

Adopting Nudge into Modern Computing Systems

Our analysis of the Nudge scheduling policy shows that Nudge can significantly improve tail
performance compared to FCFS scheduling, which is the default scheduling policy in many
computing systems. Nudge stochastically improves upon FCFS scheduling, making it a better
choice for all tail performance metrics.

Moreover, Nudge is an extremely simple policy to implement: It does not perform preemp-
tion, and a job’s position in the service ordering is typically determined long before the job
reaches service.

However, the road from theoretical results to adoption requires overcoming several hurdles.
These include:

Size estimates. Nudge uses exact size information, but in real systems, only size estimates may
be available. Fortunately, Nudge only uses size information to classify jobs as either
“small” or “large”, for the purpose of moving a small job past a large job. If size esti-
mates are instead used for this classification, Nudge will still improve upon FCFS, as long
as those estimates are usually accurate. If estimates are relatively low quality, it may be
helpful to classify some jobs as “uncertain”, and avoid interchanging those jobs. If some
jobs can be reliably estimated to be smaller than other jobs, then Nudge can improve upon
FCFS.

General arrival processes. In this chapter, we assumed a Poisson arrival process, where jobs
arrive at a static rate. In real systems, arrivals may be burstier, temporarily arriving faster
and slower than the long-term rate. In these bursty scenarios, it is important not to in-
terchange the order of a pair of small and large jobs where the small job arrives much
later than the large job. Such interchanges can have an outsized negative impact on tail
performance. In the Poisson arrival case, this scenario is rare enough that it can safely
be ignored. In the bursty arrival setting, it would be useful to place an explicit limit: An
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interchange should only be performed if the difference in arrival times is not much larger
than the mean interarrival time.

Scheduling People Using Nudge

Given how useful Nudge can be when scheduling jobs in a computing system, it is natural to
consider it for scheduling people. For instance, one could use Nudge to schedule calls at a call
center. One could estimate jobs as either shorter or longer based on the call description, and
then interchange the order of one short call and one long call. By doing so, one would achieve
stochastic improvement over the default FCFS ordering.

Moreover, Nudge has advantageous properties specific to the setting of scheduling people.
People care deeply about fairness in scheduling. In this regard, Nudge is an appealing choice.
People generally agree that FCFS is a fair way to schedule. Under Nudge, everyone achieves a
response time similar to their response time under FCFS: A long job is delayed by at most one
small job’s duration. As a result, no one is inconvenienced too much, while improving the overall
tail performance of the system.

Nudge also produces advantageous incentives when compared to more dramatic scheduling
policies such as Shortest Remaining Processing Time (SRPT). Under SRPT, the job with the
shortest duration receives immediate priority over all other jobs. As a result, people may be
sorely tempted to misreport the features of their job, to try to receive service much faster. Under
Nudge, while smaller jobs still receive service somewhat sooner, the possible effect of such
misreporting is much smaller, reducing the incentive to lie.
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Conclusion
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Chapter 8

Conclusion

8.1 Summary
In this thesis, we study three themes within the broad heading of optimal scheduling in multi-
server queues. We now summarize the results from each theme and the key techniques we use to
prove those results.

Theme 1: One-server-per-job multiserver scheduling In Chapters 2 and 3, we study schedul-
ing in standard multiserver models where each job occupies a single server. In both cases,
we study how to optimally make use of size information, where a job’s size is the inherent
amount of work in the job. We summarize our results and key techniques in Section 8.1.1.

Theme 2: Multiserver-job scheduling In Chapters 4 to 6, we study scheduling in multiserver-
job (MSJ) models, where different jobs require different numbers of servers. We invent
novel policies, analyze the performance of novel and existing policies, and prove opti-
mality results in the MSJ setting. We summarize our results and key techniques in Sec-
tion 8.1.2.

Theme 3: Tail scheduling In Chapter 7, we study scheduling for the purpose of improving the
tail of response time. In contrast, the other two themes focus on mean response time. Our
work in this theme focuses on single-server models, but we hope that the resulting policy
and analysis will be useful in future multiserver analysis. We summarize our results and
key techniques in Section 8.1.3.

8.1.1 Theme 1: One-server-per-job Multiserver Scheduling
Multiserver systems are the default in large-scale computing. A computing cluster will have
hundreds or thousands of machines, each with dozens of cores. Thousands of jobs might be in
progress at the same time. Scheduling decisions, deciding in what order to serve the jobs, have
the potential to yield major performance improvements with no additional resources. However,
scheduling theory has overwhelmingly focused on singe-server models. In this thesis, we prove
the first results on optimal multiserver scheduling.

We study two models of multiserver scheduling: a central queue model, in Chapter 2, and a
dispatching model, in Chapter 3. We depict these two models in Fig. 8.1.
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Figure 8.1: The central-queue multiserver model (Chapter 2) and the dispatching multiserver
model (Chapter 3). In both cases, the scheduling policy is Shortest-Remaining-Processing-Time
(SRPT), which serves the job(s) of least remaining size. In the dispatching model, a dispatching
policy must also be chosen. The dispatching policy determines which jobs to send to which
servers.

In Chapter 2, we primarily study an existing scheduling policy, the Shortest-Remaining-
Processing-Time (SRPT) policy, which serves the k jobs of least remaining size. Size is the
inherent work of a job, which in this setting is proportional to the amount of time in service the
job requires. We show the central-queue SRPT policy in Fig. 8.1.

In the dispatching setting we consider in Chapter 3, there are two policy decisions that must
be made: The dispatching policy, which determines which jobs to send to which servers, and
the scheduling policy, which determines the order in which to serve the jobs at a given server.
In Chapter 3, we study the SRPT scheduling policy, which is the optimal scheduling policy
to combine with any dispatching policy. We devise the novel guardrails class of dispatching
policies for use in combination with SRPT scheduling (See Section 3.3). The key property of
guardrails dispatching policies is to ensure that each job has a mixture of small, medium, and
large jobs. We depict dispatching to servers which use SRPT scheduling in Fig. 8.1.

Results: Optimality In Chapter 2, we prove that the multiserver SRPT scheduling policy
achieves optimal mean response time in the heavy-traffic limit, the limit in which the arrival
rate approaches the capacity of the system (See Corollary 2.7.1). In Chapter 3, we prove that
any dispatching policy in our novel guardrails class of policies, when combined with the SRPT
scheduling policy, achieves optimal mean response time in the heavy-traffic limit (See Corol-
lary 3.4.1). These proofs are the first optimality results in their respective multiserver settings.
In Chapter 2, we prove that several additional scheduling policies also achieve optimal mean
response time in the heavy-traffic limit (See Section 2.8).

Results: Bounds on mean response time In Chapter 2, we prove an upper bound on mean
response time under multiserver SRPT (See Theorem 2.6.2). This upper bound proves that mul-
tiserver SRPT’s mean response time is not much larger than that of resource-pooled SRPT. In a
resource-pooled system, all of the k original servers are combined into one giant server which
runs k times faster. Using prior single-server analysis, we know the mean response time in the
resource-pooled SRPT system [196]. Our bound relative to the resource-pooled SRPT system
becomes tight in the heavy-traffic limit (See Theorem 2.7.1). The resource-pooled SRPT sys-
tem is a lower bound on the achievable mean response time in the multiserver system, so this
tightness implies our optimality result. In Chapter 3, we likewise prove an upper bound on mean
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Figure 8.2: The multiserver-job (MSJ) model, under two scheduling policies: MSJ FCFS (Chap-
ter 6) and ServerFilling (Chapter 4). In the MSJ model, a job has two characteristics: A server
need, the number of servers it requires in order to run, and a service duration, the amount of time
in service it requires in order to complete.

response time under the combination of a guardrails dispatching policy and SRPT scheduling
(See Theorem 3.4.1). This bound likewise becomes tight in the heavy traffic limit (See Theo-
rem 3.4.2).

Simulation results: Low mean response time at moderate load In Chapter 2, we con-
duct simulations which show that multiserver SRPT’s mean response time converges to that of
resource-pooled SRPT even at moderate arrival rates, not just in the heavy traffic limit (See
Fig. 2.6). In Chapter 3, we conduct simulations which show that the combination of guardrails
dispatching and SRPT scheduling achieves either the best or close-to-best mean response time at
moderate loads, under a variety of workloads (See Section 3.6).

Key technique: Coupling with resource-pooled SRPT Our key idea in both Chapters 2
and 3 is to compare each of our multiserver systems to a resource-pooled SRPT system by cou-
pling their arrival processes. Specifically, we feed the multiserver system and the resource-pooled
system the same arrivals, and prove that both systems have nearly identical amounts of relevant
work present at any given time. “Relevant work” is the amount of work present in the system
that would be prioritized ahead of a job with a given size. We prove this similarity in relevant
work between the coupled multiserver and resource-pooled systems in Lemmas 2.6.2 and 3.5.2.
We then build off the similarity in relevant work to prove that the systems have similar mean
response time, which is our main result.

8.1.2 Theme 2: Multiserver-job Scheduling

In large-scale computing systems, it is not only the case that there are many servers in the system,
and hence many jobs in service at a time. In addition, jobs often require dramatically different
amounts of resources, ranging from a small fraction of a machine to most of an entire cluster. To
capture the behavior of such systems, we study the multiserver-job model.

In the multiserver job (MSJ) model, each job has two requirements: Its server need, the
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number of servers it requires in order to run, and its service duration. We depict this model in
Fig. 8.2.

Within the MSJ model, we consider several different settings which differ on several axes:

Preemption: When a job in service is preempted, it is paused and returned to the queue, and it
can be resumed later. One could either allow or disallow preemption.

Server need distribution: One could consider a general server need distribution, where jobs of
any server need are possible, or a restricted server need distribution, where only certain
server needs are possible. One might restrict the set of possible server needs to ensure
better performance.

Duration information: One could consider scheduling policies which know the duration of the
jobs in advance, or which do not have such knowledge.

We study three distinct settings:

Chapter 4: We consider preemption to be available, a restricted server need distribution, and
unknown durations.

Chapter 5: We consider preemption to be available, a restricted server need distribution, and
known durations.

Chapter 6: We consider preemption to be unavailable, a general server need distribution, and
unknown durations.

These settings present a tradeoff between flexibility and performance. Chapter 6 is the most
flexible, followed by Chapter 4 and then Chapter 5, while we prove that the best performance is
achieved in Chapter 5, then Chapter 4, then Chapter 6.

Results: Mean response time analysis and optimality In each chapter, we characterize
the mean response time of either novel or existing scheduling policies.

In Chapter 4, we start by examining prior MSJ scheduling policies. Unfortunately, all prior
MSJ scheduling policies either are very complicated, or have poor mean response time. More-
over, no closed-form mean response time analysis is known for any prior scheduling policies.

We invent the ServerFilling scheduling policy (See Section 4.4.4), which is a relatively simple
scheduling policy with good mean response time, and for which we can analyze mean response
time.

ServerFilling is designed for the MSJ setting where all server needs are powers of 2. Further-
more, the total number of servers, k, is also a power of 2. To analyze ServerFilling, we prove that
its mean response time is nearly identical to the mean response time of the resource-pooled First-
Come First-Served (FCFS) scheduling policy (See Theorem 4.6.2). By the “resource-pooled”
system, we refer to a system in which all k servers are combined into one giant server which
runs any job at a speed k times faster than each individual server. Because single-server mean
response time is well understood, this allows us to analyze ServerFilling’s mean response time.
This approximation becomes tight in the heavy-traffic limit, the limit in which the arrival rate
approaches the capacity of the system (See Theorem 4.6.1). Our results also generalize to a large
class of scheduling policies known as work-conserving finite-skip (WCFS) policies (See Sec-
tion 4.3). This class includes the DivisorFilling policy, which handles the MSJ settings where all
server needs are divisors of k (See Section 4.7).
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In Chapter 5, we invent the ServerFilling-SRPT scheduling policy (See Section 5.4.2). We
prove that the ServerFilling-SRPT scheduling policy achieves optimal mean response time for
the MSJ setting, in the heavy-traffic limit (See Theorem 5.5.2). Specifically, we prove that
ServerFilling-SRPT’s mean response time is nearly identical to that of resource-pooled SRPT
(See Theorem 5.5.1). The mean response times of ServerFilling-SRPT and resource-pooled
SRPT converge in the limit as the arrival rate approaches the capacity of the system. Our results
also generalize to DivisorFilling-SRPT (See Section 5.7), as well as the ServerFilling-Gittins
policy for the scenario where job sizes are unknown (See Section 5.6). The Gittins index policy
is the analogue of SRPT for the setting of unknown job sizes, as it achieves optimal single-server
mean response time [72, 73, 199].

In Chapter 6, we analyze the MSJ FCFS scheduling policy’s mean response time (See Theo-
rem 6.5.2). Note that the FCFS policy leaves servers empty when jobs cannot fit into the available
servers, as shown in Fig. 8.2, making it considerably more difficult to analyze. Nonetheless, we
give a mathematical formula closely approximating MSJ FCFS’s mean response time. This ap-
proximation becomes tight in the heavy-traffic limit. Our result relates the behavior of the MSJ
system to that of the saturated system, a closed system where completions trigger new arrivals
and the total number of jobs in the system is always constant. Our results also generalize to han-
dle a large class of scheduling policies called finite skip scheduling policies (See Section 6.10).

Simulation results: Accurate analysis and low mean response time at moderate load In
Chapter 4, we conduct simulations which show that our approximation for ServerFilling’s mean
response time is highly accurate, even more accurate than our bounds imply (See Fig. 4.7). In
Chapter 5, we conduct simulations which show that ServerFilling-SRPT achieves excellent mean
response time even at moderate load, always remaining close to the resource-pooled SRPT lower
bound (See Fig. 5.5). In Chapter 6, we conduct simulations which show that our approximation
for MSJ FCFS’s mean response time is highly accurate, across a range of arrival rates (See
Fig. 6.4.

Key technique: W 2 method One of our key ideas in Chapters 4 to 6 is the W 2 method. This
technique takes its simplest form in Chapter 4. First, we define a job’s size, its inherent work, to
be the product of the fraction of service capacity it requires and its service duration. Note that
the fraction of service capacity a job requires is its server need divided by k, the total number of
servers. We then define W to be the total amount of work in the system, the total remaining size
of all jobs in the system. With this definition of work, whenever all k servers are occupied, work
is completed at rate 1. The ServerFilling policy keeps all k servers occupied whenever at least k
jobs are present (see Lemma 4.4.1), ensuring that it completes work at rate 1.

We then examine the random variable W 2, and examine its rate of change, both due to arrivals
and work completion. We know that the expected rates of change due to these two causes must
be equal in equilibrium. In Lemma 4.6.2, we use this equality of rates to derive bounds on E[W ],
the expected work in the system. These bounds consist of a term matching the work in a resource-
pooled M/G/1, and a waste term, which is only nonzero when fewer than k servers are occupied.
Using the properties of ServerFilling, we are able to bound the waste term. This expression
is the key to our analysis of ServerFilling’s mean work, and by extension ServerFilling’s mean
response time.

Extension: W 2
x method In Chapter 5, rather than quantifying mean total work E[W ], we

need to quantify mean relevant work E[Wx]. Relevant work is work consisting of jobs with
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remaining size smaller than some threshold x. Analyzing relevant work is key to understanding
SRPT and SRPT-like scheduling policies, such as ServerFilling-SRPT. We now examine the rate
of change of W 2

x due to arrival, work completion, and recyclings, jobs diminishing in remaining
size down to remaining size x. As we show in Lemma 5.5.2, the equality of rates allows to
give an expression for mean relevant work E[Wx]. This technique is also known as the “work
decomposition law”, and was introduced in our prior work on multiserver Gittins [202]. This
expression is the starting point for our analysis of ServerFilling-SRPT’s mean response time.

Extension: Relative completions In Chapter 6, the MSJ FCFS scheduling policy does not
generally keep all of the servers occupied. As a result, work W does not typically complete at
rate 1. To overcome this, we jettison the use of work W altogether. Instead, we take the number
of jobs in the queue Q, and subtract off the relative completions ∆(Y ) (See Section 6.4.8). Y
represents the state of the k oldest jobs in the system, which includes all of the jobs which could
be in service. We design the relative completions ∆ to ensure that the difference Q − ∆(Y )
always decreases due to completion at a constant expected rate. In this way, Q − ∆(Y ) plays
the same role in our analysis that W plays in Chapters 4 and 5. In particular, we examine the
rate of change of the function (Q −∆(Y ))2 as a key step in our analysis (See Definitions 6.6.1
and 6.7.1).

8.1.3 Theme 3: Tail scheduling

In computing systems, system operators typically focus on performance metrics which highlight
jobs with longer response times. Such metrics are known as tail performance metrics. These
long-delayed jobs represent the most annoyed users and the most severe problems, and making
them the system operator’s most pressing concern. With that in mind, our scheduling policies
should seek to improve the tail of response time.

We study scheduling for the goal of improving the tail of response time, in contrast to the
focus on mean response time in the rest of this system. We study the tail of response time in a
single-server setting, as even in this simpler setting, the effect of scheduling on tail performance
already presents several important open problems.

In Chapter 7, we devise the novel Nudge scheduling policy (See Section 7.4.5). We compare
Nudge against the FCFS scheduling policy, which was previously the best known scheduling
policy for optimizing the asymptotic tail of response time [27]. The asymptotic tail refers to the
asymptotic behavior of the tail probability P (T > t).

Results: Better asymptotic tail than FCFS We prove that Nudge achieves a better asymp-
totic tail of response time than FCFS (See Corollary 7.5.1). Previously, FCFS was the best known
scheduling policy for the asymptotic tail of response time, and was conjectured to be the optimal
scheduling policy for the asymptotic tail [232]. We overturn that conjecture with our result on
Nudge.

Results: Stochastic improvement on FCFS We prove that Nudge stochastically improves
upon FCFS (See Theorem 7.5.2). Specifically, we prove that for all thresholds t, Nudge achieves
a better tail probability P (T > t) than FCFS. This result implies that Nudge improves upon
FCFS for essentially all tail metrics, including all response time percentiles such as T 99 and all
moments of response time such as E[T 2].
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Simulation result: Significant improvement We conduct simulations which show that
Nudge’s improvement over FCFS is sizable in practice, achieving a 10-15% improvement in tail
probability across a wide range of thresholds t and a wide variety of job size distributions (See
Fig. 7.5(a)).

Key technique: Relative analysis Nudge is defined to be a slight modification of FCFS –
reordering jobs by at most one position relative to the arrival ordering. As a result, we are able
to characterize the scenarios where Nudge outperforms FCFS, and FCFS outperforms Nudge.
Every reordering of jobs is beneficial relative to some response time thresholds t, and detrimen-
tal relative to other thresholds. In Lemma 7.6.2, we use prior results on FCFS’s response time
distribution to bound the relative probabilities of benefit and detriment relative to a given thresh-
old t. We show that for every threshold, beneficial reorderings occur at a faster rate than than
detrimental reorderings.

8.2 Potential impact
We now explore potential directions in which our scheduling policies could be applied. We
discuss stochastic multiserver scheduling (Chapters 2 and 3) in Section 8.2.1, multiserver-job
scheduling (Chapters 4 to 6) in Section 8.2.2, and tail scheduling (Chapter 7) in Section 8.2.3).
For each theme, we discuss potential impact in two areas: scheduling for large-scale computing,
and scheduling involving people.

8.2.1 Stochastic Multiserver Scheduling
We now explore potential directions in which the central-queue SRPT (Chapter 2) scheduling
policy could be applied to real-world environments, as well as the guardrails class of dispatching
policies for use with SRPT scheduling (Chapter 3).

Adopting SRPT and Guardrails into Multiserver Computing Systems

Our analysis shows that SRPT scheduling can dramatically lower response times compared to
other scheduling policies, and that when SRPT scheduling is used, our guardrails class of dis-
patching policies can also dramatically lower response times. Both central-queue SRPT and the
combination of guardrails dispatching and SRPT scheduling are optimal for mean response time
under sufficiently heavy load. Our hope is that our results will lead computing system operators
to adopt these policies in their systems.

However, the road from theoretical results to adoption requires overcoming several hurdles,
including:

Unknown or estimated sizes: Often only approximate size information is known, rather than
the exact size information utilized by SRPT. If the job size distribution is known or the
estimate quality distribution is known, the Gittins index scheduling policy can be applied.
The Gittins policy has long been known to achieve optimal single-server mean response
time [72, 73, 199], making it the appropriate analogue of SRPT scheduling in this setting.
In the central-queue setting, we have shown in subsequent work that multiserver Gittins
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scheduling achieves asymptotically optimal mean response time [202]. In the dispatching
setting, the problem of dispatching in a system where the servers use Gittins scheduling is
an open problem (See Section 8.3.3). If estimates of relatively good quality are available,
one can simply use the guardrails approach, using a job’s size estimate to select a priority
class.
In subsequent work, we invent the SRPT-B scheduling policy for which situation where es-
timates are available but their quality is unknown [205]. We prove that in the single-server
setting, SRPT-B achieves consistent and gracefully degrading performance. Specifically,
SRPT-B matches the optimal mean response time of SRPT when estimates are highly ac-
curate, and degrades smoothly as estimates become less accurate. SRPT-B would likely
perform well in the multiserver setting, but it has not been analyzed.

Preemption overhead: The SRPT scheduling policy often preempts jobs, putting partially com-
pleted jobs back into the queue. In real systems, frequent preemption may be undesirable,
or there may be overhead associated with having many incomplete jobs in progress at once.
To adapt to these real-world concerns, one should only preempt jobs at the highest-impact
times. Preemption is most important to ensure that small jobs that can finish quickly are
not stuck behind large jobs that must finish slowly. One should therefore only preempt
jobs that are larger than a typical job in the system, and only preempt infrequently: If jobs
typically take about 1 second to complete, we might preempt a large job after it has been
in service for 1 second. Finally, we should only perform preemption when the queue is
long, meaning that many short jobs that are being held up by this one long job.

Multilevel dispatch: In this theme, we focused on the cases of central-queue multiserver schedul-
ing, and multiserver dispatch to individual servers. However, in many systems, there are
more levels of queues, and more dispatching decisions. For instance, a job might be dis-
patched to one of many computing clusters, then to one of many machines within that
cluster, and then wait in a central queue within that machine for one of many cores in
the machine. In any such multilevel hierarchy, the combination of SRPT scheduling and
guardrails dispatching will achieve low mean response times. Our optimality results will
likely compose, proving similar optimality results for such a hierarchical setting.

Differing importance: In the real world, some jobs may be far more latency-sensitive than
others. This is naturally modeled by introducing a holding cost per second waited for each
job. The natural generalization of SRPT to this setting is to prioritize jobs according to
the ratio of holding cost to remaining size. This policy is known as the “cµ-rule”. The
results of this theme generalize to prove optimality in that setting as well. Specifically, if
the ratio of largest to smallest holding cost is bounded, and does not change over time, the
techniques of this theme suffice. Gittins-based techniques may be helpful to handle the
setting of general holding costs [202].

Adopting SRPT and Guardrails for Scheduling People at Multiple Servers

Given that SRPT is so good at reducing mean response time for computing systems, it is natural
to also try to apply it to scheduling people. For instance, if two people show up to a post of-
fice, and one needs to mail a letter while the other needs to fill out some complicated shipping
paperwork, we should first serve the “short job”, the person who won’t take as long.
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However, challenges arrive when serving people. Some of these challenges, such as differing
time-sensitivity and overheads associated with preemption, have already been discussed early in
this chapter in the context of scheduling for computing.

Challenge: Fairness Some challenges are specific to the context of serving people. In
particular, people have strong opinions about fairness: If everyone is put in the same line, and
certain people are pulled out for favored treatment, people will get upset. However, if one makes
the scheduling structure transparent to the people involved, it will help quell that anger. For
instance, when checking people in to be seen at a bank office, one could have several sign-in lists,
associated with different durations of interactions and/or different time-sensitivities. Then people
know that the order they’re being seen isn’t due to favoritism or other inappropriate reasons.
People can also watch themselves approaching the front of their specific list, which makes people
more confident that they will be helped soon.

8.2.2 Multiserver-job Scheduling
We now explore potential directions in which the ServerFilling (Chapter 4) amd ServerFilling-
SRPT (Chapter 5) scheduling policies could be applied in real-world multiserver-job (MSJ)
scheduling environments, as well as our analysis of the MSJ FCFS scheduling policy (Chap-
ter 6).

From Theory to Practice in Multiserver Computing Systems:

• Adoption of ServerFilling and ServerFilling SRPT scheduling policies
• Utilizing the mean response time prediction from our MSJ FCFS analysis

Our hope is that our results will lead computing system operators to adopt our scheduling
policies in their systems, and to adopt our predictions of response time into their decision-making
process. However, the road from theoretical results to adoption requires overcoming several
hurdles, including:

Selecting server needs: Our results show that the best MSJ performance can be achieved when
the job’s server needs can consistently be packed onto the k servers, filling all k. Perfect
packing can be guaranteed when all server needs are powers of 2, and k is a power of 2.
This is key to our analysis of ServerFilling and ServerFilling-SRPT. However, in practice,
one might instead choose to be more flexible with server needs, and use a heuristic packing
strategy. If one used a heuristic packing strategy, it would be advisable to avoid having jobs
with server needs that are just above a divisor of k. For instance if k = 1000 servers, one
should avoid having jobs with server need 501 or 334, as a couple of such jobs could lead
to lots of servers being left idle. If server needs are chosen well, the heuristic packing
policy would likely only leave a small number of servers idle on average, which would
only degrade performance slightly. The magnitude of the mean response time impact can
be quantified using the approach from Chapter 6.

Multidimensional resource requirements: In real systems, jobs often require a variety of re-
sources, such as CPU cores, GPUs, memory, network bandwidth, disk IO, and more.
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These can be modeled as multidimensional resource requirements, in contrast to the single-
dimensional server need model considered in this chapter. In a general multidimensional
setting, using all of the resources at all times is typically not attainable. As a result, the
results of Chapters 4 and 5, which focus on this “full utilization” regime, will not be appli-
cable. However, if a single bottleneck resource exists, then we can focus on fully utilizing
that one resource, and the results of Chapters 4 and 5 may be applicable.
By contrast, the techniques of Chapter 6 can directly handle the multidimensional setting.
The multidimensional setting falls within the “finite skip” class of policies discussed in
Section 6.10.

Jobs with changing server need: In real systems, a job which requires concurrent service on
many servers often consists of many separate tasks sent to individual servers, which then
run mostly separately. Typically, some tasks will finish before others, until a few straggling
tasks are still running.
We can model this as a job whose server need diminishes as it receives service. Our results
in this theme can handle this variant of the MSJ model. In particular, if the job’s server
need is always a divisor of k, the DivisorFilling and DivisorFilling-SRPT policies from
Chapters 4 and 5 can be applied. For instance, in a k = 12 server system, a job could have
server need 4, then 3, then 2, then 1.
More generally, for arbitrary server needs, the MSJ FCFS analysis in Chapter 6 also applies
to this model of changing server needs.

ServerFilling, ServerFilling-SRPT, and MSJ FCFS for Scheduling People in Groups

Given our results for ServerFilling, ServerFilling-SRPT, and MSJ FCFS, it is natural to apply our
policies and our analysis for scheduling jobs that involve people. For example, in a contracting-
based business, different contracts might require different sizes of teams, and a ServerFilling
or ServerFilling-SRPT approach could be employed to schedule those contracts. A landscap-
ing company might have many lawns to tend to, with different sized lawns requiring different
numbers of people.

Challenge: Preemption However, challenges arise when scheduling people. Preemption
must be handled carefully, and performed rarely. To reduce the preemption rate of ServerFilling,
it makes sense to expand the set of jobs that are eligible for service. If people complete a job,
the first choice should be to assign those people to another job that requires the same number
of people. Only if no such jobs are available, or if such an assignment would prioritize a newly
arrived job over a job that has been waiting for a long time, should preemption be performed
instead.

Challenge: Differing importance When scheduling jobs involving people, it is typically
for different jobs to have different time sensitivities. A contract might be a rush-order, for in-
stance. To incorporate this into a performance objective, it is common to introduce a holding cost,
representing the cost per day until completion. To incorporate this information into a scheduling
decision, one should make use of the “cµ-rule”, which prioritizes jobs according to the ratio of
the job’s holding cost to its remaining size. In particular, one should use the ServerFilling-cµ
policy, analogous to ServerFilling-SRPT. Our optimality results on ServerFilling-Gittins actu-
ally cover ServerFilling-cµ policy, proving that it minimizes mean cost-weighted response time
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in the limit as arrival rate approaches capacity. If size information is unknown, one could just
use ServerFilling-c, just prioritizing by holding cost.

8.2.3 Tail scheduling
We now explore potential directions in which the Nudge scheduling policy (Chapter 7) could be
applied in real-world scheduling environments.

Adopting Nudge into Modern Computing Systems

Our analysis of Nudge shows that it can significantly improve tail performance compared to
FCFS scheduling, which is both the default scheduling policy in many fields, as well as the
previous best known scheduling policies. Nudge stochastically improves upon FCFS scheduling,
making it a better choice for all tail performance metrics. Moreover, Nudge is an extremely
simple policy to implement: It merely reorders jobs by at most one position relative to FCFS
scheduling.

However, our analysis of Nudge focused only on the single-server scheduling setting. As we
have discussed throughout this thesis, the multiserver scheduling model is more realistic. The
insights that inspired Nudge also apply in the multiserver setting, so its strong tail performance
is likely to transfer to that setting. Future work will be needed to verify and prove that Nudge
works well in the multiserver setting, however.

Beyond moving to multiserver settings, the road to practical adoption also requires overcom-
ing several hurdles, including:

Size estimates: Nudge uses exact size information, but in real systems, only size estimates may
be available. Fortunately, Nudge only uses size information to classify jobs as either large
or small, for the purpose of moving a small job ahead of a large job. If size estimates
are instead used for this classification, Nudge will still improve upon FCFS as long as the
estimates as sufficiently accurate.

Unknown sizes: In other settings, no size information may be known at all. We can design
a no-information variant of Nudge for this setting. Key to this policy is the insight that
in many practical scheduling settings, the job size distribution is high-variance. In high-
variance settings, a job that has received a significant amount of service typically has a
larger remaining size than a fresh job. We can think of this not-yet-complete job as a
“large” job for the purpose of Nudge, and think of the next fresh job in the queue as
a “small” job. We would preempt the incomplete large job, and run the fresh, hopefully
smaller job for some period of time. When the fresh job completes, or runs for long enough
that it doesn’t seem so small any more, we would then return to the paused large job.

Scheduling People Using Nudge

Given how useful Nudge can be when scheduling jobs in a computing system, it is natural to
consider it for scheduling people. People often do something a bit like Nudge in an ad-hoc
fashion. Suppose two people are waiting in a checkout line, and the one farther forward in line
has lots to buy and the one behind has very little. In this case, the person in front will often let
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the other person go by, as a matter of courtesy. But if someone’s already been passed in this way,
they might refuse to do it again. Nudge can be seen a formalization of this social convention, and
an explanation of why it’s a helpful idea.

Nudge specifically achieves a good sense of individual fairness, while also improving overall
performance. At an individual level, FCFS feels fair: No matter who you are or what the char-
acteristics of your job are, you’ll wait for the people who arrived before you, and people who
arrived after you will wait for you. Nudge has a similar feeling of individual fairness: Only at
most one person who arrived after you will run before you, and only if that person has a small
job. This is in contrast to a scheduling policy such as SRPT, where some jobs wait for almost no
one, and others wait for almost everyone.

8.3 Open problems
We end this thesis by presenting five open problems in optimal multiserver scheduling, each of
which build upon the work in this thesis. The open problems are:

Section 8.3.1: Finding a scheduling policy for the central-queue multiserver model (M/G/k)
with better mean response time than multiserver SRPT.

Section 8.3.2: Proving tight lower bounds on M/G/k scheduling.
Section 8.3.3: Optimal dispatching under unknown sizes or estimate sizes, by dispatching to

queues using Gittins scheduling.
Section 8.3.4: Optimal scheduling in the general multiserver-job model.
Section 8.3.5: Optimal scheduling for the intermediate tail of response time, focusing on metrics

between the extremes of mean response time and the asymptotic tail of response time.

8.3.1 Improving Upon SRPT-k at Moderate Load
In the context of multiserver scheduling (in the M/G/k), SRPT has multiple optimality properties.
As we showed in Chapter 2, under heavy traffic, namely as load ρ→ 1, multiserver SRPT (SRPT-
k) achieves asymptotically optimal mean response time. At the opposite extreme, if there were
no arrivals at all, SRPT-k has long been known to achieve optimal mean response time [77, 152].

However, SRPT-k makes scheduling decisions which seem suboptimal in specific circum-
stances. For example, consider a system that has k + 1 jobs, where k is the number of servers.
SRPT-k will serve the k smallest jobs, quickly completing 2 of them. At this point, the system
will have k−1 jobs, so a server will be idle. A different policy could have reordered service (pri-
oritizing the largest job) to delay the point in time when a server first becomes idle. The server
idleness wouldn’t be a problem if no jobs would arrive in the future. However, when future jobs
arrive, the system will have more work present than was necessary, resulting in poor response
times.

Note that this scenario can only occur frequently under moderate load: If load is very high,
there will rarely be only k + 1 jobs in the system. If load is very low, it is unlikely that enough
arrivals will occur in the near future for the extra work in the system to matter. Only at moderate
load can both events occur in sequence.
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Figure 8.3: The relative mean response time improvement of SRPT-Except-k + 1 (SEK) over
multiserver SRPT. We define the improvement to be 1 − E[T SEK ]/E[T SRPT -k], meaning that
positive values represent a mean response time improvement over SRPT-k. Setting is k = 2
servers and a hyperexponential job size distribution in which 95% of jobs take Exp(1.9) time,
and 5% take Exp(0.1) time. The squared coefficient of variation C2 = 10, representing a
relatively high-variance distribution. The largest improvement is by a margin of 0.8% at load
ρ = 0.964. Simulation used 108 arrivals, loads up to 0.996.

We therefore ask:

Does there exist a multiserver scheduling policy with better mean response time than
SRPT-k, under moderate load?

In preliminary simulation-based work, we have found a case where a policy can achieve
better mean response time than SRPT-k.

Let us define the “SRPT-Except-k + 1” (SEK) policy as follows, with a switching parameter
c:

• If there are k or fewer jobs in the system, serve all of them.
• If there are k + 2 or more jobs in the system, serve the k jobs of least remaining size.
• If there are exactly k + 1 jobs in the system, and k jobs have remaining size ≤ c, and one

job has remaining size≥ c, serve the k− 1 jobs with least remaining size, and the job with
largest remaining size.

• Otherwise, serve the k jobs of least remaining size.

SEK is the same as SRPT-k except for a carefully crafted exception in the case where k + 1 jobs
are present.

In Fig. 8.3, we simulate the relative mean response time improvement of SEK, as compared to
SRPT-k. The setting is a k = 2 server system with a relatively high-variance job size distribution
with squared coefficient of variation C2 ∼ 10. We choose switching parameter c = 4.

As Fig. 8.3 shows, SEK achieves better mean response times than SRPT-k for load ρ > 0.87,
achieving the largest improvement ratio at load ρ = 0.964.
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This raises several open questions: Can we prove that SEK always achieves better mean re-
sponse time than SRPT-k, for all workloads, under some load ρ and some switching parameter c?
How large of an improvement ratio can it achieve? Can it achieve arbitrarily large improvement
ratios?

8.3.2 Tight Lower Bounds on M/G/k Scheduling

To prove optimality for multiserver scheduling, our strategy has been to prove upper bounds on
the mean response time of a specific policy, and compare that upper bound to a lower bound on
the achievable mean response time for any scheduling policy. The lower bound that we have used
is the mean response time of the resource-pooled SRPT policy, which combines all k servers into
one giant server that runs k times as fast. In the heavy traffic limit, as the load ρ approaches the
capacity of the system, this lower bound is tight. This tight lower bound allows us to prove our
optimality results in Chapters 2, 3 and 5 and in subsequent papers [202].

However, outside of the heavy traffic limit, the resource-pooled SRPT system is too powerful,
and the resulting bound is not tight. This prevents us from proving optimality results outside of
the heavy-traffic limit.

One other important lower bound is the light-traffic bound. Even if all jobs received service
immediately on arrival, the mean response time would be kE[S], where k is the number of servers
and S is the random variable representing a job’s size. We have observed in simulation that for
a wide range of lower loads, this bound is close to tight [78]. The challenge arises in lower
bounding M/G/k scheduling in the intermediate regime, where neither of these lower bounds are
tight.

One way to derive improved lower bounds is to use the WINE formula [202], which we made
use of in Chapter 5. The WINE formula quantifies mean response time in terms of the relevant
work Wx in the system:

E[T ] =
1

λ

∫ ∞

0

E[Wx]

x2
dx

Relevant work Wx is defined to be the total remaining size of all jobs with remaining size less
than x. The WINE formula is exact, so a lower bound on relevant work translates directly to a
lower bound on mean response time.

Both the resource-pooled SRPT lower bound and the immediate-service lower bound can
also be used to give lower bounds on mean relevant work E[Wx]. Using the WINE formula, we
can combine these two bounds, selecting different bounds at different size thresholds x to give a
better bound than with either formula individually.

We show these three lower bounds, as well as the mean response time for multiserver SRPT,
in Fig. 8.4. There remains a significant gap between the best lower bound and the mean response
time of SRPT. To close this gap, we must both find better scheduling policies than SRPT, as we
discuss in Section 8.3.1, and prove tighter lower bounds on multiserver scheduling.

To improve our lower bounds, the WINE formula offers a promising path forward: We can
prove stronger lower bounds on relevant work, in order to prove stronger lower bounds on re-
sponse time.
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Figure 8.4: Three lower bounds on multiserver mean response time, compared to multiserver
SRPT. The three lower bounds are the resource-pooled SRPT lower bound, the immediate-
service lower bound, and the combination of the two using WINE. The setting is an M/M/10: an
exponential job size distribution and k = 10 servers.

8.3.3 Optimal Dispatching to Gittins Queues

In Chapter 3, we studied the problem of dispatching and scheduling in an immediate-dispatch
system in which exact job sizes were known. We invented the guardrails class of dispatching
policies, which achieve asymptotically optimal mean response time when combined with SRPT
scheduling at the servers.

The optimal single-server scheduling policy for mean response time when exact sizes are
not known is the Gittins policy [72, 73, 199]. In this way, Gittins is the analogue of SRPT for
the more general setting where exact sizes are not known. It is therefore natural to consider
dispatching to queues using Gittins scheduling.

However, Gittins’ single-server optimality is weaker than SRPT’s single-server optimality.
SRPT achieves optimal mean response time under an arbitrary arrival process. In contrast, the
Gittins optimality result only holds under a Poisson arrival process (in an M/G/1). This becomes
an issue when we dispatch to these queues, as the resulting arrival process to an individual queue
at a specific server will be far from Poisson, even though the overall arrival process is Poisson.

We therefore ask:

What is the optimal scheduling policy for dispatching to queues using Gittins schedul-
ing, when exact size information is not available?

Within this question, there are two important scenarios to consider: When size estimates are
available, and when no size information is available.

Dispatching with size estimates If size estimates are known, and are relatively accurate,
it would make sense to combine a guardrails-like policy with a Preemptive-Shortest-Estimated-
Job-First (PSJF-E) scheduling policy, which preemptively prioritizes jobs according to their esti-
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mates. With relatively accurate estimates, the Gittins policy resembles the PSJF-E policy. More-
over, the PSJF-E policy is much easier to specify, and potentially more amenable to analysis.

In contrast to PSJF-E, SRPT-based policies can be fragile when faced with occasional inac-
curacies [205]. Our results from Chapters 2 and 3 prove the same asymptotic optimality results
for PSJF scheduling, as for SRPT scheduling. It therefore is promising to pursue combining
PSJF-E scheduling with an estimate-based variant of guardrails.

Dispatching with unknown sizes With unknown sizes, all jobs are indistinguishable at the
point of dispatching, so the dispatching policy should be based purely on the queue states, to
balance the queues. In addition to knowing the number of jobs at each queue, the dispatcher
would also know the amount of service already received (the age) of the jobs at each queue.

As a starting point, one could calculate the excepted amount of time that a given job would
have to wait behind the jobs at each queue before it would complete service. A sensible greedy
dispatching policy would then dispatch to the queue where that expected waiting time is the
smallest. One could upgrade the policy by also considering the expected delay that the dispatched
job would inflict on the other jobs at that queue.

8.3.4 Scheduling in the General MSJ Model
In Chapter 5, we considered the problem of optimal MSJ scheduling. We explored the power
of two server-need setting, where ServerFilling-SRPT is asymptotically optimal, as well as the
divisible server-need setting, where DivisorFilling-SRPT is optimal.

General server needs However, this leaves open the problem of optimal scheduling in
the general server-need MSJ setting, where the server need distribution can be arbitrary. In
this setting, there is a fundamental tension between serving the smallest jobs, and ensuring that
servers are never left idle unnecessarily. For instance, consider a system where jobs have server
needs 1 and 2, and k = 3 servers. Suppose that the 1-server jobs typically have smaller sizes
than the 2-server jobs. We want to prioritize the 1-server jobs, because they have smaller sizes.
However, if we complete all of the 1-server jobs, but still have many 2-server jobs left, we will
be forced to leave a server idle. To achieve optimal mean response time, we must balance this
tradeoff. The power-of-two and divisible settings avoid this tradeoff by ensuring that all k servers
can be filled from among an arbitrary set of jobs, which does not hold in general.

Strategy: Minimum amount of 1-server jobs One strategy for handling the conflicting
goals of prioritizing small jobs without wasting servers in the above k = 3 server scenario would
be to maintain a minimum target amount of work of 1-server jobs in the system. If 1-server jobs
are running low, then the policy would serve both a 1-server and a 2-server job, giving time for
1-server jobs to replenish. If there are plenty of 1-server jobs, then we could freely serve the jobs
of least size.

Challenge: Lower bound One challenge for a policy that does not strictly prioritize the jobs
of smallest size is that it would not achieve similar response time to resource-pooled SRPT. It
would likely achieve similar response time to a different resource-pooled single-server schedul-
ing policy. Proving the resulting response time to be optimal would be challenging, as there is
no immediate lower bound ruling out better response times.

Alternative direction: Optimal finite-skip policy Another avenue of interest would be to
study optimal finite-skip policies, the policies analyzed in Chapter 6. Finite-skip policies serve
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jobs in near-FCFS order, which can be attractive for fairness and the tail of response time. The
finite-skip approach is also better-suited to finding optimal non-preemptive policies, which can
be advantageous in some settings.

Based on our results from Chapter 6, minimizing mean response time among finite-skip poli-
cies amounts to optimizing the throughput and relative completions of the saturated system. As a
result, this can be considered a Markov Decision Process (MDP) optimization problem over the
saturated system, which has a finite state space. One could therefore computationally derive the
optimal policy. One could also hope to analytically determine the optimal solution to the MDP
problem.

8.3.5 Scheduling for Intermediate Tail
In this thesis, we primarily considered two kinds of performance metrics for our scheduling
policies: mean response time, in Chapters 2 to 6, and the asymptotic tail of response time, in
Chapter 7. These two metrics can be thought of as representing two extremes: The metric of
mean response time give equal weigh to every second of delay, while the metric of asymptotic
tail overwhelmingly focuses on the most delayed jobs in the system.

Intermediate tail However, when computing system operators measure the performance
of their systems, they typically use metrics that lie somewhere in between these two extremes.
Their metrics consider more delayed jobs somewhat more heavily than less delayed jobs, but
not overwhelmingly more heavily. Common metrics include the tail probability P (T > t) and
percentiles of response time such as T 99. We refer to these less-extreme metrics as measuring
the intermediate tail.

Unfortunately, metrics such as tail probability and percentiles of response time are poorly
suited to theoretical analysis. Their values are not even explicitly known for simple single-server
scheduling policies such as FCFS and SRPT.

Moments of response time A better set of intermediate-tail metrics for theoretical analysis
are the moments of response time, E[Tα] for α > 1. The mean is the α = 1 moment, and
the asymptotic tail can be thought of as equivalent to the α → ∞ limit. As a result, moments
α ∈ (1,∞) cover the intermediate tail spectrum.

Moreover, for integer α, the moments of response time are explicitly known for many com-
mon single-server scheduling policies, via the Laplace-Steltjes transform of response time [104,
201]. Of particular importance is α = 2, the expected square of mean response time, which is
the natural first case after mean response time. We therefore ask:

What scheduling policy minimizes E[T 2]?

A natural scheduling policy to minimize E[T 2] is to prioritize the job with the largest ratio of
time in system to job size. We call this the t/s policy. The t/s policy can be seen as a variant of
the cµ rule for minimizing weighted mean response time. In this case, a job’s weight is it time
in system. More generally, one could define the tβ/s policy, with an eye towards minimizing
E[T β+1].

Very few scheduling policies that make use of time-in-system information have been ana-
lyzed. However, one of the few such classes of policies are the “Accumulating Priority Queue”
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(APQ) policies, where a job’s priority increases linearly with its time in system [21, 59, 159, 211].
However, analysis of APQ policies has thus far been limited to systems with finitely-many pos-
sible rates of priority accumulation, and principally to systems with 2 possible rates of priority
accumulation. Expanding this analysis to handle continuous rates of priority accumulation would
allow the analysis of the t/s policy, potentially demonstrating excellent E[T 2] performance.
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Chapter 9

Edits

I will do my best to fix this document to correct any errors, either that I find, or that are pointed
out to me. Please feel free to let me know if you find any. I will also keep track of when the error
was fixed.

• Section 8.3.2: In the WINE formula, there was an r where there should’ve been an x.
Also, while I’m at it, I capitalized “bounds” in the section title.
12/3/23

• Section 8.3.2: In the WINE formula, there was a “(1 − ρx)” in the denominator which
shouldn’t have been there.
3/21/24
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[23] T. Bonald, M. Jonckheere, and A. Proutiére. Insensitive load balancing. In Proceedings of
the Joint International Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS ’04/Performance ’04, pages 367–377, New York, NY, USA, 2004. ACM.
ISBN 1-58113-873-3. doi: 10.1145/1005686.1005729. 3.2

[24] F. Bonomi. On job assignment for a parallel system of processor sharing queues. IEEE
Transactions on Computers, 39(7):858–869, July 1990. ISSN 0018-9340. doi: 10.1109/
12.55688. 3.2

[25] Sem C Borst, Onno J Boxma, and R Nunez-Queija. Heavy tails: the effect of the service
discipline. In International Conference on Modelling Techniques and Tools for Computer
Performance Evaluation, pages 1–30. Springer, 2002. 2.3

[26] Sem C Borst, Onno J Boxma, Rudesindo Núñez-Queija, and AP Zwart. The impact of the
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