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ABSTRACT
Ever since the advent of “multiserver jobs” (jobs that re-
quire more than one server or core simultaneously), practi-
tioners have been faced with the question of how to pack these
jobs into a compute cluster. While many policies have been
proposed, including First-Come-First-Served (FCFS), Back-
Filling (BF), MaxWeight, and Most Servers First, it is not
well understood which policies simultaneously achieve (1)
throughput-optimality and also (2) both low and theoretically
predictable mean queueing times.

This paper reviews some very recent work from [8, 9] on an
alternative packing policy called ServerFilling (SF) and some
extensions of this policy. The SF policy achieves both goals
(1) and (2) above. This paper discusses and evaluates existing
policies in comparison to SF, in order to prompt discussion
on the tradeoffs between different scheduling policies.
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1 MULTISERVER JOBS
Most computing centers today, be they a public cloud or a
private server farm, run multiserver jobs. A multiserver job
requests some number of servers, typically more than one,
and holds onto those servers for some amount of time. In this
paper, the term “server” is an abstraction; a server might refer
to a CPU, a GPU, or some other processor. A multiserver
job has two components: (i) its server need, which is the
number of servers requested by the job, and (ii) its duration,
which is the time that the job will hold onto those servers.
The size of the multiserver job is the product of its server
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need and its duration, and is expressed in units of server-
hours. Importantly, the server need can vary across jobs, often
differing by orders of magnitude [13, 14]. While a job’s exact
server need is known by the system, the job’s duration may
not be known at all, or sometimes only an estimate or upper
bound is known.

Figure 1 illustrates what we will refer to as the multiserver
job queueing model. Here there are a total of 𝑘 servers. Jobs
arrive with average rate _. With probability 𝑝𝑖 an arrival is
of class 𝑖. An arriving job of class 𝑖 requests 𝑛𝑖 servers and
holds onto these servers for 𝑋𝑖 time, where 𝑋𝑖 is a random
variable. In Figure 1, the scheduling policy is FCFS. However,
in general any scheduling policy can be used, and we describe
several in this paper.

2 FCFS SCHEDULING AND ITS
DRAWBACKS

The most common scheduling policy for multiserver jobs
is FCFS; see for example the CloudSim, iFogSim, EPSim
and GridSim cloud computing simulators [10], or the Google
Borg Scheduler [13]. Unfortunately, FCFS scheduling results
in servers being left idle, as seen in Figure 1. This happens
when the job at the head of the queue does not “fit” into
the available servers (the job’s server need is greater than
the number of available servers) so servers are left idle until
the job can fit. This results in wasted serves. Under FCFS,
depending on the particular server needs, half of all servers
might be wasted [6]. A second drawback of FCFS is that it is
currently unknown how to estimate the mean waiting time of
multiserver jobs under FCFS beyond the case of 𝑘 = 2 servers
[2, 5].

3 FORMALIZING THE MODEL
We define the load 𝜌 of a system to be the time-average
fraction of total server capacity in use. In particular,

𝜌 =
_
∑

𝑖 𝑛𝑖𝑝𝑖𝐸 [𝑋𝑖 ]
𝑘

, 0 < 𝜌 < 1 (1)

Note that the numerator of (1) can be viewed as the rate
of work arriving to the system, while the denominator is
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Figure 1: The multiserver job queueing model with 𝑘 = 8 servers and FCFS scheduling policy. An arriving job of class 𝑖
requests 𝑛𝑖 servers and holds onto these servers for 𝑋𝑖 time. In this particular illustration, 𝑛𝑖 = 𝑖.

the maximum possible rate of work completion. Note that
if the rate of work arriving exceeds 𝑘, instead jobs back up
indefinitely, and formula (1) no longer holds. This behavior
is called “instability”, and we focus in this paper on stable
settings only. Observe that loads 𝜌 approaching 1 are reached
only when the system is always working at capacity, i.e. all
servers are occupied.

Importantly, for some scheduling policies 𝜋 and workloads
𝑤 , loads 𝜌 near 1 are unachievable: For _ high enough to
bring 𝜌 close to 1, the system is already unstable.

For example, consider the setting where the number of
servers 𝑘 = 2 and consider a workload 𝑤 in which half of the
jobs require 1 server and half require 2 servers, and where
𝐸 [𝑋1] = 𝐸 [𝑋2] = 1. Here loads 𝜌 near 1 are not achievable by
the FCFS policy. The resulting system is unstable. However,
loads 𝜌 arbitrarily close to 1 are achievable by the Most
Servers First (MSF) policy, which prioritizes 2-server jobs
over 1-server jobs. FCFS wastes servers unnecessarily, while
MSF keeps all servers busy whenever possible.

As another example, consider a setting with 𝑘 = 4 and
a workload 𝑤 ′ in which all jobs require 3 servers. In this
setting, no scheduling policy 𝜋 can achieve loads 𝜌 near 1. In
particular, no scheduling policy can achieve a load above 3/4.

We say that a policy 𝜋 is throughput-optimal for a par-
ticular workload 𝑤 if 𝜋 can achieve the highest 𝜌 of any
scheduling policy working on workload 𝑤 .

4 GOALS
Ideally a scheduling policy should have these two properties:

(1) The policy should be throughput-optimal for com-
monly encountered workloads 𝑤 .

(2) It should be possible to theoretically analyze the ex-
pected waiting time under the policy. This is impor-
tant when load balancing across different clusters.
Specifically, it allows one to balance the load to en-
sure comparable mean waiting time at each cluster.

Ideally, we also want mean waiting time to be low.

5 OTHER SCHEDULING POLICIES IN
THE LITERATURE

EASY BackFilling: To mitigate the idle servers which re-
sult from FCFS scheduling, BackFilling is sometimes used
[3, 4, 12]. Two of the most common versions of BackFilling
are called Conservative and EASY BackFilling. Under EASY
BackFilling, if the job 𝑗 at the head of the queue has server
need is larger than the number of available servers, the system
tries to estimate a time 𝑡 at which point enough servers will
become available for 𝑗 to run. The system then allows jobs
that arrived after job 𝑗 to run if their server needs allow them
to fit and if they will complete before time 𝑡 . Conservative
BackFilling is similar, but performs this reservation process
for all jobs in the queue, not just the job at the head of the
queue. There are several problems with these versions of
BackFilling. First, they are hard to implement, in that they
require knowing the durations of the jobs. Next, although
BackFilling is better than FCFS at avoiding idle servers, it is
not understood under which workloads each of these Back-
Filling policies is throughput-optimal. Finally, just as there
is no queueing analysis of waiting time under FCFS, it is
even harder to imagine analyzing waiting time under these
BackFilling policies.

FirstFit BackFilling: There are also alternative versions of
BackFilling that do not incorporate duration information, such
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as FirstFit BackFilling. These policies allow the backfilling
process to look arbitrarily far back in the queue and consider
jobs with arbitrarily long duration. As a consequence, these
policies may excessively delay jobs with large server need,
leading to poor and unpredictable waiting times. For this
reason, these policies are rarely used in practice.

Most Servers First (MSF): In this policy, one prioritizes
jobs based on server need, at all times preemptively running
the jobs with highest server need. This policy also goes by
the name “BestFit”, which can either refer to the preemptive
or nonpreemptive version of the policy [1, 11]

The preemptive version of MSF has the advantage of being
throughput-optimal for many common workloads 𝑤 because
it packs jobs into servers well. Unfortunately, in order to pack
well, MSF emphasizes jobs with large server need, which
often results in high mean waiting time. Moreover, there is
no known analysis of mean waiting time under MSF. Finally,
preemptive MSF has the disadvantage of performing many
preemptions.

In contrast, the nonpreemptive version of MSF is not throughput-
optimal for almost any workload. Moreover, the problem of
high waiting time and no waiting time analysis both still exist.
Nonpreemptive MSF does have the advantage of not requiring
preemption.

MaxWeight: The MaxWeight policy is designed to be
throughput-optimal for all workloads. It is a preemptive policy
which at all times 𝑡 searches over all possible packings to pick
a packing 𝑧 which maximizes

max
𝑧

∑︁
𝑖

𝑁𝑖 (𝑡)𝑧𝑖 ,

where 𝑁𝑖 (𝑡) is the number of jobs in the system with server
need 𝑖 and 𝑧𝑖 is the number of jobs with server need 𝑖 that are
served by packing 𝑧. While MaxWeight is provably throughput-
optimal [11], it is prohibitively complex to implement, and
there is no analysis of its mean waiting time. Empirically, the
waiting time can be high under moderate load (when queue
lengths are short) because in this regime MaxWeight has only
limited information to make its decisions.

6 A NEW IDEA: SERVERFILLING
In this paper we summarize a very new approach to sched-
uling multiserver jobs which achieves both of our goals [8].
The ServerFilling policy operates under the regime where the
total number of servers, 𝑘, is a power of two, and the server
need of each job, is also a power of two. The power of two
setting is common for computing jobs. ServerFilling can also
handle certain other workloads, such as the case where all
jobs require either 1 or 𝑘 servers. Additionally, there is a vari-
ant of ServerFilling, called DivisorFilling (see [7, Appendix]
or [9, Appendix]), which allows for the more general case
where all job server needs are divisors of 𝑘 .

ServerFilling is actually not that different than FCFS sched-
uling. Jobs join a queue in FCFS order. ServerFilling only
serves jobs that are near the head of the queue. ServerFilling
designates a “candidate set”, 𝑀 , which consists of the mini-
mal prefix of jobs in arrival order which collectively require
≥ 𝑘 servers. Notice that |𝑀 | ≤ 𝑘 because all server needs
are at least 1. Once the set 𝑀 has been determined, the jobs
within 𝑀 are ordered by their server needs, the 𝑛𝑖’s, from
largest to smallest, tie-broken by arrival order. Jobs from 𝑀

are then placed into service in order of largest server need
first. Note that because 𝑀 is small and consists only of the
oldest jobs in the system in arrival order, ServerFilling serves
jobs in near-FCFS order.

While preemption is needed under ServerFilling, it is not
frequent. When jobs complete, 𝑀 changes, and the set of jobs
in service is recomputed, which can lead to a preemption. By
contrast, when jobs arrive, they do not change 𝑀 unless 𝑀
was previously not full (total server need < 𝑘).

The property that makes ServerFilling so powerful is that,
whenever the set 𝑀 is full (total server need ≥ 𝑘), ServerFill-
ing will result in all 𝑘 servers being full. Thus, the Server-
Filling policy has the property that whenever it is possible
to utilize all servers, the policy does so. Hence, the Server-
Filling policy is able to achieve throughput-optimality, or
equivalently 𝜌 → 1.

It is further shown in [8] that the ServerFilling policy has
very predictable performance. Specifically, let𝑊SF denote the
waiting time under ServerFilling, namely the entire amount of
time from when a job arrives until it completes service during
which the job is waiting in the queue. Then the mean waiting
time under ServerFilling is bounded as follows:

𝜌

1 − 𝜌

E
[
𝑆2
]

2𝑘E [𝑆] + 𝑐low ≤ E [𝑊SF] ≤
𝜌

1 − 𝜌

E
[
𝑆2
]

2𝑘E [𝑆] + 𝑐up, (2)

where 𝑆 represents the job size (the product of the job’s
server need and its duration) and 𝜌 represents the system load,
see (1). In (2), 𝑐low and 𝑐up are constants that do not grow
with load. One can show from this bound that as 𝜌 → 1,
the ServerFilling system operates like a system where all 𝑘
servers have been aggregated into a single powerful server
and all jobs are run in FCFS order on that single powerful
server with zero waste. While the bound in (2) is stated for
overall mean waiting time, one can use the same approach
as in [8] to prove a bound on the mean waiting time of each
class of jobs.

There are several possible extensions of the ServerFilling
idea, most notably the ServerFilling-SRPT (SF-SRPT) policy
from [9]. SF-SRPT is less practical because it requires much
more preemption of jobs, but we describe it here because
it results in asymptotically optimal mean waiting time for
multiserver jobs as 𝜌 → 1. SF-SRPT is similar to Server-
Filling, except that the jobs are ordered in terms of their
Shortest-Remaining-Processing-Time (SRPT), where a job’s
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Figure 2: Mean waiting time in a system with 𝑘 = 8 servers, and a workload consisting of server need 1 with probability
2/3, otherwise server need 8. Duration is distributed 𝐸𝑥𝑝 (1) independent of server need. We simulate 106 arrivals and
loads up to 𝜌 = 0.999. EASY BackFilling and ServerFilling-SRPT make use of exact size information.

processing time is its size, which is the product of its server
need and duration. One now defines the candidate set 𝑀 in
the same way based on that ordering, and again runs jobs in
set 𝑀 in order of largest server need first. New arrivals cause
the 𝑀 set to change, which can result in a job preemption.

7 COMPARISON OF POLICIES
Figure 2 shows a comparison of the different scheduling
policies that we have discussed. The setting is 𝑘 = 8 servers,
and the workload consists of jobs of server needs 1 and 8.
While 2/3 of jobs require 1 server, 1/3 require 8 servers.
Service duration is 𝐸𝑥𝑝 (1), independent of server need.

Unsurprisingly, FCFS has by far the worst performance, be-
coming unstable around 𝜌 = 0.6. The EASY BackFilling pol-
icy, on the other hand, performs much better than FCFS, due
to its better packing. However, EASY BackFilling requires
knowing the durations of jobs, and we have optimistically
assumed perfect knowledge of this duration. ServerFilling
(SF) outperforms EASY BackFilling and does not require
knowledge of job durations. The difference between SF and
EASY BackFilling can be explained with the following obser-
vation: EASY BackFilling often serves just a few jobs with
server need 1 when a job with server need 8 is at the head of
the queue, leaving the other servers idle; this waste can never
happen under SF.

The algorithm that sounds the closest to SF is Most Servers
First (MSF), because it too minimizes idle servers by favoring
the jobs with most server need. However, SF only consider

jobs among the 𝑀 set of oldest jobs, while MSF considers all
jobs. Consequently, the bias in MSF is much more extreme,
causing small sized jobs to have to wait behind too much work
of large sized jobs, resulting in high mean waiting times.

Recall that MaxWeight is provably throughput-optimal.
However, as shown in Figure 2, its performance only ap-
proaches the good performance of SF at high loads (𝜌 ≥ 0.95).
For moderate loads, MaxWeight simply does not have enough
jobs in the queue to make sound scheduling decisions.

Finally, ServerFilling-SRPT (SF-SRPT) has extremely good
mean waiting time at all loads. This is unsurprising, since it
both benefits from the good packing properties of SF, while
also prioritizing small sized jobs, which is known to improve
mean response time. However, SF-SRPT requires exact job
size information and preemption when new jobs arrive.

8 CONCLUSION
Our purpose in this paper was to compare scheduling policies
with respect to our two goals of (1) throughput-optimality and
(2) predictable and low mean waiting times. After examining
a wide variety of scheduling policies, the ServerFilling (SF)
and ServerFilling-SRPT (SF-SRPT) policies stand out in their
ability to meet these goals. On the other hand, SF requires
some minimal preemption, while SF-SRPT requires frequent
preemption. This leads one to the open question of whether
it is possible to achieve all the benefits of SF with even less
preemption.
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