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ABSTRACT
Scheduling theory is a key tool for reducing latency (i.e. re-
sponse time) in queueing systems. Scheduling, i.e. choos-
ing the order in which to serve jobs, can reduce response
time by an order of magnitude with no additional resources.
Scheduling theory is well-developed in single-server systems,
where one job is processed at a time. However, little is
known about scheduling in multiserver systems, where many
jobs are processed at once. Results are especially limited
in stochastic multiserver scheduling theory. Today’s data-
centers have thousands of servers, and scheduling theory is
unable to analyze such systems.

My thesis proves the first optimality results and first closed-
form bounds on mean response time for scheduling policies
in stochastic multiserver models which reflect the behavior
of modern computing systems. My thesis proves novel opti-
mality results in each of three areas:

I start by studying one-server-per-job multiserver models,
and prove the first results on optimal scheduling in that
setting. Next, I study the multiserver-job (MSJ) model,
where different jobs require different amounts of resources to
be served. I prove the first characterization of mean response
time for any scheduling policy in the MSJ model, as well as
the first optimality results. Finally, I study the effects of
scheduling on the tail of response time, rather than mean
response time. I invent a novel scheduling policy, Nudge,
which I prove to be the first policy to outperform FCFS’s
asymptotic tail of response time.

This extended abstract briefly outlines the main contribu-
tions of my thesis, describing my novel performance bounds
and optimality results in each of these three areas.

1 Introduction
In queueing systems, careful scheduling decisions can be
very beneficial for improving system performance. In single-
server models, where only one job is served at a time, schedul-
ing is well understood. Queueing theorists have analyzed the
mean response time of a wide variety of scheduling policies
[17, 21], and have discovered the optimal scheduling policies
for minimizing mean response time [16, 2].

However, modern queueing systems are increasingly of-
ten multiserver queues, where many jobs can be served at
once, especially in modern computing systems. Despite their
importance, little is known about scheduling in multiserver
queueing models. Few analytical bounds on performance
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are known, and optimal scheduling is an open problem.

My thesis [3] proves the first closed-form analytical bounds
on the performance of scheduling policies on multiserver
queueing models. Moreover, I prove the first optimality re-
sults for multiserver scheduling. In particular, I prove novel
performance bounds and optimality results in each of three
areas:

• Scheduling in multiserver models where each job being
served occupies one server.

• Scheduling in models where a given job may require
many servers in order to run.

• Scheduling for performance metrics which capture the
tail of response time.

2 One-server-per-job Models
We want to understand how scheduling decisions affect the
performance of multiserver models. Based on our experience
with single-server models, we have the potential to dramati-
cally improve performance if we can find the right scheduling
policies.

In particular, consider the Shortest Remaining Processing
Time (SRPT) policy. In the single-server setting, such as the
M/G/1 model shown in Fig. 1a, SRPT is known to minimize
mean response time [16], and its mean response time has
been exactly analyzed [17].

As a result, it is natural to consider the SRPT schedul-
ing policy in multiserver settings, such as the central-queue
M/G/k depicted in Fig. 1b, and the dispatching M/G/k
depicted in Fig. 1c.

Unfortunately, in each setting, SRPT’s mean response
time has not been analyzed, and it is unknown whether or
not SRPT achieves optimal mean response time. Even be-
yond exact analysis, where the exact mean response time
is derived, no closed-form bounds or asymptotic limits are
known. Similarly, on the optimality question, even beyond
exact optimality, asymptotically optimal scheduling policies
are unknown.

A natural asymptotic limit is the “heavy traffic” limit, the
limit as the load of arriving work approaches the capacity
of the system. In this limit, the number of jobs present in
the system at a time increases and scheduling becomes more
and more important. My goal in this section of my thesis is
to prove asymptotically optimality results in heavy traffic,
and to analyze and bound the mean response time of these
policies, with bounds that are tight in heavy traffic.



(a) M/G/1 (b) M/G/k (c) Dispatching M/G/k

Figure 1: Standard queueing models: In each case, jobs arrive according to a Poisson process, and have i.i.d. sizes. In the
M/G/1, the scheduling policy can choose any single job to serve. In the M/G/k, the scheduling policy can choose any k jobs
to serve at a time, at equal rates. In the dispatching M/G/k, the dispatching policy assigns each job to a server upon arrival,
and the scheduling policy at each server can choose any single job to serve at that server.

2.1 Optimal Scheduling for the M/G/k
In [3, Chapter 2], which corresponds to my paper [8], I study
the SRPT scheduling policy for the central-queue M/G/k
depicted in Fig. 1b. In particular, I study the SRPT-k
scheduling policy, which preemptively serves the k jobs of
least remaining size, where k is the number of servers.

Given SRPT’s optimality in the single-server setting [16],
it is natural to ask whether SRPT-k is likewise optimal.

My key technique in studying SRPT-k is to compare SRPT-
k against a resource-pooled system where all k servers are
combined into one gigantic server. This gigantic server can
serve any job at k times the speed of any of the original k
servers. The resource-pooled system is a huge upgrade over
the original M/G/k: One could split the gigantic server’s ef-
forts k ways, to emulate the original system, but one also has
far more options. As a result, the resource-pooled system
forms a lower bound that I can compare SRPT-k against.
Specifically, I compare SRPT-k against the SRPT policy for
the resource-pooled system, which we refer to as SRPT-1.

In particular, I prove that in the heavy traffic limit, the
mean response time of SRPT-k and SRPT-1 converge. As
a result, in that same limit, SRPT-k’s mean response time
converges to that of the optimal M/G/k scheduling policy:

Theorem 2.1 (Theorem 2.7.1, Corollary 2.7.1 of [3]).
In an M/G/k with job size S such that E[S2(logS)+] is fi-
nite,

lim
ρ→1

E[TSRPT -k]

E[TSRPT -1]
= 1, and hence lim

ρ→1

E[TSRPT -k]

E[TOPT -k]
= 1,

where T denotes a job’s response time, and OPT-k is the
M/G/k scheduling policy which minimizes mean response
time.

In addition, I prove closed-form analytic bounds on SRPT-
k’s mean response time [3, Theorem 2.6.2], as well as stochas-
tic bounds on SRPT-k’s response time distribution [3, The-
orem 2.6.1].

Beyond SRPT-k, I also prove the first analysis and opti-
mality results for multiserver Preemptive Shortest Job First
(PSJF-k), Remaining Size Times Original Size (RS-k), and
Foreground-Background (FB-k).

All of these results, except for the FB-k result, focus on
settings where a job’s exact service duration (its size) is
known to the scheduling policy before the job is served.
In follow-up work, we prove the first analysis and op-

timality results in multiserver scheduling settings where a
job’s size is unknown to the scheduling policy, or is partially

known to the scheduling policy, but the job size distribution
is known [18, 19]. If the size distribution is unknown, opti-
mal scheduling is open even in the single-server setting, and
we prove an initial optimality result in that setting [20].

Further work by others on this topic has also proven anal-
ysis and optimality results in settings where the arrival pro-
cess is non-Poisson [13].

2.2 Optimal Scheduling and Load Balancing
In [3, Chapter 3], which corresponds to my paper [9], I study
the SRPT scheduling policy for the dispatching M/G/k de-
picted in Fig. 1c.

Modern computing systems typically contain huge num-
bers of servers, allowing them to process many jobs at once.
At this large scaling, holding jobs in a central queue can
become a bottleneck. Instead, these multiserver systems of-
ten dispatch an arriving job to a specific server immediately
upon the job’s arrival. In such a system, both the dispatch-
ing policy (where to send each job) and the scheduling policy
(which job at each server to schedule) are important to the
performance of the system.

Prior work on dispatching systems has focused on combin-
ing nontrivial dispatching policies with First-Come First-
Served (FCFS) scheduling at each server. Optimality re-
sults are known for Least-Work-Left (LWL) dispatching in
this setting [12], but only under the assumption that FCFS
scheduling is used at the servers, and that the dispatcher
does not know the size of the arriving job.

It is straightforward to show that SRPT scheduling is
the optimal scheduling policy for minimizing mean response
time, in combination with any dispatching policy. Surpris-
ingly, policies with great performance under FCFS schedul-
ing, such as LWL, can have terrible performance under SRPT
scheduling, performing worse than random dispatching in
some settings.

I invent a novel class of dispatching polices, “guardrails”
polices. The key idea behind guardrails policies is to balance
not just the total amount of work at each server as in LWL,
but also the amount of work of each kind of job at each
server. Imagine labeling every job as small, medium, or
large, based on its size. Guardrails policies ensure that each
server has the same amount of work of small jobs, of medium
jobs, and of large jobs. As a result, if any small jobs are
present in the system, all servers will work on small jobs.

Using this key idea, I compare the guardrails/SRPT com-
bination against the same resource-pooled SRPT-1 system
as in Section 2.1. In [3, Theorem 3.4.2 and Corollary 3.4.1], I
prove that the mean response time of any guardrails/SRPT



combination converges to that of SRPT-1 in heavy traffic,
and hence that any guardrails/SRPT achieves optimal mean
response time in the heavy traffic limit.

3 Multiserver-job Models
In the real world, jobs in large-scale computing systems have
a huge spread of resource requirements. Moreover, some
jobs require a large fraction of the entire system’s resources,
such as large machine-learning training jobs. As a result,
it is vitally important to pack the jobs onto the servers in
an efficient manner. Poor packing can lead to poor utiliza-
tion, namely using only a small fraction of system resources.
In practice, utilization is often poor in these large-scale sys-
tems. Scheduling has the opportunity to improve utilization,
and by extension overall performance.

To model systems in which different jobs require different
amounts of resources, we consider the multiserver-job (MSJ)
model, in which each job requires some number of servers,
its server need. Each job is specified by the pair (server
need, duration).

Prior work on the MSJ model focused on characterizing
its stability region [15, 6], the range of arrival rates for which
the system remains stable, and using scheduling to optimize
that stability region [14, 1]. In contrast, the effect of the
scheduling policy on mean response time was completely
open, and no optimality results for mean response time were
known.

In this section, I start by devising the first MSJ schedul-
ing policy for which I can analyze mean response time, the
ServerFilling policy. Next, I build upon that policy to de-
sign a new scheduling policy for which I prove the first result
on optimal mean response time in the MSJ system. Finally,
I analyze the mean response time of the MSJ FCFS schedul-
ing policy, which is practically important to understand, as
it is used as a component in many scheduling policies which
are popular in practice.

3.1 First MSJ Mean Response Time Analysis
In [3, Chapter 4], which corresponds to my paper [5], my
goal is to find any MSJ scheduling policy for which I can
analyze mean response time.

Prior to this work, mean response time had not been the-
oretically characterized in closed form for any MSJ schedul-
ing policy, except for FCFS service in a system with k = 2
servers.

My key technique was to identity and focus on the class of
work-conserving finite skip scheduling polices. “Work con-
servation” refers to keeping all servers occupied, whenever
a sufficient number of jobs are present. “Finite skip” refers
to serving jobs in near-FCFS order, only choosing between
a finite number of the oldest jobs in the system. I develop
a clean, unified mean response time analysis for all WCFS
scheduling policies, proving that all WCFS polices achieve
mean response time nearly identical to that of resource-
pooled FCFS.

Focusing on the WCFS class of policies, I invent two MSJ
policies which lie within the WCFS class, ServerFilling and
DivisorFilling. ServerFilling operates in the setting where
all jobs’ server needs are powers of two, and the total num-
ber of servers k is a power of two. This setting is of relevance
in supercomputing and other large-scale computing environ-
ments, as it allows jobs to pack better and improve utiliza-
tion. DivisorFilling operates in the setting where all jobs’

server needs perfectly divide the total number of servers k,
which generalizes the power-of-two setting. In each case, my
WCFS analysis proves tight bounds on the mean response
times of the MSJ policy, thereby giving that the first closed-
form bounds on mean response time for any MSJ scheduling
policies.

In related work, we contrast the pros and cons of Server-
Filling with other MSJ scheduling policies that are popular
in theory and practice [4].

3.2 Optimal MSJ Scheduling
In [3, Chapter 5], which corresponds to my paper [10], my
goal is to find a MSJ scheduling policy which achieves opti-
mal mean response time in heavy traffic.

This chapter focuses on combining the ServerFilling policy
introduced in [3, Chapter 4] with the SRPT scheduling pol-
icy, which is known to achieve optimal mean response time
in the single-server setting [16], and which I proved achieves
optimal mean response time in heavy traffic in [3, Chapter
2]. I invent the ServerFilling-SRPT policy, which combines
the advantages of both polices: It uses the full capacity of
the MSJ system, like ServerFilling, while prioritizing jobs
with small remaining size, like SRPT. One key idea is using
the appropriate concept of “size” for this prioritization. I
define a job’s size to be the product of its server need and
its service duration, and I define SRPT correspondingly.

With this definition of job size, I show that the mean
response time of ServerFilling-SRPT converges to that of
resource-pooled SRPT-1 in heavy traffic, where the size dis-
tribution in the resource-pooled system matches the size
distribution in the MSJ system. As a result, ServerFilling-
SRPT achieves optimal mean response time in heavy traffic
for the MSJ system.

I also prove optimality results for DivisorFilling-SRPT
and the Gittins variants of both policies, in their correspond-
ing settings.

3.3 Analyzing MSJ FCFS
In [3, Chapter 6], which corresponds to my paper [7], I study
the FCFS scheduling policy for the MSJ system.

In the MSJ setting, the FCFS policy is not work conserv-
ing: If the job at the head of the queue requires more servers
than are available, that job must wait for servers to become
available, and all jobs behind it must wait as well. MSJ
FCFS is important as a component of algorithms which are
popular in practice, as system operates often want to guar-
antee that a job is served no later than it would be served
under FCFS.

In this chapter, I analyze the mean response time the MSJ
FCFS policy. The key challenge obstructing this analysis is
that the MSJ FCFS does not use the full capacity of the sys-
tem, and hence does not resemble a resource-pooled system,
unlike each of the previous chapters of this thesis.

Instead, my key idea is to relate the MSJ FCFS system
to a single-server queue with a Markov-modulated service
rate. I first prove that MSJ FCFS’s mean response time is
nearly identical to such a system with an appropriately cho-
sen service-rate modulation process. Then, I give the first
closed-form mean response time analysis for the Markov-
modulated service rate system in heavy traffic. Combining
these results yields the first mean response time analysis of
MSJ FCFS in heavy traffic.



4 Tail scheduling: Nudge
In [3, Chapter 7], which corresponds to my paper [11], I
turn my focus to optimizing objectives focusing on the tail
of response time.

Standard queueing theory analysis focusing on mean re-
sponse time, but in the real world, system operator typically
focus on tail metrics such as the 99th percentile of response
time. Even in the single-server setting, the effects of schedul-
ing on the tail of response time are poorly understood. In
this chapter, I focus on the single-server setting, to serve as
a stepping stone to analyzing the tail of response time in
more realistic multiserver models.

One of the few results in this setting demonstrates that
FCFS achieves weakly optimal asymptotic tail probability,
meaning that the probability that response time T exceeds
a threshold decays almost as quickly as possible, within a
constant multiplicative factor of the optimal decay rate. It
has been conjectured that FCFS is strongly optimal, mean-
ing that the multiplicative factor converges to 1. These re-
sults hold in the setting of light-tailed job size distributions,
which is the focus of this chapter.

Contrary to that conjecture, I devise a simple schedul-
ing policy, Nudge, which provably improves upon FCFS’s
asymptotic tail of response time by a multiplicative factor.
Moreover, I prove that Nudge’s response time distribution
stochastically dominates that of FCFS, achieving a strictly
better response time distribution:

Theorem 4.1 (Theorem 7.5.2 and Cor. 7.5.1 of [3]).

∀t > 0, P (TNudge > t) < P (TFCFS > t)

lim
t→∞

P (TNudge > t)

P (TFCFS > t)
< 1.

Moreover, Nudge is simple to implement and only requires
a small amount of job size information, giving it a strong
potential for practical application.
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