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Abstract
Product-form stationary distributions in Markov chains have been a foundational advance and driving
force in our understanding of stochastic systems. In this paper, we introduce a new product-form
relationship that we call “graph-based product-form”. As our first main contribution, we prove
that two states of the Markov chain are in graph-based product form if and only if the following
two equivalent conditions are satisfied: (i) a cut-based condition, reminiscent of classical results on
product-form queueing systems, and (ii) a novel characterization that we call joint-ancestor freeness.
The latter characterization allows us in particular to introduce a graph-traversal algorithm that
checks product-form relationships for all pairs of states, with time complexity O(|V |2|E|), if the
Markov chain has a finite transition graph G = (V, E). We then generalize graph-based product form
to encompass more complex relationships, which we call “higher-level product-form”, and we again
show these can be identified via a graph-traversal algorithm when the Markov chain has a finite
state space. Lastly, we identify several examples from queueing theory that satisfy this product-form
relationship.
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1 Introduction

Important classes of queueing systems and stochastic networks have been shown to have a
so-called product-form stationary distribution, where the stationary probability of a given
state has a simple multiplicative relationship to the stationary probability of other nearby
states. The product-form property allows the stationary distribution of these systems to
be cleanly and precisely characterized in closed-form, which is not possible for many other
queueing systems. Such characterization has been instrumental in numerically evaluating
performance [1, 2] and analyzing scaling regimes [3, 4, 5], and it was more recently applied
in the context of reinforcement learning [6, 7].

Important queueing systems and stochastic networks that have been proven to exhibit
product-form behavior include Jackson networks [8], BCMP networks [9], Whittle net-
works [10], and networks of order-independent queues [11] (also see [12]). Similar structures
have appeared in other fields, such as statistical physics, with the zero-range process [13].
Discovering these categories of product-form systems and the underlying properties that give
rise to their product-form behavior has represented a foundational advance and driving force
in our understanding of stochastic systems.

Product-form results are often tied to time reversibility or quasi-reversibility proper-
ties. These can be established through the detailed balance property given the stationary
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distribution, as well as by applying Kolmogorov’s criterion on the transition rates of the
Markov chain [14]. In the simplest case of birth-and-death processes, both product-form and
reversibility are implied by the transition diagram of the Markov chain.

However, there are important queueing systems that exhibit product-form behavior which
cannot be explained under any existing product-form framework. A motivating example
for this paper is the multiserver-job saturated system with two job classes, which [15]
demonstrated to have a product-form stationary distribution. We explore this system via
our novel framework in Section 5.1.

We introduce a new kind of product-form Markov chains, graph-based product form.
In these Markov chains, product-form arises purely from the connectivity structure of the
transition graph, or in other words from the set of transitions with nonzero probability,
for discrete-time Markov chains, abbreviated DTMCs; or nonzero rate, for continuous-time
Markov chains, abbreviated CTMCs. If a Markov chain has graph-based product form, that
product form holds regardless of its transition probabilities or rates, under a given connectivity
structure. This is in contrast to most prior classes of product-form relationships, where
tweaking a single transition probability or rate would remove the product-form property.

In this paper, we characterize which directed graphs hold the correct structure to give
rise to graph-based product-form Markov chains. Our characterization is built up from a
product-form relationship between states (i.e., nodes in the transition diagram), which exists
when the ratio of the stationary probabilities for two nodes forms a simple multiplicative
relationship, arising from the graph structure. If those relationships span the graph, then
the whole Markov chain has graph-based product form. We therefore focus on characterizing
which graphs give rise to product-form relationships between a given pair of nodes.

In our main result, Theorem 2, we give two necessary and sufficient conditions under
which such a product-form relationship exists: a cut-based characterization, reminiscent to
classical conditions for product-form, and a novel characterization which we call joint-ancestor
freeness. More specifically, focusing on two particular nodes or states i and j:

Cut-based characterization: For the first condition, we show that if there exists a cut
(i.e. a partition of the nodes into two sets), where i is on one side of the cut and j is on
the other, and where the only edges that cross the cut have either i or j as their source
nodes, then i and j have a product-form relationship. We call such a cut an i, j-sourced
cut. Unfortunately, directly searching for such cuts is inefficient and impractical, as there
are exponentially many cuts in the graph.
Joint-ancestor freeness: We show that the existence of such a cut is equivalent to a
second, simpler-to-check property, which we call joint-ancestor freeness. We refer to a
node k as a joint ancestor of i and j if there exists a path from k to i which does not
go through j, and a path from k to j which does not go through i. We show that the
existence of an i, j-sourced cut is equivalent to i and j having no joint ancestors, which is
efficient to directly search for.

Finally, we show in Theorem 7 that this relationship is bidirectional: If there is no i, j-
sourced cut, or equivalently if there is a joint ancestor k, then nodes i and j will not have a
straightforward product-form relationship.

Even in graphs where the most straightforward product-form relationships do not connect
every pair of nodes, a less-direct kind of product-form relationship can still exist, which we
call “higher-level product-form”. We call the above product-form relationships “first-level
product-form”, and we show that a weaker, but still noteworthy, kind of product-form
relationship, “second-level product-form”, exists whenever there exists a cut with multiple
nodes as sources on one or both sides of the cut, such that the sources on each side are
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connected by first-level product-form relationships. Further levels can be defined recursively.
We study this higher-level product-form behavior in Section 4.3, with Section 5.2 as a
motivating example.

1.1 Contributions
In Section 2.2, we define the novel concept of graph-based product-form. In Section 3, and
specifically Theorem 2, we prove that graph-based product-form between two nodes i and
j is equivalent to two graph-based properties: The existence of an i, j-sourced cut, and
the absence of a joint ancestor of i and j. In Sections 4.1 and 4.2, we introduce the cut
graph and its connection to graph-based product-form spanning an entire Markov chain. In
Section 4.3, we explore and characterize higher-level product-form relationships, which we
show correspond to higher-level cuts. In Sections 3.2 and 5, we give a variety of examples of
graphs which do or do not have graph-based product-form, and use them to illustrate our
characterization.

1.2 Prior work
There is a massive literature that focuses on deriving the stationary distribution (or a
stationary measure) of Markov chains with countable (finite or infinite) state spaces. In
reviewing this literature, we focus on results that either provide a closed-form expression for
the stationary measures or make structural assumptions on the Markov chain, or both.

Reversibility, quasi-reversibility, and partial balance

A long series of works has derived product-form stationary distributions by focusing on
Markov chains where a stronger form of the balance equations holds, thus balancing the
probability flow between a state and each set in a partition of its neighbors. This is often
equivalent to properties of the time-reversed process [10]. For example, the Kolmogorov
criterion [10, Theorem 2.8] is a necessary and sufficient condition for reversibility, which as
a by-product yields a closed-form expression for the stationary distribution as a product
of transition rates. Another example is quasi-reversibility, as described in [14, Chapter 3].
Among these works, many have focused on Markov chains exhibiting a specific transition
diagram, e.g., multi-class queueing systems with arrivals and departures occurring one at a
time, and have identified necessary and sufficient conditions on the transition rates that yield
a product-form stationary distribution. This approach has therefore produced many models
applicable to queueing theory and statistical physics. Reversible models and their variants
involving internal routing include the celebrated Jackson networks [8], the zero-range process
[13], and Whittle networks [10]. Quasi-reversibility has also given rise to multiple models,
including order-independent queues [11, 16] and pass-and-swap queues [17]; see [18] for a
recent survey. Other examples of queueing models that satisfy partial balance equations
are token-based order-independent queues [19] and certain saturated multiserver-job queues
[20, 15].

Graph-based product form

To the best of our knowledge, very few papers exploit the structure of a Markov chain’s
transition diagram (rather than its transition rates) to guarantee the existence of a product-
form stationary distribution. One example is [21], which introduces single-input super-state
decomposable Markov chains: the Markov chain’s state space is partitioned into a finite
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number of sets, called superstates, such that all edges into a superset have the same node
as endpoint. (All finite-state-space Markov chains satisfy this condition when the partition
is formed by singletons.) Under this assumption, the process of deriving the Markov
chain’s stationary distribution can be divided into two steps, one that solves the stationary
distribution of a Markov chain defined over the superstates, and another that solves the
stationary distribution of a Markov chain restricted to each superstate. While the superstate
decomposition has a loose resemblance to our cuts, there is no deeper similarity between the
methods. In particular, our approach is nontrivial both for finite and infinite Markov chains.
The superstate decomposition approach can be seen as a different approach to deriving
product-forms.

Closer to our work, [15] considers a multiserver-job (MSJ) model described by a CTMC
and show that it has a product-form stationary distribution irrespective of the transition
rates. This result is proven in more detail in a technical report [22]. This example, which
inspired the present work, is discussed in detail in Section 5.1.

Symbolic solutions

Our graph-based product-form method can also be seen an algorithmic way to discover a
particular type of product-form relationships in Markov chains, giving a clean symbolic
solution for the stationary distribution. If the Markov chains are structured, as in the
examples in Section 5, these relationships can be found explicitly. However, if algorithm
searching is required, we give an algorithmic approach to discover single-source cuts in
the underlying graph in Algorithm 3 in O(|V |2|E|) time, if the Markov chain has a finite
transition graph G = (V, E), allowing us to discover whether a product-form relationship
exists.

Prior to our approach, one could symbolically find the stationary distribution for a general
symbolic Markov chain in O(|V |2) time, by symbolically solving the balance equations.
However, there is no guarantee that the resulting symbolic expression would be in a simple
form. Simplifying and factorizing the resulting symbolic expression, which might have
O(|V |2) terms, does not have a known efficient, deterministic algorithm. In fact, polynomial
factorization is a more complicated version of the polynomial identity testing (PIT) problem,
for which no polynomial-time deterministic algorithm is known [23]; the two problems were
recently proven equivalent, in the sense that a deterministic polynomial-time algorithm for
one would imply the same for the other [24]. Finding such an algorithm has remained a
major open problem.

Other related methods

Product-form stationary distributions for DTMCs or CTMCs have been studied in many
different contexts, such as Stochastic Petri networks, which sometimes lead to constructive
and algebraic methods that assume particular structure of the transition rates [25, 26].
Orthogonally, the graph structure of a Markov chain has also been used for other purpose
than deriving a simple closed-form expression for the stationary distribution. For instance,
the survey [27] focuses on iterative methods to approximate the stationary distribution of a
finite Markov chain with transition matrix A using updates of the form πt+1 = πtA. The
algorithms described in [27], called aggregation-disaggregation methods, aim at speeding-up
iterative methods by occasionally replacing πt+1 with π̃t+1 = S(πt+1), where S is a function
that exploits structure in the Markov chain’s transition diagram.
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2 Model and definitions

We start by introducing preliminary graph notation and terminology in Section 2.1, in
particular set-avoiding path and ancestor sets, then introduce the key notions of an formal
Markov chain and graph-based product-form in Section 2.2.

2.1 Graph notation and terminology
The focus of this paper is on the directed graphs that underlie Markov chains and on cuts in
these graphs. Besides recalling classical graph-theoretic notions, we introduce set-avoiding
paths and ancestor sets that will be instrumental in the rest of the paper.

A directed graph is a pair G = (V, E), where V is a countable set of nodes, and E ⊆ V ×V

is a set of directed edges. The graph G is called finite if V is finite and infinite if V is
countably infinite. A cut of a directed graph G = (V, E) is a pair (A, B) of nonempty sets
that form a partition of V , that is, A∪B = V and A∩B = ∅. An edge (u, v) ∈ E is then said
to cross the cut (A, B) if either u ∈ A and v ∈ B, or u ∈ B and v ∈ A. A path in a directed
graph G = (V, E) is a sequence v1, v2, . . . , vn of distinct nodes in V , with n ∈ {1, 2, . . .}, such
that (vp, vp+1) ∈ E for each p ∈ {1, 2, . . . , n− 1}; the length of the path is the number n− 1
of edges that form it. In particular, a path of length 0 consists of a single node and no edges.
A graph G = (V, E) is called strongly connected if, for each i, j ∈ V , there exists a path from
node i to node j in the graph G.

In Section 2.2, we will relate the existence of cuts that yield convenient balance equations
with the following two definitions that will be instrumental in the paper.

▶ Definition 1 (Set-avoiding subgraph and set-avoiding path). Consider a directed graph G =
(V, E) and let U ⊆ V . The set-avoiding subgraph G\U = (V \U, E′) is defined with E′ =
{(i, j) ∈ E : i, j /∈ U}. Given i, j ∈ V \U , we let P (i → j\U) denote an arbitrary path
v1, v2, . . . , vn in G, with n ∈ {1, 2, . . .}, with source node v1 = i and destination node vn = j,
and such that vp /∈ U for each p ∈ {1, 2, . . . , n}. Such a path is said to avoid the set U .
Equivalently, a path P (i → j\U) is a path from node i to node j in the subgraph G\U . If
U = {u} is a singleton, we write G\u for G\{u} and P (i→ j\u) for P (i→ j\{u}).

▶ Definition 2 (Ancestor and ancestor set). Consider a directed graph G = (V, E) and
let i, j ∈ V . Node i is called an ancestor of node j (in G) if there exists a directed path
from node i to node j (in G), i.e., if there exists a path v1, v2, . . . , vn (in G) with v1 = i

and vn = j. For each i ∈ V , Ai(G) denotes the set of ancestors of node i (in G). For each
I ⊆ V , AI(G) =

⋃
i∈I Ai(G) denotes the ancestor set of node set I (in G).

The ancestor set of a node contains the node itself (via a path of length zero), so that
I ⊆ AI(G) for each I ⊆ V . A directed graph G = (V, E) is strongly connected if and only if
the ancestor set of each node is the whole set V . Procedure Ancestors in Algorithm 1 is a
classical breadth-first-search algorithm that returns the ancestor set of a node set in a finite
graph G. This algorithm can run in time O(|E|) with the appropriate data structure (e.g.,
the graph is encoded as a list of ancestor lists for each node) because each edge is visited at
most once over all executions of Algorithm 1.

2.2 Markov chains and product-form relationship
As announced in Section 1, our goal is to identify necessary and sufficient conditions on
a Markov chain’s transition diagram G for which the associated stationary measures have
a product-form relationship, for all values of the transition rates. Therefore, we start by
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Algorithm 1 Returns the ancestor set of a node set in a finite graph

1: procedure Ancestors(finite directed graph G = (V, E), set I ⊆ V ) → set A ⊆ V

2: A← ∅ ▷ Ancestor set under construction
3: F ← I ▷ Set of “frontier” nodes: nodes that have been visited
4: ▷ but whose neighbor list has not yet been read
5: while F ̸= ∅ do
6: A← A ∪ F

7: N ←
⋃

ℓ∈F {k ∈ V \A : (k, ℓ) ∈ E} ▷ New frontier nodes
8: F ← N

9: end while
10: return A

11: end procedure

defining a formal Markov chain, where the transition rates are free variables rather than
fixed values, and we define the corresponding stationary distribution. We then specify our
definition of a product-form Markov chain.

Formal Markov chain

Our goal is to understand how the structure of a Markov chain’s transition diagram impacts
the relationship between its transition rates and stationary measures. This motivates the
definition of a formal Markov chain.

▶ Definition 3 (Formal Markov chain). Let G = (V, E) be a (possibly infinite) strongly-
connected directed graph. Define the corresponding formal Markov chain to have transition
rate from node i to node j equal to qi,j > 0 for each (i, j) ∈ E and 0 for each (i, j) ∈ (V ×V )\E.
Note that qi,j is a free variable, not instantiated to a specific rate.

For each strongly-connected graph G, there is a single corresponding formal Markov
chain, and vice versa. We will therefore refer to the two interchangeably. The quantities qi,j

can be interpreted either as transition rates (CTMC) or as transition probabilities (DTMC;
introducing the additional assumption that

∑
j∈V qi,j = 1 for each i ∈ V ).

For each formal Markov chain G = (V, E), we can define the associated (formal) stationary
distribution π to be the solution, as a function of the free variables qi,j , to the balance
equation and normalization requirement:

πi

∑
j|(i,j)∈E

qi,j =
∑

k|(k,i)∈E

πkqk,i, i ∈ V, (1)

∑
i∈V

πi = 1. (2)

Because qi,j are free variables, if G is an infinite graph, one cannot in general guarantee
that the summation requirement (2) is satisfied. Thus for infinite graphs, we will instead
consider a stationary measure and omit (2), but we will still refer to stationary distributions
for simplicity. In fact, all our results apply directly to all the stationary measures of a formal
Markov chain, irrespective of whether or not the instantiations of this Markov chain are
positive recurrent.
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Product-form relationship

We now come to the central concept of the paper. Definition 4 gives our definition of a
product-form relationship between two nodes, while Definition 5 considers the entire graph.

▶ Definition 4 (Graph-based product-form). Consider a formal Markov chain G = (V, E)
and let i, j ∈ V . Nodes i and j are in a graph-based product-form relationship with one
another if, letting π denote the Markov chain’s stationary distribution, we have

πifi,j = πjfj,i, (3)

where fi,j and fj,i are polynomials (or more generally, rational functions) in the transition
rates of the formal Markov chain. The complexity of a product-form relationship will be
measured by the complexity of the associated polynomials (e.g., degree, number of monomials,
arithmetic circuit complexity, arithmetic circuit depth, etc.). The term graph-based product
form will only be employed in association with a certain complexity level, as will be defined
below.

▶ Definition 5 (Product-form distribution). A formal Markov chain has a product-form
stationary distribution at a given complexity level if all pairs of nodes in the graph are in a
graph-based product-form relationship at that complexity level.

For brevity, we will often say “product-form”, leaving “graph-based” implicit. Note
however that this notion of product-form is more specific than the general concept in the
literature, as discussed in Section 1.2. We will be particularly interested in the following
types of product-form relationships, in increasing order of complexity:
S-product-form: S stands for sum. Let Ni := {j ∈ V | (i, j) ∈ E} denote the out-

neighborhood of i. Focusing on fi,j , we say that nodes i and j are in an S-product-form
relationship if there exists some Si,j ⊆ Ni, such that

fi,j =
∑

k∈Si,j

qi,k.

PS-product-form: P stands for product. Again focusing on fi,j , we say that nodes i and j

are in a PS-product-form relationship if fi,j is the product of sums of subsets of transition
rates emerging from nodes in the graph: for some Fi,j ⊆ V , there exists Sa,i,j ⊆ Na for
each a ∈ Fi,j , such that

fi,j =
∏

a∈Fi,j

∑
k∈Sa,i,j

qa,k.

SPS-product-form: We add another layer of alternation. Each sum is over neighboring
vertices, while the products are over arbitrary vertices. We also allow the terms in the
products to be the inverses of sums, as well as direct sums. Focusing on fi,j , we say
that nodes i and j are in an SPS-product-form relationship if there exist Si,j ⊆ Ni,
Fk,i,j ⊆ (V × {−1, 1}) for each k ∈ Si,j , and Sa,k,i,j ⊆ Na for each (a, p) ∈ Fk,i,j , such
that

fi,j =
∑

k∈Si,j

∏
(a,p)∈Fk,i,j

( ∑
k′∈Sa,k,i,j

qa,k′

)p

.

Higher-order: We can similarly define PSPS-product-form, SPSPS-product-form and more
generally (PS)n and S(PS)n product form for any n ∈ {1, 2, 3, . . .}.
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These product-form classes correspond to limited-depth arithmetic circuit complexity
classes: S-product-form is a subclass of depth-1 circuits, PS-product-form is a subclass of
depth-2 circuits, and so forth. The width of these arithmetic circuits, or more specifically
the in-degree of the gates, is also limited by the degrees of the graph’s nodes. Thus simple
product-form classes correspond to simple arithmetic circuits.

2.3 Cuts with a given source node set
The following lemma is borrowed from [14, Lemma 1.4]. It shows that cuts in a Markov
chain’s transition diagram can be exploited to derive (from the balance equations) a new
set of equations, called cut equations, that can sometimes be used to derive the stationary
distribution more easily.

▶ Lemma 1. Consider a formal Markov chain G = (V, E) and let π denote its stationary
distribution. For each cut (A, B) of the graph G, we have∑

(i,j)∈E∩(A×B)

πiqi,j =
∑

(j,i)∈E∩(B×A)

πjqj,i. (4)

Proof. Equation (4) follows by summing the balance equations (1) over all i ∈ A and making
simplifications. ◀

The rest of the paper focuses on identifying necessary and sufficient conditions on the
graph structure that guarantee the existence of “nice cuts” that yield a simple expression
for the Markov chain’s stationary distribution via (4). A simple and famous example is a
birth-and-death process, as shown in Figure 1: for each i ∈ {0, 1, 2, . . . , }, cut i relates πi

and πi+1 via the cut equation πiqi,i+1 = πi+1qi+1,i, so that nodes i and i + 1 are on an
S-product-form relationship. Although these cut equations follow from the balance equations
πi(qi,i−11[i ≥ 1] + qi,i+1) = πi−1qi−1,i1[i ≥ 1] + πi+1qi+1,i for i ∈ {0, 1, 2, . . .}, they allow
us to explicitate the stationary distribution more directly. As a slightly more intricate toy
example, in Figure 2, the cut ({0, 4}, {1, 2, 3, 5, 6}) implies π4(q4,1 + q4,5) = π1q1,0, hence
nodes 1 and 4 are on an S-product-form relationship.

0 1 2 3 4 · · ·

Cut 0 Cut 1 Cut 2 Cut 3 Cut 4

Figure 1 A birth-and-death process.

0 1 2 3

4 5 6

Figure 2 A simple formal Markov chain exhibiting a product form relationship between nodes 1
and 4, as a result of the cut ({0, 4}, {1, 2, 3, 5, 6}).

In general, a cut equation (4) as given in Lemma 1 is more convenient that the balance
equations (1) if the set of nodes i such that πi appears on either side of the equation is small.
This set is called the source of the corresponding cut, as it consists of the nodes that are the
sources of the edges that cross the cut.
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▶ Definition 6 (Source). Consider a formal Markov chain G = (V, E). The source of a cut
(A, B) of the graph G is the pair (I, J) defined by

I = {i ∈ A : E ∩ ({i} ×B) ̸= ∅}, J = {j ∈ B : E ∩ ({j} ×A) ̸= ∅}. (5)

Equivalently, (A, B) is called an (I, J)-sourced cut.

In Section 3, we will focus on the special case where the source sets I and J are both
singletons, I = {i} and J = {j}. We refer to such a cut as a single-sourced cut.

2.4 Joint-ancestor freeness
In Definition 7 below, we identify a simpler condition, called joint-ancestor freeness, that we
will prove to be necessary and sufficient for the existence of a cut with a particular source
pair in Section 3.4.

▶ Definition 7 (Joint-ancestor freeness). Consider a formal Markov chain G = (V, E) and
two disjoint nonempty sets I, J ⊊ V . A node k ∈ V is a joint ancestor of node sets I and J

if k ∈ AI(G\J) ∩ AJ(G\I), i.e., there is both a path from node k to some node in I that
avoids set J and a path from node k to some node in J that avoids set I. Node sets I and J

are said to be joint-ancestor free if AI(G\J) ∩ AJ(G\I) = ∅. In the special case where I

and/or J are singletons, we drop the curly brackets in the notation, e.g., we write Ai(G\J)
for A{i}(G\J).

To make this definition more concrete, lets us again consider the birth-and-death pro-
cess of Figure 1. Focusing on I = {2} and J = {3}, we have A2(G\3) = {0, 1, 2}
and A3(G\2) = {3, 4, 5, . . .}, so that nodes 2 and 3 are joint-ancestor free. To see why
A2(G\3) = {0, 1, 2}, it suffices to observe that the subgraph G\3 consists of two strongly
connected components: {0, 1, 2} and {4, 5, 6, . . .}. Anticipating over Proposition 4 below,
we observe that (A2(G\3), A3(G\2)) = ({0, 1, 2}, {3, 4, 5, . . .}) is exactly Cut 2 in Figure 1.
Similarly, I = {1} and J = {2, 4} are joint-ancestor free because A1(G\{2, 4}) = {0, 1}
and A{2,4}(G\1) = {2, 3, 4, . . .}. On the contrary, nodes 1 and 3 are not joint-ancestor free
because A1(G\3) = {0, 1, 2} and A3(G\1) = {2, 3, 4, . . .} have non-empty intersection {2}.

The MutuallyAvoidingAncestors procedure in Algorithm 2 returns the joint-ancestor
sets AI(G\J) and AJ(G\I) in time O(|E|) in a finite graph G, by calling the Ancestors
procedure from Algorithm 1. MutuallyAvoidingAncestors can be used to test if two
node sets are joint-ancestor free.

Algorithm 2 Returns the mutually-avoiding ancestors of two node sets

1: procedure MutuallyAvoidingAncestors(finite directed graph G = (V, E), disjoint
nonempty sets I, J ⊆ V ) → ancestor sets AI(G\J), AJ(G\I)

2: AI ← Ancestors(I, G\J)
3: AJ ← Ancestors(J , G\I)
4: return AI , AJ

5: end procedure

3 S-product-form, cuts, and joint-ancestor freeness

In this section, we focus on the S-product-form relationship introduced in Section 2.2.
Theorem 2, the main result of this section, is stated in Section 3.1 and illustrated on toy
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examples in Section 3.2. The proof of Theorem 2 relies on intermediary results shown in
Sections 3.3–3.5. Higher-order product-form relationships, such as PS-product-form, will be
considered in Section 4.

3.1 Main theorem
Theorem 2 below is our first main contribution: it gives simple necessary and sufficient
conditions under which two nodes are in an S-product-form relationship. This result relies
on the two graph-based notions introduced earlier, namely, cuts with a given source node
(Section 2.3) and joint-ancestor freeness (Section 2.4). The rest of Section 3 will give further
insights into this result.

▶ Theorem 2. Consider a formal Markov chain G = (V, E) and let i, j ∈ V . The following
statements are equivalent:

(i) Nodes i and j are in an S-product-form relationship.
(ii) There is an i, j-sourced cut.
(iii) Nodes i and j are joint-ancestor free.

If these statements are true, then the S-product-form between nodes i and j has factors

fi,j =
∑

k∈Aj(G\i):
(i,k)∈E

qi,k and fj,i =
∑

k∈Ai(G\j):
(j,k)∈E

qj,k. (6)

Proof. The implication (ii) =⇒ (i) is a classical result that will be recalled in Lemma 3 in
Section 3.3. The equivalence (ii) ⇐⇒ (iii) will be shown in Proposition 4 in Section 3.4.
The implication (i) =⇒ (iii) will be shown in Theorem 7 in Section 3.5. Lastly, Equation (6)
follows for instance by combining Lemma 3 and Proposition 4. ◀

The equivalence between conditions (i) and (ii) is reminiscent of classical sufficient
conditions on the existence of a product-form relationship, except that the focus is now
on the transition graph rather than on the transition rates. Now, the equivalence between
conditions (ii) and (iii) can be intuitively understood as follows. If two nodes i, j ∈ V

are joint-ancestor free, meaning that Ai(G\j) ∩ Aj(G\i) = ∅, then one can verify that
(Ai(G\j), Aj(G\j)) forms a cut and that its source nodes are i and j. On the contrary, if
i and j are not joint-ancestor free, there exists k ∈ V \{i, j} such that there are two paths
P (k → i\j) and P (k → j\i). The existence of these two paths precludes any cut (A, B)
from having source i, j. Indeed, assuming for example that i, k ∈ A and j ∈ B, the path
P (k → j\i) needs to go from part A (containing k) to part B (containing j), and it cannot
do so via node i since this is an i-avoiding path. Therefore, the source of part A cannot be
reduced to node i.

Thanks to Theorem 2, we can directly apply procedure MutuallyAvoidingAncestors
from Algorithm 2 to verify if two nodes i and j are in an S-product-form relationship and, if
yes, compute the corresponding factors, all with time complexity O(|E|). This is far more
efficient than directly testing each cut in the graph to see if its sources are i and j: there
are 2|V | such cuts, each of which would take |E| time to check. Testing the S-product-form
relationship of all pairs of nodes in the graph can be done in time O(|V |2|E|) (also see
Section 4.1).

3.2 Illustrative examples
Before we prove the intermediary results that appear in the proof of Theorem 2, let us
illustrate this connection between single-sourced cuts, joint-ancestor freeness, and product-
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form relationships with a few toy examples, shown in Figures 1 and 3. We first revisit the
birth-and-death process already discussed in Sections 2.3 and 2.4. For a more sophisticated
example involving S-product-form, please see Section 5.1.

▶ Example 1 (Birth-and-death process). Consider a formal Markov chain G = (V, E) with
V = {0, 1, 2, . . .} and E =

⋃
i∈V {(i, i + 1), (i + 1, i)}, as in Figure 1. For each i ∈ V ,

nodes i and i + 1 are in an S-product-form relationship through the i, i + 1-sourced cut
formed by Ai(G\i + 1) = {1, 2, . . . , i} and Ai+1(G\i) = {i + 1, i + 2, . . .}. However, for
each i, j ∈ V such that i ≤ j − 2, nodes i and j are not in an S-product-form relationship
because Ai(G\j) = {0, 1, 2, . . . , j − 1} and Aj(G\i) = {i + 1, i + 2, . . . , n} intersect at
Ai(G\j) ∩Aj(G\i) = {i + 1, i + 2, . . . , j − 1}.

1
2

3
4

5

(a) One-way cycle

1
2

3
4

5

(b) One-way cycle with an addi-
tional edge

1
2

3
4

5

(c) Two-way cycle

Figure 3 Illustrative examples of S-product-form relationships.

▶ Example 2 (One-way cycle). Consider a formal Markov chain G = (V, E) with V =
{1, 2, . . . , n} for some n ≥ 3 and E = {(i, i + 1)|i ∈ V } ∪ E′, where E′ ⊆ {(i, i)|i ∈ V },
with the convention that nodes are numbered modulo n. For instance, Figure 3a. For
each i, j ∈ V , say with i < j, the sets Ai(G\j) = {j + 1, j + 2, . . . , n, 1, 2, . . . , i} and
Aj(G\i) = {i + 1, i + 2, . . . , j} are disjoint and therefore form an i, j-sourced cut. Theorem 2
implies that nodes i and j are in an S-product-form relationship with fi,j = qi,i+1 and
fj,i = qj,j+1. Equivalently, we can check visually that there is no node from which there is
a directed path to node i without visiting node j and vice versa. This example shows in
particular that an i, j-sourced cut may exist even if there is neither an edge (i, j) nor an
edge (j, i).

▶ Example 3 (One-way cycle with an additional edge). Consider the same directed cycle,
but with an additional edge from node 1 to some node k ∈ {3, 4, . . . , n}. For instance,
Figure 3b. For each i ∈ {2, 3, . . . , k − 1} and j ∈ {k, k + 2, . . . , n}, nodes i and j are no
longer joint-ancestor free because 1 ∈ Ai(G\j) ∩Aj(G\i). Indeed, 1→ 2→ 3→ · · · → i is a
P (1 → i\j) path and 1 → k → k + 1 → · · · → j is a P (1 → j\i) path. Therefore, nodes i

and j are no longer in an S-product-form relationship.

▶ Example 4 (Two-way cycle). Lastly, consider a directed graph G = (V, E) with V =
{1, 2, . . . , n} for some n ≥ 3 and E =

⋃
i∈V {(i, i + 1), (i + 1, i)}, again with the convention

that nodes are numbered modulo n. For instance, Figure 3c. For each i, j ∈ V , the sets
Ai(G\j) = V \{j} and Aj(G\i) = V \{i} have nonempty intersection Ai(G\j) ∩Aj(G\i) =
V \{i, j}. Hence, there are no S-product-form relationships in this graph.

3.3 The existence of a single-sourced cut implies S-product-form
Lemma 3 below shows the implication (ii) =⇒ (i) from Theorem 2. This result is recalled for
completeness, but it follows directly by combining the definition of a sourced cut (Definition 6)
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with Lemma 1.

▶ Lemma 3. Consider a formal Markov chain G = (V, E) and two nodes i, j ∈ V . If there is
an i, j-sourced cut in the graph G, then these nodes are in an S-product-form relationship (3),
with factors as given in (6).

3.4 The existence of a single-sourced cut is equivalent to joint-ancestor
freeness

We now prove the equivalence (ii) ⇐⇒ (iii) from Theorem 2, that is, joint-ancestor freeness
is necessary and sufficient for the existence of a cut with a particular source pair. We show
that this equivalence holds both when the source pair is a pair i, j of nodes (Proposition 4)
and more generally for any pair I, J of source sets (Proposition 5). Cuts where the source
pair is a general pair of source sets I, J give rise to higher-level cuts, as we show and discuss
in Section 4.

▶ Proposition 4. Consider a formal Markov chain G = (V, E) and let i, j ∈ V . Nodes i

and j are joint-ancestor free if and only if there exists an i, j-sourced cut. In this case, the
only i, j-sourced cut is (Ai(G\j), Aj(G\i)).

Proposition 4 is a special case of Proposition 5, which is stated and proved later in this
section. To illustrate the intuition behind Proposition 4, again consider the toy example
of Figure 2. Nodes 1 and 4 are joint-ancestor free because A1(G\4) = {1, 2, 3, 5, 6} and
A4(G\1) = {0, 4} are disjoint and therefore form a 1, 4-sourced cut. In contrast, nodes 1
and 2 are not joint-ancestor free because A1(G\2) = {0, 1, 4} and A2(G\1) = {2, 3, 4, 5, 6}
intersect at node 4. Any cut (A, B) such that 1 ∈ A and 2 ∈ B has to be crossed by an edge
from a path P (4→ 2\1) (if 4 ∈ A) or from a path P (4→ 1\2) (if 4 ∈ B), which makes it
impossible to build a cut whose sources are restricted to nodes 1 and 2. This intuition is
formalized in Statement (ii) of Lemma 6 below. Proposition 4 implies in particular that an
i, j-sourced cut is unique when it exists, hence we can say the i, j-sourced cut.

For Proposition 5 below, the situation is slightly more complicated. When considering
joint-ancestor free sets I, J containing more than one node, cuts may not be unique, and may
not have the entire sets I, J as sources. Nonetheless, there is still a bidirectional relationship
between mutually-avoiding ancestor sets and cut-source sets.

▶ Proposition 5. Consider a formal Markov chain G = (V, E) and two disjoint nonempty
sets I, J ⊆ V . We have the following:

(i) If I and J are joint-ancestor free, then the cut (AI(G\J), AJ (G\I)) is an (I, J)-sourced
cut, for some non-empty sets I ⊆ I and J ⊆ J .

(ii) If (AI(G\J), AJ(G\I)) is a cut and has sources (I, J), then it is the unique cut with
sources (I, J).

(iii) If I and J are not joint-ancestor free, then there is no (I, J)-sourced cut.

Again considering the example of Figure 2, let I = {1, 4} and J = {2, 5}. The ancestor
sets AI(G\J) = {0, 1, 4} and AJ (G\I) = {2, 3, 5, 6} are disjoint, and we can verify that they
form an (I, J) sourced-cut with I = {1, 4} = I and J = {2} ⊊ J . For a negative example,
node sets I ′ = {1} and J = {2, 5} are not joint-ancestor free because AI′(G\J) = {0, 1, 4}
and AJ (G\I ′) = {2, 3, 4, 5, 6} intersect at node 4. Correspondingly, one can verify that there
is no (I ′, J)-sourced cut in the graph.

Before proving Propositions 4 and 5, we prove the following intermediary lemma, which
will also be instrumental for later results.
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▶ Lemma 6. Consider a formal Markov chain G = (V, E) and two disjoint nonsets I, J ⊊ V .
We have the following:

(i) AI(G\J) ∪AJ(G\I) = V .
(ii) If (A, B) is an (I, J)-sourced cut, then AI(G\J) ⊆ A and AJ(G\I) ⊆ B.

Proof of Lemma 6. Let us first prove Lemma 6(i). Let k ∈ V . Since G is strongly connected
and I is nonempty, there is a directed path v1, v2, . . . , vn in G, with n ≥ 1, such that v1 = k

and vn ∈ I. Let p = min{q ∈ {1, 2, . . . , n}|kq ∈ I ∪ J}. Then k ∈ AI(G\J) if kp ∈ I and
k ∈ AJ(G\I) if kp ∈ J . Hence, k ∈ AI(G\J) ∪AJ(G\I) for each k ∈ V , which implies that
V = AI(G\J) ∪AJ(G\I).

We now prove Lemma 6(ii). Assume that (A, B) is an (I, J)-sourced cut and let k ∈
AI(G\J): there is a directed path v1, v2, . . . , vn such that v1 = k, vn ∈ I, and vp /∈ J for each
p ∈ {1, 2, . . . , n}. Our goal is to prove that k ∈ A. If n = 1, we have directly k ∈ I ⊆ A. Now
consider the case where n ≥ 2. Assume for the sake of contradiction that k /∈ A, that is, k ∈ B,
so that v1 = k ∈ B and vn ∈ A. Then we can define p = max{q ∈ {1, 2, . . . , n− 1}|vq ∈ B},
and we have (vp, vp+1) ∈ E ∩ (B × A). We also know by construction of the path that
kp /∈ J . This contradicts our assumption that J is the second source of the cut (A, B). Hence,
k ∈ A. ◀

Proof of Propositions 4 and 5. Proposition 4 is a special case of Proposition 5 because the
only nonempty subset of a singleton is the singleton itself. Therefore, in the remainder, we
focus on proving Proposition 5.

Let us first prove Proposition 5(i). Assume that I and J are joint-ancestor free, that
is, AI(G\J) ∩ AJ(G\I) = ∅. Combining this assumption with Lemma 6(i) shows that
(AI(G\J), AJ (G\I)) is a cut. Assume for the sake of contradiction that the source (I, J) of
the cut (AI(G\J), AJ(G\I)) does not satisfy I ⊆ I and J ⊆ J . Specifically, suppose there
exists (k, ℓ) ∈ E ∩ (AI(G\J)×AJ (G\I)) such that k /∈ I. Since ℓ ∈ AJ (G\I), there exists a
directed path v1, v2, . . . , vn, with n ≥ 1, such that v1 = ℓ, vn = j ∈ J , and vp /∈ I for each
p ∈ {1, 2, . . . , n}. Since we assumed k /∈ I, it follows that k, v1, v2, . . . , vn is a directed path
from k to j in G\I, hence k ∈ AJ (G\I), which is impossible since we assumed k ∈ AI(G\J)
and AI(G\J) ∩AJ(G\I) = ∅.

Next, we prove Proposition 5(ii). By Lemma 6(ii), any cut (A, B) with source (I, J) is
such that AI(G\J) ⊆ A and AJ(G\I) ⊆ B. But we assumed (AI(G\J), AJ(G\I)) forms a
cut, and no nodes can be outside of the cut. Thus, AI(G\J) = A and AJ(G\I) = B.

Lastly, we prove Proposition 5(iii). Assume that I and J are not joint-ancestor free, i.e.,
AI(G\J) ∩ AJ(G\I) ̸= ∅. Assume for the sake of contradiction that there is a cut (A, B)
with source (I, J). Lemma 6(ii) implies that AI(G\J) ⊆ A and AJ (G\I) ⊆ B, which in turn
implies that A ∩B ⊇ AI(G\J) ∩AJ (G\I) ̸= ∅. This contradicts our assumption that (A, B)
is a cut. ◀

3.5 S-product-form implies joint-ancestor freeness
Our last step in the proof of Theorem 2 is to show the implication (i) =⇒ (iii), that
is, S-product-form relationship implies joint-ancestor freeness. We have shown so far that
statements (ii) and (iii) are equivalent to each other, and that they imply (i). In other
words, we proved that if a i, j-sourced cut exists, or equivalently if nodes i and j have no
joint ancestor, then an S-product-form relationship between i and j exists. Specifically, a
product-form relationship exists where fi,j depends only on transition rates along edges
whose source is i, and fj,i depends only on transition rates along edges whose source is j.
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Theorem 7 below proves this condition is necessary. The intuition behind the proof is as
follows. If an i, j-sourced cut does not exist, then by Proposition 4 there exist nodes which
are ancestors of both i and j, i.e., Ai(G \ j) ∩ Aj(G\i) is nonempty. In particular, there
must exist a node k which is an ancestor of both nodes i and j via disjoint paths. If such a
node k exists, we show that the ratio πi

πj
depends on edge weights qk,k′ with source k. This

violates the definition of S-product-form given in Section 2.2, so Theorem 7 shows that a
joint ancestor implies no S-product-form, or equivalently that S-product-form implies no
joint ancestor.

▶ Theorem 7. Consider a formal Markov chain G = (V, E) and let i, j ∈ V . Suppose nodes i

and j are not joint-ancestor free, i.e., Ai(G\j) ∩Aj(G\i) ̸= ∅.
Then there exists a node k ∈ Ai(G\j)∩Aj(G\i) such that the stationary probability ratio

πi

πj
depends on at least one of edge weights emerging from k.

Proof. We will choose k to be a node in Ai(G\j) ∩ Aj(G\i) such that k is an ancestor of
both nodes i and j via disjoint paths. To see why such a node must exist, consider an
arbitrary node k′ in Ai(G\j) ∩Aj(G\i). From any such node, there exist paths from k′ to i

and k′ to j. Consider the shortest such paths. Either these paths are disjoint, or there is
a node k′′ which is a joint ancestor of i and j via shorter paths than k′. Over all nodes in
Ai(G\j) ∩Aj(G\i), let k be the node that is the ancestor of i via the shortest path length,
choosing arbitrarily in case of a tie. By the above argument, the shortest paths from k to i

and from k to j must be disjoint.
Let a be the shortest path from k to i, a := k, a2, a3, . . . , i. Let b be the shortest path

from k to j, b := k, b2, b3, . . . , j. As shown above, a and b share no nodes except node k.
Consider the subchain, with node set U = {i, j, k}, obtained by looking at the subsequence

of states visited by the original Markov chain G = (V, E) inside the set U . This subchain
satisfies the Markov property, and for each u, v ∈ U we let pu,v denote its transition probability
from state u to state v; these are functions of the original Markov chain’s transition rates qi,j

for i, j ∈ V . Critically, letting πi, πj , and πk denote the stationary probabilities for states i, j,

and k in the original Markov chain, as defined by (1), we can verify that πi

πi+πj+πk
, πj

πi+πj+πk
,

and πk

πi+πj+πk
form the stationary distribution of the subchain. Using this definition, we

will quantify the relative state probabilities πi and πj in terms of the subchain transition
probabilities pu,v for u, v ∈ U .

Using the balance equations for the subchain, we obtain successively:

πk = pikπi + pjkπj + pkkπk, (7)

πk = pikπi + pjkπj

1− pkk
, (8)

πi = piiπi + pjiπj + pkiπk, (9)

πi = piiπi + pjiπj + pki
pikπi + pjkπj

1− pkk
, (10)

πi

(
1− pii −

pikpki

1− pkk

)
= πj

(
pji + pjkpki

1− pkk

)
, (11)

πi

(
pij + pik −

pikpki

pki + pkj

)
= πj

(
pji + pjkpki

pki + pkj

)
, (12)

πi

(
pij + pik

pkj

pki + pkj

)
= πj

(
pji + pjk

pki

pki + pkj

)
. (13)

Equations (7) and (9) are the balance equations of the subchain for states k and i. Equation (8)
follows by solving (7) with respect to πk, and once injected into (9) it yields (10). Equation (11)
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follows by rearranging (10), and becomes (12) after injecting pii +pij +pik = 1. Equation (13)
then follows by rearraging (12).

Equation (13) shows that, if we change pki

pki+pkj
while holding pij , pik, pji, pjk constant,

then the relative probabilities of πi and πj will change. Therefore, to conclude, it suffices
to show that, by only changing qk,a2 and qk,b2 , pki

pki+pkj
can be changed while holding

pij , pik, pji, pjk constant. Specifically, in the remainder of the proof, we show that if certain
free variables qc,d in the graph are fixed to specific values, and qk,a2 and qk,b2 are left free
to vary, then pki

pki+pkj
can still vary. This implies that pki

pki+pkj
depends on qk,a2 and qk,b2 , as

desired. We can immediately note that qk,a2 and qk,b2 have no effect on pij , pik, pji, or pjk,
as (k, a2) and (k, b2) originate at k, and therefore cannot be visited on k-avoiding paths from
i to j or any of the other pairs listed.

Recall that we label the nodes within paths a and b as a1, a2, . . . and b1, b2, . . ., with
a1 = b1 = k. Let |a|, |b| be the number of edges within each path. There are |a| + 1 and
|b|+ 1 nodes in the paths, and a|a|+1 = i, and b|b|+1 = j. All other nodes within a and b are
disjoint, and are neither i, j, nor k.

Let us fix all edge weights q whose source nodes are within path a, other than nodes k

and i. We will show that even with these edge weights fixed, changing qk,a2 and qk,b2 still
affects pki

pki+pkj
.

Let ϵ > 0 be a constant to be specified later, and let ∆(v) be the degree of node v. Let
us specify the edge weights for edges whose source node is within a as follows:

qaℓ,aℓ+1 := 1− ϵ, ∀ℓ, 2 ≤ ℓ ≤ |a|,

qaℓ,a′ := ϵ

∆(ai)− 1 , ∀a′ ̸= aℓ+1, (aℓ, a′) ∈ E.

Note that we have fixed the edge weight for all edges whose source node is within a, except
for a1 = k and a|a|+1 = i. We fix the edge weights for nodes whose source vertex is within b

in the same manner. Let us also fix all edge weights whose source node is k, other than qk,a2

and qk,b2 , to be ϵ
∆(k)−1 .

Now, we consider two extreme configurations:
(a) The a-emphasizing configuration: qk,a2 = 1− ϵ, and qk,b2 = ϵ

∆(k)−1 .
(b) The b-emphasizing configuration: qk,b2 = 1− ϵ, and qk,a2 = ϵ

∆(k)−1 .
Let us bound pki and pkj in each configuration. In Configuration a, the system may move
from k to i via traversing path a. Each edge weight in this path has probability (1− ϵ), so
p

(a)
ki ≥ (1− ϵ)|a|. A similar lower bound holds in Configuration b: p

(b)
kj ≥ (1− ϵ)|b|.

Let us specify ϵ = 3 max(|a|, |b|). Note that for all x ≥ 1, (1− 1
3x )x ∈ [2/3, e−1/3). As a

result, p
(a)
ki ≥ 2/3 and p

(b)
kj ≥ 2/3, which yields

p
(a)
ki

p
(a)
ki + p

(a)
kj

≥ 2/3,
p

(b)
ki

p
(b)
ki + p

(b)
kj

≤ 1/3.

Between Configurations a and b, only qk,a2 and qk,b2 changed, and yet pki

pki+pkj
changed.

Thus, between Configurations a and b, the relative probability πi

πj
changes. As a result, πi

πj

depends on at least one of qk,a2 and qk,b2 , both with partially-fixed weights and with all
weights as free variables. ◀

4 Cut graph and higher-level cuts

In this section, we explore product-form relationships beyond the S-product-form which was
the focus of Section 3. In Section 4.1, we define the cut graph, which is an undirected graph
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whose edges represent S-product-form relationships between nodes. Based on this definition,
in Section 4.2, we explore PS-product-form relationships, corresponding to combinations
of S-product-form relationships produced by paths in the cut graph. In Section 4.3, we
introduce and explore higher-level cuts, which correspond to SPS-product-form relationships
and beyond.

4.1 Cut graph
Let us first introduce the cut graph of a formal Markov chain.

▶ Definition 8 (Cut graph). Consider a strongly-connected directed graph G = (V, E). The
cut graph of G is the undirected graph C1(G) = (V, R) where R is the family of doubletons
{i, j} ⊆ V such that i and j are in an S-product-form relationship. In other words, C1(G) is
the graph of the S-product-form binary relation.

Recall that, by Theorem 2, two nodes i and j are in an S-product-form relationship if
and only if there exists an i, j-sourced cut, that is, i and j are joint-ancestor free. Using
this observation, Algorithm 3 returns the cut graph of a formal Markov chain with a finite
number of states. It uses the MutuallyAvoidingAncestors procedure from Algorithm 2.
Since each call to this procedure takes time O(|E|), the CutGraph procedure runs in time
O(|V |2|E|). If the cut graph is connected, then the stationary distribution can be entirely
computed by applying S-product-form relationships. Lastly, observe that the S-product-form
relationship is not transitive, i.e., if the pairs i, j and j, k of nodes are both on an S-product-
form relationship, this does not imply that nodes i, k are. Instead, we show in Section 4.2
that nodes i, k are then in a PS-product-form relationship.

Algorithm 3 Returns the cut graph C1(G) of a finite directed graph G = (V, E)

1: procedure CutGraph(finite directed graph G = (V, E)) → the cut graph C1(G)
2: E′ ← ∅
3: for each pair of distinct nodes i, j ∈ V do
4: Ai, Aj ←MutuallyAvoidingAncestors(G, i, j)
5: if Ai ∩Aj = ∅ then
6: add edge {i, j} to E′

7: end if
8: end for
9: return (V, E′)

10: end procedure

In Appendix A, we relate the structure of a formal Markov chain G to the existence of a
clique in its cut graph C1(G). This condition can be seen as an extension of Proposition 4,
as an edge is a clique of size 2. Appendix A shows in particular that the one-way cycle of
Example 2 is the only finite formal Markov chain whose cut graph is the complete graph.

4.2 PS-product-form relationships
The next lemma shows that, if two nodes are connected in the cut graph C1(G), they are in
a PS-product-form relationship. In this way, each connected component of the cut graph
forms a set of nodes that are pairwise in PS-product-form relationships. An example of a
fully-connected cut graph appears in Section 5.1.
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▶ Lemma 8. Consider a formal Markov chain G = (V, E) and two nodes i, j ∈ V . Let
i = k1, k2, . . . , kd, kd+1 = j denote a path of length d between nodes i and j in the cut graph
C1(G), where d is the distance between nodes i and j in C1(G). Then

πi

d∏
p=1

fkp,kp+1 = πj

d∏
p=1

fkp+1,kp
. (14)

where the f ’s are given by Equation (6) in Theorem 2. In this case, nodes i and j are in a
PS-product-form relationship.

Lemma 8 follows from the fact that each edge in the cut graph represents an S-product-
form relationship, as proven in Lemma 3, which chains together along the path to give a
PS-product-form relationship. We can be more specific than simply saying that i and j are
in a PS-product-form relationship. The arithmetic circuit associated with the left-hand side
of (14) has depth 2 and size

1 + d +
d∑

p=1

∣∣E ∩ (
{kp} ×Akp+1(G\kp)

)∣∣ .

In particular, if the out-degree of each node on the path is upper-bounded by D, the size of
the arithmetic circuit is upper-bounded by 1 + d + dD.

4.3 Higher-level cuts
Up to this point, we have focused on cuts with a single source vertex on each of side of
the cut: i, j-sourced cuts, where i and j are each single vertices. We refer to such cuts
as “first-level” cuts. These cuts correspond to pairs of states which are joint-ancestor free,
and result in S-type product form relationships between these states. In addition to these
first-level cuts, we are also interested in second-level cuts. We now define such second-level
cuts with reference to the cut graph C1(G) introduced in Section 4.1. In Lemma 9 we will
prove that second-level cuts give rise to SPS-product-form relationships. Table 1 summarizes
this section by showing what levels of cuts give rise to the graph-structure product-form
relationships enumerated in Section 2.2.

Nodes i and j are neighbors in C1(G) S-product-form Theorem 2
Nodes i and j are connected by a path in C1(G) PS-product-form Lemma 8

Nodes i and j are connected by a hyperpath in C2(G) containing SPS-product-form Lemma 9
at most one hyperedge made of more than two nodes
Nodes i and j are connected by a hyperpath in C2(G) PSPS-product-form

Table 1 Sufficient conditions under which two distinct states i and j of a formal Markov chain
G = (V, E) are in a product-form relationship. A hyperpath is defined as a sequence of distinct
nodes such that each pair of consecutive nodes in the path is connected by a hyperedge.

Second-level cuts

We define two kinds of second-level cuts, closely related but subtly different.

▶ Definition 9 (Second-level cuts). Consider a formal Markov chain G = (V, E).
A broad second-level cut is a cut with source (I, J) such that the nodes in I are connected
to one another via the cut graph C1(G), and the same is true of J . In other words, an
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(I, J)-sourced cut is a broad second-level cut if there exists a pair K1 and K2 of connected
components of the cut graph C1(G) such that I ⊆ K1 and J ⊆ K2.
A narrow second-level cut is a cut arising from a joint-ancestor free relationship between two
connected components of the cut graph C1(G). Specifically, the narrow second-level cut arising
from two connected component K1 and K2 of C1(G) is the cut (AK1(G\K2), AK2(G\K1)).

Note that a narrow second-level cut is also a broad second-level cut: its sources must
be subsets of K1 and K2, by Proposition 5. The reverse is not as clear. Nonetheless, we
conjecture that whenever a broad second-level cut exists, a corresponding narrow second-level
cut also exists; see Conjecture 10 later in this section for details.

If a broad second-level cut exists in the graph, generated by I ⊆ K1 and J ⊆ K2, we will
show in Lemma 9 that this cut gives rise to an SPS-product form relationship between any
pair of vertices i ∈ K1, j ∈ K2. It follows that, if all connected components of the cut graph
are connected via broad second-level cuts, then G exhibits a PSPS-product form; an example
appears in Section 5.2. Our primary motivation for introducing narrow second-level cuts is
that they can be algorithmically discovered more easily than broad second-level cuts; see the
following sub-subsection for details.

One can similarly define broad third-level cuts, fourth-level cuts, and so on, which give
rise to S(PS)n and (PS)n product-form relationships for larger n. A broad third-level cut is
a cut whose source sets I and J are connected by a combination of first-level cuts and broad
second-level cuts, and so forth. One can also define narrow third-level cuts with reference
to narrow second-level cuts, and so forth. Intuitively, each additional sum (S) appears by
applying a cut equation, and each additional product (P) appears by combining combining
several product-form relationships.

We also define the narrow second-level cut graph C2(G) as follows. Starting with
the first-level cut graph C1(G), for each pair of connected components K1, K2 which
form a narrow second-level cut, we add a hyperedge containing the sources of the cut
(AK1(G\K2), AK2(G\K1)). Assuming Conjecture 10, which claims that broad and narrow
second-level cuts are equivalent, C2(G) contains all necessary information to identify all
first-level and second-level cuts, and we can characterize the corresponding S, PS, SPS, and
PSPS product-form relationships. We can similarly define narrow third-level and higher-level
cut graphs. If Conjecture 10 fails, then we can define a distinct broad second-level cut graph,
and higher-level broad cut graphs.

SPS-product-form

We show that if there exists a broad second-level cut with source (I, J), then not only are
every pair of vertices in I and J in an SPS-product-form relationship (Definition 4), but
in fact every pair of vertices in K1 and K2 are in an SPS-product-form relationship, where
K1 and K2 are the connected components of the cut graph C1(G) that include I and J ,
respectively.

▶ Lemma 9. Consider a formal Markov chain G = (V, E). Given an (I, J)-sourced broad
second level cut, with I ⊆ K1 and J ⊆ K2, and K1, K2 connected components of C1(G), then
every pair of vertices i ∈ K1 and j ∈ K2 are in an SPS-product-form relationship.

Proof. First, recall from Lemma 8 that because K1 is a connected component of C1(G),
every pair of vertices i, i′ ∈ K1 is in a PS relationship. Letting i = k1, k2, . . . kd, kd+1 = i′ be
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a path connecting i and i′ in K1, a PS-product-form relationship is given by:

fi,i′ =
d∏

p=1
fkp,kp+1 , fi′,i =

d∏
p=1

fkp+1,kp
, (15)

πifi,i′ = πi′fi′,i. (16)

A similar PS-product-form relationship holds for any pair j, j′ ∈ K2.
Next, let us apply Lemma 1 to the cut with source sets (I, J). By Lemma 1, we have∑
(i,j)∈E∩(I×J)

πiqi,j =
∑

(j,i)∈E∩(J×I)

πjqj,i. (17)

Note that all edges that cross the cut belong to either I × J or J × I.
Let i∗ and j∗ be an arbitrary pair of vertices, i∗ ∈ K1 and j∗ ∈ K2. We will now

explicitate the SPS-product form relationship between i∗ and j∗. Applying the PS-product
form relationships within K1 and K2, given by (15), we can rewrite (17) in terms of πi∗ and
πj∗ : ∑

(i,j)∈E∩(I×J)

πi∗

fi∗,i

fi,i∗

qi,j =
∑

(j,i)∈E∩(J×I)

πj∗

fj∗,j

fj,j∗

qj,i,

πi∗

∑
(i,j)∈E∩(I×J)

fi∗,i

fi,i∗

qi,j = πj∗

∑
(j,i)∈E∩(J×I)

fj∗,j

fj,j∗

qj,i.

This gives the SPS-product form relationship between i∗ and j∗ as desired. Note that we
have made use of the flexibility of the SPS-product form definition, which allows us to invert
the sums within the SPS formula, or equivalently to invert the products within fi,j as defined
in (15). Because i∗ and j∗ were an arbitrary pair of vertices in K1, K2, this completes the
proof. ◀

Algorithmic discovery

We now discuss how to algorithmically and efficiently find all second-level cuts which exist in
a given graph G, akin to Algorithm 3, which did the same for first-level cuts.

Specifically, we find all narrow second-level cuts, via the following straightforward but
efficient algorithm. We iterate over all pairs K1, K2 of connected components in the cut graph
C1(G). For each pair of components, we use Algorithm 2 to check whether the components
are joint-ancestor free, and hence form a narrow second-level cut.

In contrast, attempting to discover broad second-level cuts directly via a similar procedure
is not nearly as straightforward, as one may in principle be required to search over all pairs
of subsets I ⊆ K1, J ⊆ K2, which is inefficient. However, in all cases that we have examined,
broad second-level cuts are only present between subsets of components that form narrow
second-level cuts. This motivates the following conjecture.

Conjecture: Equivalence of broad and narrow second-level cuts

We conjecture that all broad second-level cuts have a corresponding narrow second-level
cut, in the sense specified in Conjecture 10 below. As a result, we conjecture that the
algorithmic procedure described above discovers all components K1 and K2 that contain
broad second-level cuts: If there exist I ⊆ K1 and J ⊆ K2 which form a second-level cut,
then K1 and K2 are joint-ancestor free, and the above procedure will discover a narrow
second-level cut between K1 and K2, even if that cut’s sources are not necessarily I and J .
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▶ Conjecture 10. Consider a formal Markov chain G = (V, E). For each pair of connected
components K1 and K2 of C1(G), if there exist two nonempty sets I ⊆ K1 and J ⊆ K2 such
that I and J are join-ancestor free in G, then we conjecture that K1 and K2 are joint-ancestor
free in G. In other words, if there is a broad second-level cut with source (I, J), then we
conjecture that there is a narrow second-level cut arising from K1 and K2.

If Conjecture 10 holds, then we would be able to remove the distinction between broad and
narrow second level cuts.

The reason this claim is nontrivial is that in principle, K1 and K2 may have a joint
ancestor even if I and J are joint-ancestor free. However, we were not able to build such
an example. Thus, to prove Conjecture 10, one must leverage the fact that K1 and K2 are
connected components of the cut graph C1(G).

We explored the following avenue towards proving this conjecture. Given joint-ancestor
free subsets I ⊆ K1 and J ⊆ K2, we further conjecture that there always exists either an
additional node by which either I or J can be expanded, while preserving the joint-ancestor
free property:

▶ Conjecture 11. Given two joint-ancestor free subsets I ⊆ K1 and J ⊆ K2, where either
I ̸= K1, J ̸= K2, or both, there exists either

i ∈ K1\I such that I ∪ {i} and J are joint-ancestor free, or
j ∈ K2\J such that I and J ∪ {j} are joint-ancestor free.

If Conjecture 11 holds, then by applying it inductively we show K1 and K2 must be joint-
ancestor free in G whenever I and J are, which would complete the proof of Conjecture 10.

In Appendix B, we prove in Theorem 15 that in the special case where J contains a
single vertex (|J | = 1), there exists an i ∈ K1\I such that I ∪ {i} and J are joint-ancestor
free. However, we were not able to resolve the general conjecture, either Conjecture 11 or
Conjecture 10, and leave both as open problems.

5 Examples

We now give several examples of formal Markov chains arising from queueing systems which
exhibit graph-based product form.

5.1 Multiserver jobs
First, we give a practical example of a Markov chain with PS-product form arising from its
graph structure. This setting is taken from [15]. The setting is explored in more detail in a
technical report [22].

Consider the following multiserver-job (MSJ) queueing system. There are two types
of jobs: class-1 jobs, which each require 3 servers to enter service, and class-2 jobs, which
require 10 servers to enter service. There are 30 servers in total. Servers are assigned to jobs
in first-come-first-served order, with head-of-line blocking. We will specifically consider a
saturated queueing system, meaning that fresh jobs are always available, rather than having
an external arrival process. Saturated queueing systems are used to characterize the stability
region [28, 29] and mean response time [30] of the corresponding open system with external
arrivals.

In the saturated system, fresh jobs are always available, and a new job enters into the
system whenever it is possible that this fresh job might receive service, based on the number
of available servers. Specifically, if at least 3 servers are available, a fresh job will enter the
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system. If that job is a class-2 job, and if not 10 servers are available, the class-2 job will
wait in the queue. There will always be at most one job in the queue, and only a class-2 job
can be in the queue. Said differently, when a job completes service, we uncover the classes of
as many fresh jobs as needed to verify that no more fresh jobs can be added to service. The
service time of each job is exponentially distributed, with a rate based on the class of the
job: µ1 for class-1 jobs, and µ2 for class-2 jobs.

There are several Markov chains corresponding to this system that we could examine at
this point. For instance, we could consider the standard CTMC, or the embedded DTMC with
steps at epochs where jobs complete. These two Markov chains both exhibit product-form
stationary distributions, but they do not exhibit graph-based product form: the specific
transition rates, not just the graph structure, produce the product-form behavior.

However, we instead examine a nonstandard DTMC, with epochs whenever a job either
enters the system or completes. In particular, whenever a job leaves upon service completion,
the DTMC transitions through a the sequence of states, starting right after the job has
completed and no fresh job has been entered the system, then after a the first fresh job has
entered, then the second, and so on, until there is no possibility that any further fresh jobs
could immediately enter service. This DTMC does exhibit graph-based product form, and
this product-form behavior transfers to the other two Markov chains mentioned above.

More specifically, to reveal the graph-based product form, we examine the embedded
DTMC of this system, examining moments at which jobs enter the system or complete.
There are two kinds of states in the system: completion states, from which the next transition
is a service completion, and arrival states, from which the next transition is a job arrival.
In any state where at least 3 servers are available, and no job is in the queue, a fresh job
enters the system. That job is a class-1 job with probability p1, and a class-2 job otherwise.
Otherwise, jobs complete. Class-1 jobs have service rate µ1, and class-2 jobs have service
rate µ2, resulting in some probability of a completion of each class of job. After a completion,
the job in the queue (if any) moves into service if enough servers are available, transitioning
to a new state.

We denote states by the number of class-1 jobs in the system, from 0 to 10, and by whether
the state is a completion state or an entering state. This naming convention is sufficient to
differentiate all states in the system (see more details in [15, Section 4]). An overbar denotes
an arrival state, while the number alone denotes a completion state. For instance, state 4
consists of 4 class-1 jobs and 1 class-2 job in service, for a total of 22 servers occupied, with
another class-2 job in the queue. State 4̄ is the same state but without the class-2 job in the
queue. Note that the arrival states such as 4̄ are present in this arrivals-and-completions
embedded DTMC, and would not be present in a more standard completions-only DTMC.

Figure 4a shows the graph G underlying the Markov chain for this saturated MSJ queue,
with white backgrounds for completion states and grey backgrounds for arrival states. For
instance, starting in state 4, a class-1 job can complete, transitioning to state 3, with 3
class-1 jobs and 2 class-2 jobs in service, or a class-2 job can complete, transitioning to state
4̄. From state 4̄, a class-1 job can enter the system, transitioning to state 5̄, with 5 class-1
jobs and 1 class-2 job in service, or a class-2 job can enter, transitioning to state 4.

Figure 4b shows the (first-level) cut graph C1(G) corresponding to this graph. For
instance, there is a first-level cut between nodes 4 and 4̄. This cut partitions the graph notes
into two subsets: A4̄(G\4) = {0, 0̄, . . . , 3, 3̄, 4̄} and A4(G\4̄) = {4, 5, 5̄, . . . , 9̄, 10}. The only
edges crossing this cut are the outgoing edges from 4 and 4̄.

Table 2 lists some of the cuts and the corresponding product-form relationships between
pairs of nodes, where the transition rate from state i to state j is denoted by qi,j . Note that
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(a) Transition diagram graph G.
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(b) Cut graph C1(G).

Figure 4 Multiserver jobs example.

Nodes Product-form Relation
0 and 0̄ π(0̄)(q0̄,0 + q0̄,1) = π(0)q0,0̄

0̄ and 1 π(1)q1,0 = π(0̄)q0̄,1̄

1 and 1̄ π(1̄)(q1̄,1 + q1̄,2̄) = π(1)(q1,0 + q1,1̄)
1̄ and 2 π(2)q2,1 = π(1̄)q1̄,2̄

2 and 2̄ π(2̄)q2̄,3 = π(2)(q2,1 + q2,2̄)
2̄ and 3 π(3)q3,2̄ = π(2̄)q2̄,3

3 and 3̄ π(3̄)(q3̄,3 + q3̄,4) = π(3)q3,3̄

3̄ and 4 π(4)q4,3 = π(3̄)q3̄,4

Table 2 First-level cuts involving states i or ī, for i ∈ {0, 1, 2, 3}, in the multiserver job example.

each first-level cut gives rise to an S-product-form relationship, defined in Section 2.2, as
shown in Lemma 3. Because the cut graph is fully connected, as shown in Figure 4b, every
pair of nodes has a PS-product-form relationship, by composing S-product-form relationships
along a path connecting those nodes in the cut graph, as described in Lemma 8. As a result,
the entire formal Markov chain has a PS-product-form stationary distribution. If the three
structural parameters of the system are changed (3 servers for class 1 jobs, 10 servers for
class 2 jobs, 30 servers total), PS product form continues to hold.

In prior work [15], this saturated queueing system was shown to have a PS-product-
form stationary distribution, and that stationary distribution was given with respect to the
specific transition probabilities qi,j for that system. This work further illuminates the system,
demonstrating that the underlying graph of the Markov chain gives rise to the product-form
stationary distribution. A similar product form would exist for a system with arbitrary
transition rates and the same graph.

Critical to this graph-based product-form is the inclusion of the arrival states ī, in addition
to the completion states i. Consider for instance the embedded DTMC with only completion
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states and no arrival states: arrival states ī are deleted, and transitions involving these states
are replaced with transitions between completion states i whose rates take the form of a
product. This completion-only embedded DTMC, which is the one studied by [15], still
has a product-form stationary distribution, related to the stationary distribution of our
completion-and-arrival DTMC by removing all arrival states and renormalizing over the
completion states. In particular, all ratios of stationary probability between completion states
are preserved, thus maintaining the product-form distribution. However, this DTMC does
not exhibit graph-based product-form. One can verify that its product-form is “probability-
specific” in the sense that it is a consequence of the fact that some transition rates in the
completions-only DTMC are themselves written as products.

5.2 Queue with batch arrivals: structured
Next, we give an example of a queueing Markov chain whose associated cut graph is not
connected via first-level cuts, but is connected via second-level cuts as discussed in Section 4.3,
giving rise to PSPS-product form from its graph structure. Note that for this particular
Markov chain, Conjecture 10 holds, so we do not need to distinguish between broad second-
level cuts and narrow second-level cuts.

Consider a single-server queueing system with structured batch arrivals. Jobs arrive
in batches of size sampled from a geometric distribution, but the batch size is truncated
to not bring the total number of jobs in the system above the next multiple of 3. More
specifically, if there were 4 jobs present prior to an arrival, the number of jobs in queue would
be increased to min(4 + N, 6) where P(N = n) = (1− p)pn−1 for each n ∈ {1, 2, 3, . . .}, with
the truncation ensuring that the total number of jobs after the batch arrival does not exceed
6. Jobs are indistinguishable, with exponentially-distributed service times. Batch arrivals
occur according to a Poisson process and have i.i.d. sizes.

0 1 2 3 4 5 6 7

1̄ 2̄ 3̄ 4̄ 5̄ 6̄ 7̄

· · ·

· · ·

(a) Transition diagram graph G.

0 1 2 3 4 5 6 7

1̄ 2̄ 3̄ 4̄ 5̄ 6̄ 7̄

· · ·

· · ·

0 1 2 3 4 5 6 7

1̄ 2̄ 3̄ 4̄ 5̄ 6̄ 7̄

· · ·

· · ·

(b) First-level cut graph C1(G). Edges (solid lines) connect nodes that are in an S-product-form relationship.
Dashed contours outline connected components of C1(G).

0 1 2 3 4 5 6 7

1̄ 2̄ 3̄ 4̄ 5̄ 6̄ 7̄

· · ·

· · ·

0 1 2 3 4 5 6 7

1̄ 2̄ 3̄ 4̄ 5̄ 6̄ 7̄

· · ·

· · ·

(c) Second-level cut graph C2(G). Solid lines intersecting at a dot represent second-level cuts, showing
the source nodes of the cut.

Figure 5 Queue with batch arrivals, first version.

We consider the embedded DTMC of the system, examining moments when jobs enter
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Level Nodes Equation

1

0 and 1 π(0)q0,1̄ = π(1)q1,0

0 and 1̄ π(0)q0,1̄ = π(1̄)(q1̄,1 + q1̄,2̄)
1 and 1̄ π(1)q1,0 = π(1̄)(q1̄,1 + q1̄,2̄)
2 and 2̄ π(2)q2,1 = π(2̄)(q2̄,2 + q2̄,3̄)
3 and 3̄ π(3)q3,2 = π(3̄)(q3̄,3 + q3̄,2̄)
3 and 4 π(3)q3,4̄ = π(4)q4,3

4 and 4̄ π(4)q4,3 = π(4̄)(q4̄,4 + q4̄,3̄)
5 and 5̄ π(5)q5,4 = π(5̄)(q5̄,5 + q5̄,4̄)
6 and 6̄ π(6)q6,5 = π(6̄)(q6̄,6 + q6̄,5̄)
6 and 7 π(6)q6,7̄ = π(7)q7,6

7 and 7̄ π(7)q7,6 = π(7̄)(q7̄,7 + q7̄,6̄)

2

{1, 1̄} and 2 π(1)q1,2̄ + π(1̄)q1̄,2̄ = π(2)q2,1

{2, 2̄} and 3 π(2)q2,3̄ + π(2̄)q2̄,3̄ = π(3)q3,2

{4, 4̄} and 5 π(4)q4,5̄ + π(4̄)q4̄,5̄ = π(5)q5,4

{5, 5̄} and 6 π(5)q5,6̄ + π(5̄)q5̄,6̄ = π(6)q6,5

Table 3 Cuts associated with the single-server queue batch example of Figure 5.

the system or complete. Figure 5a shows the graph G underlying the Markov chain for
this batch-arrivals system. It is infinite in one direction, in contrast to the finite graph we
considered in Section 5.1. In the same spirit as Section 5.1, there are two kinds of states:
during a batch, when a job has just arrived, and in the bulk of time, when jobs may complete
or a new batch may arrive. We denote states by the number of jobs in the system, and by
whether the state is immediately-post-arrival, shown in grey, or spanning a nonzero amount
of time, shown in white. An overbar denotes an immediately-post-arrival state. For instance,
state 4 has four jobs in the system, and jobs may complete or a new batch may begin. State 7̄
has seven jobs, and a batch of arrivals is ongoing. When a batch ends, the system transitions
from the immediately-post-arrival state to the corresponding general-time state, such as from
state 2̄ to state 2.

Figure 5b shows the first-level cut graph C1(G) corresponding to this graph. For instance,
there is a first-level cut between nodes 3 and 4̄. This cut partitions the graph into two
subsets: A4̄(G\3) = {4̄}, and A3(G\4̄) = V \ {4̄}. This cut gives rise to an S-product form
relationship between nodes 3 and 4̄. More first-level cuts and corresponding S-product-form
relationships are listed in Table 3.

The connected components of C1(G), illustrated with dashed outlines in Figure 5b, each
contain two to four vertices. Between these components, there exist second-level cuts, as
shown in Figure 5c. For instance, between components K1 = {2, 2̄} and K2 = {3, 3̄, 4, 4̄},
there exists a cut with sources I = K1 = {2, 2̄} and J = {3}, J ⊆ K2. Correspondingly, K1
and K2 are joint-ancestor free.

This cut partitions the graph into two subsets: AI(G\J) = {0, 1, 1̄, 2, 2̄}, and AJ (G\I) =
{3, 3̄, 4, 4̄, 5, 5̄, . . .}. Due to this second-level cut, the graph induces an SPS-product-form
relationship between each pair of vertices in K1 and K2, by Lemma 9. Each connected
component has a second-level cut with each of its neighbors, as shown in Figure 5c and in
Table 3, so the Markov chain has a PSPS-product-form.

The same is true if one varies the parameters defining the system and its Markov chain,
for instance by changing the multiplier 3 that truncates the batches to some other multiplier,
or truncating the batches at an arbitrary sequence of cutoff values.
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5.3 Queue with batch arrivals: unstructured

Finally, we give an example of a queueing system with a positive number of first-level cuts,
second-level, third-level, and so forth, but for which the entire graph is not connected via
any finite level of cuts.

Consider a single-server queueing system with unstructured batch arrivals, of size either
1 or 2. Jobs arrive in batches of size 1 with probability p1 and 2 with probability p2, with
p1 + p2 = 1. Jobs are indistinguishable, with exponential service time. Batch arrivals occur
according to a Poisson process.

We examine the embedded DTMC of the system, examining moments when jobs enter
the system or complete. We use the same state representation as in Section 5.2. Figure 6a
shows the graph G underlying the Markov chain for this batch-arrivals system. Figure 6b
shows the first-level cut graph C1(G) corresponding to this graph. Table 4 lists some such
cuts and the corresponding S-product form relationships.

0 1 2 3 4 5
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2̄ 4̄

· · ·

· · ·

(a) Transition diagram G.
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(b) First-level cut graph C1(G).
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(c) Second-level cut graph C2(G).
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(d) Third-level cut graph C3(G).

Figure 6 Queue with batch arrivals, second version.

In contrast to the structured batch setting in Section 5.2, there are very few second-level
cuts in this graph. In fact, the only second level cuts are between subsets of the two leftmost
components of the cut graph, namely K1 = {0, 1, 1̄, 2̄} and K2 = {2, 3̄}, as shown in Figure 6c.
A narrow second-level cut exists between these components, namely AK1(G\K2) = K1 and
AK2(G\K1) = G\K1. This cut has source ({1̄, 2̄}, {2}), as shown in Figure 6c.

This cut implies an SPS product-form relationship between every pair of vertices i ∈ K1
and j ∈ K2. The key equation for defining that SPS relationship is the second-level equation
in Table 4.

Note that other subsets of K1 and K2 also form broad second-level cuts, such as {1̄, 1} ⊂
K1, {2} ⊂ K2. This is the behavior predicted by Conjecture 10, which states that broad
second level cuts will only exist between subsets of connected components that also have
narrow second-level cuts, but that the sources may differ.

We can recursively define third-level cuts based on the connected components of the
second-level cut graph. However, as the second-level cut graph only adds a single hyperedge,
the only difference between the first-level components and the second-level components is
that K1 and K2 are combined into a single component. As result, there is only a single
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Level Nodes Equation

1

0 and 1 π(0)q0,1̄ = π(1)q1,0

0 and 1̄ π(0)q0,1̄ = π(1̄)(q1̄,1 + q1̄,2)
1 and 1̄ π(1)q1,0 = π(1̄)(q1̄,1 + q1̄,2)
2 and 3̄ π(2)q2,3̄ = π(3̄)(q3̄,3 + q3̄,4)
3 and 4̄ π(3)q3,4̄ = π(4̄)(q4̄,4 + q4̄,5)
4 and 5̄ π(4)q4,5̄ = π(5̄)(q5̄,5 + q5̄,6)

2 {1̄, 2̄} and 2 π(1̄)q1̄,2 + π(2̄)(q2̄,2 + q2̄,3) = π(2)q2,1

3 {2̄, 3̄} and 3 π(2̄)q2̄,3 + π(3̄)(q3̄,3 + q3̄,4) = π(3)q3,2

Table 4 Cuts associated with the single-queue batch example of Figure 6.

third-level cut, shown in Figure 6d. We can continue on to higher and higher levels of the
cut graph, adding a single cut each time.

Corresponding to the fact that the nth cut graph is not fully connected for any finite
level n, the Markov chain does not exhibit (PS)n or S(PS)n product form for any finite level
n. However, any two specific nodes i, j ∈ V are connected in some (potentially large) level
of the cut graph, and are in an S(PS)n product-form relationship for some correspondingly
large n.
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A Cliques in the cut graph

As announced in Section 4.1, Theorem 12 below gives a necessary and sufficient condition for
the existence of a clique in the cut graph of a formal Markov chain. This condition can be
seen as an extension of Proposition 4, which corresponds to a clique of size 2.

▶ Theorem 12. Consider a formal Markov chain G = (V, E) and a set K ⊆ V of n ≥ 2 nodes.
Also let Vi = Ai(G\(K\{i})) for each i ∈ K, and consider the directed graph Q = (K, L)
where L = {(i, j) ∈ K ×K : i ̸= j and E ∩ (Vi × Vj) ̸= ∅}. Then:

(i) V =
⋃

i∈K Vi.
(ii) The following statements are equivalent:

a. K is a clique in C1(G).
b. (Vi)i∈K is a partition of V and Q is a directed cycle.

(iii) If the equivalent statements of (ii) are satisfied then, for each i, j ∈ K, the i, j-sourced
cut is (S, T ) with S =

⋃
k∈Ai(Q\j) Vk and T =

⋃
k∈Aj(Q\i) Vk.

Theorem 12 is illustrated in Figure 7 with a 9-node formal Markov chain whose cut graph
contains the clique K = {1, 5, 6, 8, 9}. Indeed, condition (iib) of Theorem 12 is satisfied: the
sets V1, V5, V6, V8, and V9 are disjoint, and the quotient graph Q as defined in Theorem 12
is a cycle visiting V1, V5, V6, V8, and V9, in this order2. Intuitively, the nodes in K act as
no-return points in the graph G in the sense that, once the set Vi has been exited (necessarily

2 Note that we identify each subset Vi with its representative vertex i ∈ K. While formally Q is defined
with K as its set of vertices, we equivalently think of it as having the family (Vi)i∈K as vertices.
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Figure 7 A formal Markov chain whose cut graph contains the clique {1, 5, 6, 8, 9}.

via i) for some i ∈ K, the only way of returning to this set is by traversing the graph G

consistently with the cycle Q. Saying that the sets V1, V5, V6, V8, and V9 are pairwise disjoint
(and therefore form a partition of V ) is equivalent to saying that node i is the only exit point
from set Vi, for each i ∈ K. Focusing for instance on nodes 5 and 8, the 5, 8-sourced cut is
given by (V5 ∪ V1 ∪ V9, V8 ∪ V6).

Proof of Theorem 12. We prove each statement one after another.

(i) Let k ∈ V . Since G is strongly connected, there exists a directed path k1, k2, . . . , kn, with
k1 = k and kn ∈ K. Then k ∈ Vkp with p = min{q ∈ {1, 2, . . . , n}|kq ∈ K}.

(ii) We prove each direction of the equivalence separately.
First assume that (iia) is satisfied: K is a clique in C1(G). By Proposition 4, it means that
Ai(G\j) ∩Aj(G\i) = ∅ for each i, j ∈ K. We now verify the two parts of (iib):

(Vi)i∈K is a partition of V : For each i, j ∈ K, we have Vi ∩ Vj = ∅ because Vi ⊆ Ai(G\j),
Vj ⊆ Aj(G\i), and Ai(G\j) ∩ Aj(G\i) = ∅. Therefore, (Vi)i∈K is a family of pairwise
disjoint sets. Combining this with (i) implies that (Vi)i∈K is a partition of V .
Q is a directed cycle: Q is strongly connected because G is and (Vi)i∈V covers V . It
remains to be proved that, for each i ∈ K, there is at most one j ∈ K\{i} such that
(i, j) ∈ L. First observe that, for each i, j ∈ K, we have E ∩ (Vi × Vj) ⊆ {i} × Vj because
Vi ⊆ Ai(G\j), Vj ⊆ Aj(G\i), and (iia) implies that (Ai(G\j), Aj(G\i)) is an i, j-sourced
cut. Now assume for the sake of contradiction that there are j, j′ ∈ K, with j ̸= j′, such
that (i, j) ∈ L and (i, j′) ∈ L. Combined with the previous observation, it follows there
exist k ∈ Vj and k′ ∈ Vj′ such that (i, k) ∈ E and (i, k′) ∈ E. Recalling the definitions of
Vj and Vj′ , we conclude that i ∈ Aj(G\j′)∩Aj′(G\j), By Proposition 4, this contradicts
our assumption that there is a j, j′-sourced cut.

Now assume that (iib) is satisfied, i.e., (Vi)i,∈K is a partition of V and Q is a directed cycle.
We proceed step-by-step.
(A) We first verify that, for each (i, j) ∈ L, we have E ∩ (Vi × Vj) ⊆ {i} × Vj , i.e., edges

in G from Vi to Vj necessarily have source node i. Let (i, j) ∈ L. Assume for the sake
of contradiction that there exist k ∈ Vi\{i} and ℓ ∈ Vj such that (k, ℓ) ∈ E. Then there
exists a path from k to j (through ℓ) that does not visit any node in K\{j}, meaning
that k ∈ Vj , which is impossible since k ∈ Vi and Vi ∩ Vj = ∅.

Now let i, j ∈ K, S =
⋃

k∈Ai(Q\j) Vk, and T =
⋃

k∈Aj(Q\i) Vk. Our end goal is to prove that
(S, T ) is an i, j-sourced cut.
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(B) We know that (S, T ) is a partition of V because (Ai(Q\j), Aj(Q\i)) is a partition of K

(since Q is a directed cycle) and (Vk)k∈k is a partition of V .
(C) Let us prove that, for each k ∈ Ai(Q\j), every path in G from any node in Vk to node j

visits node i. Let k ∈ Ai(Q\j) and ℓ ∈ Vk. Consider any path ℓ1, ℓ2, . . . , ℓn in G such
that ℓ1 = ℓ and ℓn = j. For each p ∈ {1, 2, . . . , n}, let kp denote the unique node in K

such that ℓp ∈ Vkp ; we have in particular k1 = k and kn = j. By definition of Q, for
each p ∈ {1, 2, . . . , n− 1}, we have either kp = kp+1 or (kp, kp+1) ∈ L, i.e., the sequence
of distinct nodes in k1, k2, . . . , kn forms a path in Q. Since Q is a directed cycle and
k ∈ Ai(Q\j), the only path in Q from k1 = k to kn = j visits i. Hence, there is q ∈
{1, 2, . . . , n− 1} such that kq = i, and we can define p = max{q ∈ {1, 2, . . . , n} : kq = i}.
We know that p ≤ n− 1 since kn = j ̸= i. We obtain (kp, kp+1) ∈ L, so that by A we
have necessarily ℓp = i.

(D) Let us now prove that Aj(G\i) ⊆ T , i.e., if ℓ ∈ S = V \T then ℓ /∈ Aj(G\i). Let ℓ ∈ S.
By definition of S, there is k ∈ Ai(Q\j) so that ℓ ∈ Vk. By C, every path in G from
node ℓ to node j visits node i (and such a path exists since G is strongly connected).
By definition of Aj(G\i), this means that ℓ /∈ Aj(G\i).

(E) Putting all the pieces together, we have that Aj(G\i) ⊆ T (by D), Ai(G\j) ⊆ S

(by symmetry), (S, T ) is a partition of V (by B), and Ai(G\j) ∪ Aj(G\i) = V (by
Lemma 6(i)). It follows that Ai(G\j) = S and Aj(G\i) = T , and that Ai(G\j) ∩
Aj(G\i) = ∅, i.e., nodes i and j are joint-ancestor free. By Proposition 4, we conclude
that (Ai(G\j), Aj(G\i)) = (S, T ) is the i, j-sourced cut.

(iii) This is a by-product of the proof of (ii). ◀

B Second-level cuts: Progress towards Conjecture 10

In Appendix B.1, we prove intermediary results that are then applied in Appendix B.2 to
prove Theorem 15.

B.1 Paths in the cut graph
Let us first study the behavior of paths i1, i2, . . . , in in the cut graph C1(G), where each
pair of neighboring vertices in the path is joint-ancestor free. We are interested in the
joint-ancestor freeness of the two terminal nodes in the path, i1 and in. We show that the
endpoints i1 and in cannot share a joint ancestor in the subgraph graph G\{i2, i3, . . . in−1}.

First, for the purpose of induction, we prove this claim for length-3 paths:

▶ Lemma 13. Consider a directed graph G = (V, E) and three nodes i1, i2, i3 ∈ V such that i1
and i2 are joint-ancestor free (i.e., Ai1(G\i2)∩Ai2(G\i1) = ∅) and i2 and i3 are joint-ancestor
free (i.e., Ai2(G\i3) ∩Ai3(G\i2) = ∅). Then Ai1(G\{i2, i3}) ∩Ai3(G\{i1, i2}) = ∅.

Proof. Assume for the sake of contradiction that Ai1(G\{i2, i3}) ∩ Ai3(G\{i1, i2}) ̸= ∅,
and let k ∈ Ai1(G\{i2, i3}) ∩ Ai3(G\{i1, i2}). We will prove that either k ∈ Ai2(G\i1) or
k ∈ Ai2(G\i3), which will contradict our assumption that i1 and i2 are joint-ancestor free and
i1 and i3 are joint-ancestor free. Since G is strongly connected, there is a path p = p(k → i2).
We now make a case disjunction.

First, suppose that p(k → i2) either does not visite node i1 or does not visit node i3. If
p(k → i2) does not visit node i1, then k ∈ Ai2(G\i1). Since k ∈ Ai1(G\{i2, i3}) ⊆ Ai1(G\i2),
this contradicts our assumption that nodes i1 and i2 are joint-ancestor free. If p(k → i2)



C. Comte and I. Grosof 29

does not visit node i3, then k ∈ Ai2(G\i3), which leads to a similar contradiction regarding
nodes i2 and i3.

On the other hand, suppose that p(k → i2) visits both i1 and i3. Let us consider p′, the last
portion of p beginning at the last visit to either i1 or i3. Without loss of generality, suppose
p′ begins at i1 and reaches i2 without visiting i3. Since we assumed that k ∈ Ai1(G\{i2, i3}),
concatenating p(k → i1\{i2, i3}) and p′ gives us a path from k to i2 without visiting i3. So
k ∈ Ai2(G\i3), which as explained before leads to a contradiction.

In every case, we have a contradiction to either our assumption that i1 and i2 are joint-
ancestor free, or that i2 and i3 are joint-ancestor free. Thus, our initial assumption much be
wrong: There is no node k in Ai1(G\{i2, i3}) ∩Ai3(G\{i1, i2}), as desired. ◀

Next, we build inductively on this result to handle paths of arbitrary lengths.

▶ Lemma 14. Consider a directed graph G = (V, E) and a sequence of n ≥ 3 distinct nodes
i1, i2, . . . , in such that ip and ip+1 are joint-ancestor free for each p ∈ {1, 2, . . . , n− 1}. Then
Ai1(G\{i2, i3, . . . , in}) ∩Ain(G\{i1, i2, . . . , in−1}) = ∅.

Proof. We make a proof by induction over n, using Lemma 13 as a base case for n = 3.
Let n ≥ 4 and assume the induction assumption is true for each p ∈ {3, 4, . . . , n − 1}.

Assume for the sake of contradiction that the conclusion does not hold, i.e., there exist k ∈ V

and two paths p(a) = p(k → i1\{i2, i3, . . . , in}) and p(b) = p(k → in\{i1, i2, . . . , in−1}).
Since G is strongly connected, we know that at least one of the following is true: there

is a path p(1) = p(i1 → in−1\in), or there is a path p(2) = p(in → in−1\i1). To see why,
consider a path x from i1 to in−1. If the path x avoids in, x is p(1), and we have the first
case. If the path visits in, the tail of the path x starting at its visit to in is p(2), satisfying
the second case.

Let us consider each case in turn:
Suppose there is a path p(1) = p(i1 → in−1\in). In this case, concatenating p(a) and p(1)
gives us a path p(3) = p(k → in−1\in). The existence of paths p(3) and p(b) implies that
that k ∈ Ain−1(G\in)∩Ain

(G\in−1), which contradicts our assumption that in−1 and in

are joint-ancestor free.
On the other hand, suppose that there is a path p(2) = p(in → in−1\i1). Let q ∈
{2, 3, . . . , n− 1} so that iq is the first node in p(2) that belongs to {i2, i3, . . . , in−1}. This
provides us with a path p(4) = p(in → iq\{i1, . . . , iq−1, iq+1, . . . , in−1}) Concatenating
p(b) and p(4) gives us a path p(5) = p(k → iq\{i1, . . . , iq−1, iq+1, . . . , in−1}). The existence
of paths p(5) and p(a) implies that k ∈ Ai1(G\{i2, i3, . . . , iq−1}) ∩Aiq (G\{i1, . . . , iq−1}).
If q = 2, this contradicts our assumption that i1 and i2 are joint-ancestor free. If q ≥ 3,
this contradicts the induction assumption. ◀

B.2 Special case: Expanding I when |J | = 1
Now building on Lemma 14, we are ready to prove Theorem 15, which we see as a stepping
stone to prove Conjecture 10, that any joint-ancestor free subsets I ⊆ K1 and J ⊆ K2 can be
expanded to joint-ancestor freeness of the entire connected components of the cut graph, K1
and K2. In other words, that any broad second-level cut gives rise to a narrow second-level
cut. Here, we only focus on the case of expanding I when J is a single node {j}.

▶ Theorem 15. Consider a directed graph G = (V, E). Let K1 and K2 denote two connected
components of C1(G). Assume that there is a nonempty strict subset I of K1 and a vertex
j ∈ K2 such that I and j are joint-ancestor free (in G). Then there exists i ∈ K1\I such
that I ∪ {i} and j are also joint-ancestor free.
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Proof. First, because I and j are joint-ancestor free and since G is strongly connected, there
is ℓ ∈ AI(G\j) such that (j, ℓ) ∈ E: In particular, there must be a path from j to some node
in I, and we may take ℓ to be the second node on that path, after j.

Next, because ℓ ∈ AI(G\j), there is a path p(ℓ→ i′\j) for some i′ ∈ I. In particular, by
ending when the path first enters I, there must exist a path p(1)(ℓ→ i′\({j} ∪ I\{i′}) for
some i′ ∈ I.

Now, we will switch to viewing paths in the cut graph C1(G). In particular, we will think
about I and K1, the connected component of C1(G) that I lies within. Because K1 is a
connected component of C1(G), there is a path in the cut graph going from i′ to an arbitrary
node i ∈ K1\I. In particular, there is a path in the cut graph that stays within I until it
visits i as the first node in the path outside of I and in K1. In other words, this is a cut
graph path in I ∪ {i}.

Now, assume for the sake of contradiction that I ∪ {i} and j are not joint-ancestor free,
i.e., there exists k ∈ AI∪{i}(G\j) ∩ Aj(G\(I ∪ {i})). Because I and j are joint-ancestor
free, we necessarily have k ∈ Ai(G\j) ∩Aj(G\(I ∪ {i})). Hence, there exists a path (in G)
p(k → i\j) and a path p(k → j\(I ∪ {i}).

Now, note that the path p(k → i\j) does not visit I, so it is also a path p(k → i\I). To
see why, note that if this path did visit I, then taking the portion from k to the first visit
to I would give a path p(k → I\j). But since we also have a path p(k → j\(I ∪ {i})), it
follows that k ∈ AI(G\j) ∩ Aj(G\I), which contradicts our assumption that I and j are
joint-ancestor free.

Now, let us return to the path p(1)(ℓ→ i′\({j}∪I\{i′})). We claim that the path p(1)(ℓ→
i′\({j} ∪ I\{i′})) does not visit node i, so in particular it is a path p(1)(ℓ→ i′\(I ∪ {i}\{i′}).
To see why, note that if p(1) did visit i prior to visiting i′, then by taking the portion of
the path just after visiting i, there is a path p(i→ I\j). Concatenating this path with the
p(k → i\j) path mentioned previously, we now have a path p(k → I\j). Thus, k is a joint
ancestor of I and j, contradicting our assumption.

Now, we’re ready to put it all together. Concatenating the path p(k → j\(I ∪ {i}), the
edge (j, ℓ), and then to the path p(1)(ℓ→ i′\(I∪{i}\{i′}) yields a path p(k → i′\(I∪{i}\{i′}).
Therefore, we have a path p(k → i\I) and a path p(k → i′\(I ∪ {i}\{i′}). By Lemma 14,
this contradicts the fact that there is a path between i and i′ through I in the cut graph
C1(G).

Thus, our assumption was false, and I ∪ {i} and j are joint-ancestor free, as desired. ◀
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